
Network Applications of Graph Bisimulation

Pietro Cenciarelli1, Daniele Gorla1 and Emilio Tuosto2

1 Dip. di Informatica, “Sapienza” Università di Roma (Italy)
2 Dept. Computer Science, Univerity of Leicester (UK)

Proc. of ICGT’08, LNCS 5214, pages 131–146. c© Springer.

Abstract Synchronising Graphs is a system of parallel graph transformation de-
signed for modeling process interaction in a network environment. We propose
a theory of context-free synchronising graphs and a novel notion of bisimulation
equivalence which is shown to be a congruence with respect to graph composi-
tion and node restriction. We use this notion of equivalence to study some sam-
ple network applications, and show that our bisimulation equivalence captures
notions like functional equivalence of logical switches, equivalence of channel
implementations and level of fault tolerance of a network.

1 Introduction

Synchronising Graphs (SG) is a system of parallel graph transformation designed for
modeling process interaction in a network environment. The system is inspired by [8],
and it stems from the Synchronized Hyperedge Replacement (SHR) of [10], with which
it has been compared in [4]. In the SG model, as in SHR, hyperedges represent agents, or
software components, while nodes are thought of as communication channels, synchro-
nisation points or, more generally, network communication infrastructure. The idea that
hypergraphs may interact by synchronising action and co-action pairs at specific syn-
chronisation points (the nodes) is quite intuitive, while the flexibility of the model in
representing diverse network topologies and communication protocols makes SG fit as
a common semantic framework for interpreting different calculi. We followed this idea
in [3], where Mobile Ambients [2] and the distributed CCS of [22] (without restriction)
were both modeled in SG by using a common recursive architecture.

Here, we explore an orthogonal issue, namely the behavioural equivalence of SG.
Indeed, such equivalences are often sought in the theory of concurrency for proving
the conformance of an implementation with respect to a specification or for achieving
a sort of compositionality in the semantics. If we identify the meaning of a process
in its abstract behaviour (which is traditionally considered its bisimulation equivalence
class), compositionality requires that, when equivalent processes (e.g. a specification
and an implementation) are plugged into the same context, they behave in the same
way. This amounts to proving that bisimulation equivalence is a congruence. However,
although such results are abundant in the literature for process calculi, not so for graph
rewriting, where system behaviour is typically context dependent.

To our knowledge, the most strictly related notions of behavioural equivalence pro-
posed for related systems of graph transformation are [13] and [14]. The first paper
proposes a behavioural equivalence for a model called synchronised graph rewriting; as
pointed out by the authors, this equivalence is rather coarse, in that it is not able to distin-
guish graphs with different degrees of parallelism. In this paper, we meet their challenge

for a finer notion and propose one capable of detecting parallelism (it is indeed possible
to implement in SG Plotkin’s parallel or). The behavioural equivalence of [14] refers
to a system of graph rewriting, the SHR of [10], which differs from ours in the mathe-
matical presentation of graphs, in their LTS and, more importantly, in the proof theory.
Syntax is pervasive in SHR, which is more deeply rooted in the field of process calculi,
of which it shares notions such as structural congruence and name binding. Nodes are
treated as names are in process calculi. Unlike in SG, no semantic difference can be
made between two nodes beside them being distinct. Not always so in graph rewriting,
where transformations may depend on attachment to specific nodes. As shown in Sec-
tion 3 (example 5), such dependency may cause non-compositional behaviour. Hence,
while compositionality is to be expected in hyperedge replacement [14], not so for SG,
which allows, as many graph rewrinting systems [7], context-dependent specifications.
Thus, we characterise the theories of synchronising graphs, called context-free where
compositionality holds. A natural notion of bisimulation equivalence is introduced to
capture their abstract behaviour, and proven a congruence in any context-free theory. A
similar result is presented in [14] for hyperedge replacement by exploiting the sytactic
presentation of graphs and referring to results obtained in [24] in the context of struc-
tural operational semantics. Here we provide a direct proof, which relies on no syntax
and sheds light on the meta-theoretical properties of our system (Lemmas 1 and 2).
While imposing on axiom formats built-in features of SHR, our result is no special case
of that in [14], as discussed in the conclusions.

Then, we use our framework for modeling four network applications where the
proposed notion of bisimulation equivalence is shown to capture interesting proper-
ties. In the first application we consider network implementations of logical switches.
Here bisimulation equivalence corresponds to functional equivalence, in that equivalent
networks have an identical input-output behaviour. Then, we consider network imple-
mentations of communication channels, where information items can travel in parallel.
Bisimulation equivalence is shown to capture the notion of (static) channel capacity. In
the third scenario, we refine the previous model by introducing node charges, that are
consumed upon passage of information. This feature cruises in several wireless appli-
cations and becomes a crucial issue in “extreme” applications like the Smart Dust [25].
Here bisimulation equivalence implies identity of dynamic capacity but provides a finer
notion of observational equivalence which can be employed for net optimisation. Fi-
nally, we study the impact of failure in a communication net and show that bisimulation
equivalence characterises exactly the degree of fault tolerance, or robustness, of a net.

The paper is structured as follows. In Section 2, we present the general model of
SG. In Section 3 we investigate the possible sources of context dependency in SG and
focus on context-free SG; a novel notion of bisimulation equivalence is then introduced
and shown to be a congruence. Section 4 presents the applications. Section 5 concludes
the paper by discussing related work and by hinting at current and future research. For
space reasons, all proofs are moved to the appendix.

2 Synchronising Graphs

LetN be a set of nodes, which we consider fixed throughout. A graph (E,G,R) consists
of a set E of hyperedges, an attachment function G : E → N∗ and a set R ⊆ |G| of
nodes, called restricted, where |G| = {x ∈ N | ∃ e ∈ E s.t. x ∈ G e} is the set of nodes of
the graph. When clear from the context or when not important, we shall write a graph
by simply specifying its attachment function. When G e = x1x2 . . . xn (we shall often
abbreviate x1x2 . . . xn as x), we call n the arity of e and say that the i-th tentacle of e is
attached to xi. We denote by res (G) the set of restricted nodes of G, and by fn (G) the
set |G| − res (G) of free nodes. We write e(x) for an hyperedge such that G e = x.

Let Act = {a, b, . . . } ∪ {a, b, . . . } be a set of actions; we call a the co-action of a,
and intend a by a. A pre-transition is a triple (G, Λ,H), written G

Λ
−→ H (or just Λ

for short), where Λ ⊆ N × Act × N∗ is a relation, while G and H are graphs, called
respectively the source and the destination of Λ. Intuitively, (x, a, y) ∈ Λ expresses the
occurrence of action a at node x, which can be thought as a communication channel,
while the elements of y, called objects, are thought of as arguments. When y is the
empty sequence ε, (x, a, ε) is written (x, a).

In SG the occurrence of both (x, a, y) and (x, a, z) in Λ is called a synchronisation,
and it corresponds to the silent action τ of most process calculi. Synchronising hyper-
edges may exchange information. This is implemented in SG by unifying the lists y and
z of objects, which are required to be of the same length. Only two agents at a time may
synchronise at one node. Moreover, if an action occurs at a restricted node, then it must
synchronise with a corresponding co-action, as we consider observable the unsynchro-
nised actions. A restricted node may be “opened” by unifying it with an argument of an
observable action, or with a node which is not restricted.

Notation If ϕ ⊆ A × B is a relation and a ∈ A, we write ϕ a the set {b ∈ B : (a, b) ∈ ϕ}.
The domain of ϕ is the set dom (ϕ) = {a ∈ A : ∃ b ∈ B . (a, b) ∈ ϕ}. A function
f : A → B is said to agree with ϕ when f x ∈ ϕ x, for all x ∈ A. If ϕ is an equivalence
relation, [x]ϕ is the equivalence class of an element x, which we write [x] when ϕ is
understood. A unifier of ϕ is a function f which agrees with ϕ as above and such that
f [x] is a singleton, for all x.

If f : N → N is a function on nodes and (E,G,R) is a graph, we write fG the
graph (E, fG, f R) obtained by substituting all nodes x in G with f x. More precisely, for
all e ∈ E, if G e = x1 . . . xn then (fG) e = f x1 . . . f xn.

Given a pre-transition G
Λ
−→ H, we denote by |Λ| the set |G|∪|H| and by res (Λ) the set

res (G) ∪ res (H). By obj (Λ) we denote the set {y ∈ N : ∃ (x, a, y) ∈ Λ such that y ∈ y }.
We omit parentheses and braces when listing the elements of Λ above a transition arrow.

An action set is a relation Λ ⊆ N×Act ×N∗ such that, for all nodes x, Λ x has at most
two elements and, when so, it is of the form {(a, y), (a, z)}, where y and z are vectors
of identical length. Given an action set Λ, we denote by Λ

= the smallest equivalence
relation on nodes such that, if (x, a, y1y2 . . . yn) and (x, a, z1z2 . . . zn) are in Λ, then yi

Λ
= zi,

for i = 1 . . . n. By a slight abuse, we say that a function agrees with (or unifies) an action

set Λ to mean that it agrees with (unifies) the relation Λ
=. Arguments of unsynchronised

actions are called dangling. More precisely, we call dangling in Λ the elements of the
set dng (Λ) = {z ∈ obj (Λ) : Λ x = {(a, y)} and z Λ

= y, for some x and y ∈ y}.

Definition 1. A transition is a pre-transition G
Λ
−→ H such that:

1. Λ is an action set such that dom (Λ) ∪ obj (Λ) ⊆ |G|;
2. if a node x is restricted in G then Λ x is not a singleton;
3. if x ∈ |H|, then x ∈ fn (H) if and only if x ∈ fn (G) ∪ dng (Λ).
4. H = ρH for some unifier ρ of Λ such that ρ x ∈ fn (G) for all x ∈ fn (G).

Condition 1 expresses the locality of action: graphs can only act upon their own
nodes. By this condition, for example, the pre-transition e(x)

x,a,y
−−−→ d(y), legal in SHR,

is not a transition, because y < |e(x)|. A consequence of 1 and 3 is that all free nodes

in the destination of a transition must occur in the source. Hence, while e(x)
∅
−→ νy d(y)

is a legal transition, e(x)
∅
−→ d(y) is not. This rules ownership of nodes: the access to a

new channel is only acquired via synchronisation. Condition 4 enforces fusions. It also
grants a privilege to the free nodes when they are fused with the bound, which allows

νy e(x y)
x,a,x
x,a,y
−−−→ d(x) and forbids νy e(x y)

x,a,x
x,a,y
−−−→ d(y). This restriction is not essential for

the theory of synchronising graphs while it simplifies the meta-theory without loss of
generality.

In SG, synchronisation is subject to a non-interference condition: two transitions
can be synchronised provided they are disjoint and they share no restricted nodes. For-

mally, G
Λ
−→ H and F

Θ
−→ K are said to be non-interfering, written Λ #Θ, whenever

Λ ∩ Θ = ∅ and res (Λ) ∩ |Θ| = res (Θ) ∩ |Λ| = ∅. It is an easy check that the only nodes
two non-interfering transitions may have in common are the free nodes in their sources.

The rules of the system of synchronising graphs are given below. The composite of
two graphs (E,G,R) and (D, F, S), written G|F, is defined when E and D are disjoint
and moreover res (G) ∩ |F| = res (F) ∩ |G| = ∅; when so, G|F is the graph (E ∪ D,G +

F,R∪S), where G+F is the attachment function mapping e ∈ E to G e and d ∈ D to Fd.
We let νx G denote the graph (E,G,R ∪ {x}) when x ∈ |G|, while νx G = G otherwise.

[sync]
G

Λ
−→ H F

Θ
−→ K

G|F
Λ∪Θ
−−−→ ρ(H|K)

Λ #Θ and ρ unifies Λ ∪ Θ

[open]
G

Λ
−→ H

νx G
Λ
−→ H

x ∈ dng (Λ) [res]
G

Λ
−→ H

νx G
Λ
−→ νx H

x < dng (Λ)

A theory of synchronising graphs is a set of transitions which is closed under the
inference rules. The smallest theory including a given set A of transitions is said to be
generated by the axioms inA.

Note that inference rules assume, as implicit side condition, that the conclusion be
a transition. Hence, for example, the rule [sync] does not apply to νy e(x y)

x,a,y
−−−→ f (y)

and νz d(x z)
x,ā,z
−−−→ g(z) because the conclusion would violate condition 3 of definition 1.

Also note that, differently from the π-calculus [19], we do not have a “close” rule to
close the scope of a restricted name after having opened it via an “open” rule. This
is related to the fact that every inference in SG can be rewritten in a sort of ‘normal
form’ where all the applications of [res] and [open] needed to infer the judgement
come after all the applications of [sync] (see Lemmata 1 and 2 later on). This is similar
to the presentations of the LTS for the π-calculus that include structural equivalence:
in those cases, a “close” rule is omitted because redundant. Thus, for example, we
can build an inference for the graph νxG | νyH where the two parallel components

synchronise, assuming that G
z,a,x
−−−→ G′ and that H

z,ā,y
−−−→ H′: indeed, νxG | νyH is just

another (but exactly identical) way of writing the graph νx(νy(G | H)), that reduces to,
e.g., νx(νy(G′ | H′{x/y})) after a transition {(z, a, x), (z, ā, y)}.

Example 1 (A non-deterministic commuter). Consider a system consisting of several
input and output sockets. The system, which we shall call non-deterministic commuter,
acts by non-deterministically connecting client processes (possibly attached to an input
socket) with one of the output sockets (where server processes may be attached). Con-
nections are established one at a time. Figure 1 depicts a commuter C with three input
and two output sockets. A client process r is being connected with a server q.

bbb bbC
p

qr

p bb bb r

q
C

-

Figure 1. A non-deterministic commuter

Non-deterministic commuters can be engineered in SG by assembling simple com-
ponents (edges) of the form in (x u) and out (u y), representing input and output sockets
respectively. Clients are meant to be attached to the x node of a socket, while servers are
attached to y. The node u represents an internal communication channel of the system.
As elsewhere in the paper, we may use the same name to denote distinct edges repre-
senting components of the same kind. For example, in (x u) | in (z u) will denote a graph
with two edges, each representing an input socket. Then, ignoring the two unused sock-
ets of C (viz., the second input socket and the second output socket), the initial state of
the commuter is represented by the graph νu (in (x u) | in (z u) | out (u y)). The system’s
behaviour is specified by the following two transitions, where a and a represent the
input and output actions respectively:

in (x u)
u,a,x
−−−→ ∅ out (u y)

u,a,y
−−−→ out (u y)

To be precise, these are to be considered as axiom schemes, and we assume one axiom
of the first kind for each input socket and one of the second for each output. In the
present example, we further assume that any hyperedge can perform a passive (empty)
transition to itself. Then, ignoring p and its socket, the transition of figure 1 is obtained

as r(z) | q(y) | νu (in (z u) | out (u y))
u,a,y
u,a,z
−−−→ r(y) | q(y) | νu out (u y). �

To conclude the presentation of SG, we give two meta-theoretical lemmata showing
that any transition in a given theory can be inferred by a canonical derivation where all
applications of [sync] precede [res] and [open].

Notation Let G
Λ
−→ H and F

Θ
−→ K be transitions; we denote by Λ ∗ Θ the set of

transitions of the form G|F
Λ∪Θ
−−−→ ρ(H|K) obtained by synchronising Λ and Θ with

[sync]. Clearly, Λ ∗ Θ is empty when Λ and Θ interfere. The expression (Λ ∗ Θ) ∗ Φ
stands for

⋃
Ξ∈Λ∗Θ(Ξ ∗ Φ). Similarly, we let νxΛ be the transition which results from

restricting Λ on x by an application of [res] or [open]. The expression νx (Λ ∗ Θ)
denotes the set of transitions of the form νxΞ with Ξ ∈ Λ ∗ Θ.

Lemma 1. Let Λ and Θ be transitions and let x occur unrestricted in the source of Λ.
Then, (νxΛ) ∗ Θ ⊆ νx (Λ ∗ Θ).

The opposite inclusion does not hold: νy e(x y) | νz d(x z)
x,a,z
x,a,y
−−−→ νy (h(y) | k(y)) is in-

cluded in νy (Λ ∗ Θ) where Λ is e(x y)
x,a,y
−−−→ h(y) and Θ is νz d(x z)

x,a,z
−−−→ k(z), while

(νyΛ) ∗Θ is empty because the result of applying [sync] to νyΛ and Θ violates condi-
tion 3 of definition 1.

Lemma 2. Synchronisation is associative: (Λ ∗ Θ) ∗ Ξ = Λ ∗ (Θ ∗ Ξ).

3 Context-free Theories and Behavioural Equivalence

One of the aims of the present paper is to characterise the theories of synchronising
graphs in which the behaviour of a graph is not affected by the context. The following
examples will clarify this concept.

Example 2. In the theory generated by a unique axiom e|d
∅
−→ ∅, the two processes e and

d, considered in isolation, have the same behaviour: none of them can move. However,
if set in the context []|d, the two processes exhibit quite different behaviour, as e|d can
move while d|d cannot.

Example 3. In the theory generated by a unique axiom νx e(x)
∅
−→ ∅, the process e(x)

cannot move, thus exhibiting the same catatonic behaviour as the empty process ∅.
However, when set in a context νx [] where x is restricted, νx e(x) can move while
νx ∅ = ∅ cannot.

Example 4. In the theory generated by the four axioms h(x y)
x,a,x
x,a,y
−−−→ ∅, d

∅
−→ d, e(x y)

∅
−→

e(x y) and e(x x)
x,a
−−→ ∅, e(x y) behaves just like the process d, cycling forever over itself.

However, when put in parallel with h(x y), e(x y) yields a trace which h(x y) | d does not

have: h(x y)|e(x y)
x,a,x
x,a,y
−−−→ e(x x)

x,a
−−→ ∅.

Example 5. In the theory generated by the three axioms h(x y)
x,a,x
x,a,y
−−−→ ∅, d

∅
−→ d and

e(x)
∅
−→ e(x), the processes e(x) and d have the same behaviour. However, when put

in parallel with h(x y), e(x) yields a transition to a catatonic state, namely e(y), which
h(x y) | d cannot reach.

These are in fact the only possible sources of context dependency in a theory of
synchronising graphs. This is shown in the present section by providing a notion of
bisimulation equivalence on graphs and then proving that, in any theory generated by
axioms including no transitions of the kind described in the examples, the proposed
equivalence is a congruence with respect to restriction and parallel composition.

In this section we abandon the brute force notion of node substitution in a graph
G adopted in the previous section and denote by hG the graph obtained by applying a
substitution h to the free nodes of G, while restricted nodes are suitably renamed so as to
avoid capture. This simplifies the treatment while remaining consistent with the theory
developed so far. In particular, note that the new interpretation of ρ(H|K) in [sync] does
not alter the set of derivable transitions.

An instance of a transition G
Λ
−→ H is a transition of the form hG

hΛ
−−→ ρ hH where

h is a node substitution N → N and ρ is a unifier of hΛ. A production is a transition
whose source consists of a single hyperedge e(x), where all components of x are distinct
and none of them is restricted. A theory of synchronising graphs is called context-free
when it is generated by all the instances of a given set of productions. Note that the
constraints that productions are asked to satisfy prevent the first three examples of con-
text dependency to occur, while the use of all their instances for generating the theory
accounts for the fourth example.

We now move to the definition of our behavioural equivalence; to this aim, we call
parameters the elements of the set P = N × Act × N. Intuitively, a parameter (x, a, i)
is an abstraction over the i-th argument yi of an action (x, a, y). We call observations
the elements of the set O = N ∪ P. Given an action set Λ, the relation Λ

= extends to a
relation Λ

=o on observations that is the smallest equivalence relation containing Λ
= such

that (x, a, i) Λ
=o (x, a, i) and moreover (y, b, j) Λ

=o z if (y, b, z1 . . . z j . . . zn) ∈ Λ and z = z j.

Not all pairs of Λ
=o are observable. The set obs (Λ) of observables of a transition

G
Λ
−→ H consists of its observable nodes, the set of which we denote by |Λ|o , together

with the parameters of unsynchronised actions: obs (Λ) = |Λ|o ∪ {(x, a, i) ∈ P : Λ x =

{(a, y)} and 0 ≤ i ≤ |y |}, where |Λ|o = {x ∈ fn (G) : x ∈ dom (Λ) or x is dangling or x Λ
=

y , x for some y ∈ fn (G)}. Note that, by the definition of |Λ|o , while x is observable in

e(x y)
x,a,y
x,a,y
−−−→ H, y is not because, although it is free in e(x y), “self-fusion” has no bearing

on the interacting environment. The observable part of the relation Λ
=o, written

Λ
', is the

equivalence relation obtained by restricting Λ
=o to obs (Λ); thus, we let p

Λ
' q if and only

if p Λ
=o q and p, q ∈ obs (Λ).

Definition 2. Two transitions G
Λ
−→ H and F

Θ
−→ K are called equivalent when

Λ
' =

Θ
'

and {x ∈ fn (G) : |Λ x| = 2} = {y ∈ fn (F) : |Θ y| = 2}.

In our study of behavioural equivalence we follow a standard practice in process
algebra where alpha-equivalent terms are considered as identical. In our context this
amounts to defining behaviour on classes of alpha-equivalent graphs, that is graphs
which are identical up to renaming of restricted nodes. We shall call such classes ab-
stract graphs, and write them in bold, G. Any theory of synchronising graphs yields a

transition system of abstract graphs which includes G
Λ
−→ H if and only if G

Λ
−→ H is in

the theory, for some G ∈ G and H ∈ H.
Notice that the notion of free names can be extended to abstract graphs since, for

every G and G′ in G, it holds that fn (G) = fn (G′); thus, the notion of equivalent

transitions scales to abstract graphs as well. A transition G
Λ
−→ H is said to be fair with

an abstract graph F when none of the nodes in obj (Λ) \ fn (G) is free in F.

Definition 3. A simulation is a binary relation S on abstract graphs such that GS F
implies that, for all transitions G

Λ
−→ H fair with F, there exists a transition F

Θ
−→ K such

that Λ and Θ are equivalent, and HS K. An abstract graph G is simulated by a graph
F, written G ≺ F, if there exists a simulation S such that GS F. A bisimulation is a
symmetric simulation. Two abstract graphs G and F are called bisimulation equivalent,
written G ∼ F, when they are related by a bisimulation.

Notice that the fairness condition asked for G
Λ
−→ H in the previous definition is

standard in name-passing calculi, e.g. the π-calculus [19].
Composition and restriction extend to abstract graphs. In particular, νx G is [νx G]α,

for some G ∈ G such that x < res (G), while G|F is [G|F]α, for some G ∈ G and F ∈ F
such that G|F is defined. Note that the above definitions do not depend on specific
choices of G and F. A relation R on abstract graphs is called a congruence when GRF
implies νx GR νx F and G|H R F|H, for all x and H.

Theorem 1. Bisimulation equivalence is a congruence.

Proof (Sketch). The result is proven by showing that the symmetric relation

R = {(νx (G|U), νx (F|U)) : G ≺ F}

is a simulation. Then, closure under parallel composition is obtained by letting x be
the empty vector; closure under name restriction is obtained by letting U be [(∅; ∅; ∅)]α.
Lemmas 1 and 2 are used. See appendix for detail. �

4 Network Applications

4.1 A non-deterministic commuter (Example 1 continued)

The internal communication channel of the non-deterministic commuter can be im-
plemented by a local network without affecting the observable behaviour of the sys-
tem. We build such internal infrastructure by means of simple components, called
connectors, of the form c(u1u2v). Connectors echo the information received from u1
(call it the input node) over u2 (the output node) using a service node v for the
matching. Once v has served its purpose, a new service node is created. In symbols:

c(u1u2v)
u1,a,v
u2,a,v
−−−−→ νw c(u1u2w). The internal channel of the commuter in Figure 1 can be

s
p c in

s q

ss ss
s

sc
cs

r

out

c1 c2 c4

c3

in
u1

x

u2 u3 u5z

y

v3

v1 v2 v4

u4

Figure 2. An implementation of the commuter in Figure 1 (we draw labeled boxes for hyper-
edges and bullets for nodes; the latter are solid when restricted and clear otherwise; tentacles are
represented by lines connecting hyperedges with nodes).

implemented by the net G of four connectors in Figure 2. In symbols, grouping all
indexed names into vectors:

G = ν u v p(x) | q(y) | r(z) | in (z u1) | in (x u2)
| c1(u1u2v1) | c2(u2u3v2) | c3(u3u4v3) | c4(u3u5v4) | out (u4y).

With this implementation, the transition in Example 1 is simulated by an equiva-

lent transition G
Λ
−→ H, where (by ignoring all the unused sockets and connec-

tors) H = r(y) | q(y) | ν u w (c1(u1u2w1) | c2(u2u3w2) | c3(u3u4w3) | out (u4y)) and Λ is
{(u1, a, z), (u1, a, v1), (u2, a, v1), (u2, a, v2), (u3, a, v2), (u3, a, v3), (u4, a, v3), (u4, a, y) }.

In general, a graph made of sockets and connectors behaves like a non-deterministic
commuter when it is a tree (that is, connected and acyclic) in which output sockets are
attached by their first tentacle, input sockets by their second, no connector is attached
by its service node, and moreover there exists a node, called pivot, that may split the
graph into two (possibly disconnected) subgraphs, one including all the input and the
other all the output sockets. In our implementation, nodes u2, u3 and u4 are all pivotal.
Of course, in the absence of a pivot, the internal infrastructure may allow for parallel
connections, which are not contemplated in the specification of Example 1.

Proposition 1. Any abstract graph G satisfying the conditions above is bisimulation
equivalent to the abstract graph corresponding to the non-deterministic commuter ob-
tained by deleting all the connectors from G and attaching all sockets to the pivot node.

4.2 Functional equivalence

We now consider a more general kind of non-deterministic commuters, allowing multi-
ple connections to occur at once. Hence, the internal structure of a commuter can now
be any acyclic graph of connectors where all nodes are restricted. Input sockets are at-
tached by their second tentacle, while their first is attached to a free node called input
node; and dually for output sockets and output nodes.

A connection in a commuter C is a path from an input to an output node of C. A
set of disjoint such connections (i.e. no node is shared by two connections in the set) is
called a service of C. If s is a service, we write ŝ the partial function from the input to
the output nodes of C such that ŝ(x) = y if and only if there exists a connection from x
to y in s. We say that two commuters are functionally equivalent when, for each service
s of one, there exists a service r of the other such that ŝ = r̂, and vice-versa.

s tf v
v fv

v
u

v

i o
f fff HHj��*

HHj ��*

s t

u

v

3 2

1 2

Figure 3. A channel with maximum flow 3 and its SG representation

Proposition 2. Two non-deterministic commuters are functionally equivalent if and
only if their alpha-equivalence classes are bisimulation equivalent.

4.3 The maximum flow in a net

Consider an application where a sender sends discrete pieces of information, called
items, to a receiver. The communication infrastructure is represented by a directed
acyclic graph (V,E), whereV is a set of vertices and E ⊆ V ×V is a set of edges. An
edge (u, v) is an input for v and an output for u. We assume that the graph features a
unique vertex with no input edges, called source, representing the sender. Similarly, the
receiver is represented by a unique vertex with no input edges, called target.

We further endow each edge with a capacity, that is an upper bound to the number
of items it can transmit at a time: n items can travel simultaneously through an edge
provided its capacity is not less than n. No items are lost during transmission, and all
items in input to a node are immediately presented in output in equal number. Hence,
if the sender feeds the net with n items simultaneously, n items are received at once by
the receiver, provided the edge capacities are not exceeded. This gives rise to the notion
of network flow and of maximum network flow [6], i.e. the maximum number of items
which can be simultaneously fed to the net. We call channels, and use metavariables
A, B. . . to denote them, graphs (V,E) as above, endowed with a function c : E → N
assigning to each edge an integer capacity, which we assume strictly greater than 0.

A flow in a channel A is a function f : E → N such that f (u, v) ≤ c(u, v) and∑
u f (u, v) =

∑
w f (v,w), for all v ∈ V except for source and target. The value of a flow

f at the source s is f (s) =
∑

u f (s, u), while f (v) =
∑

u f (u, v) for all other vertices v.
Clearly, f (s) = f (t), and we call this number the value of f in A. A positive flow is one
with value strictly greater than 0. The maximum flow of A, written φ (A), is the greatest
value of a flow in A.

A channel A = (V,E, c) is modelled by a synchronising graph Â as follows. The
nodes of Â are the elements of E ∪ {i, o}, where i and o are called respectively the input
and output nodes. All nodes in Â are restricted, except i and o. Hyperedges are the
vertices ofV. They are attached to nodes as follows: v (xy) represents a vertex v < {s, t}
where x is a vector including all input edges of v and y all outputs. Source and target
are respectively s (i y) and t (x o). Figure 3 represents a channel and its representation
as a synchronising graph.

f fff HHj��*

HHj ��*

3

1
3

3

(A)

f fff HHj��*

HHj ��*

3

3

2

2

(B)

ff f- -
4 6

(C)

Figure 4. Three consumable channels. Omitted capacities and energy charges are assumed high
enough as to not influence the flow dynamics.

The theory of channels features actions of the form n and n, where n ∈ N, and no
parameters. It is generated by all axioms of the form:

v (x1 . . . xn y1 . . . ym)
x1 h1, ... ,xn hn
y1 k̄1, ... ,ym k̄m
−−−−−−−−−−→ v (x1 . . . xn y1 . . . ym),

where
∑n

i=1 hi =
∑m

j=1 k j and, assuming c(i) = c(o) = ∞, hi ≤ c(xi), k j ≤ c(y j) for all
nodes xi and y j. It is easy to see that A supports a flow of value k if and only if Â has a
transition Λ whose only observable actions are Λ(i) = {k} and Λ(o) = {k}. The following
result shows that, in this simple model, bisimulation equivalence captures precisely the
notion of maximum flow.

Proposition 3. Let Â ∈ A and B̂ ∈ B; then, A ∼ B if and only if φ (A) = φ (B).

4.4 The dynamic flow of a net

In real applications the nodes of a wireless network are often supplied with a finite
amount of energy which is consumed in routing information. The Smart Dust [25],
where nodes are motes of 1mm diameter, is an extreme example of energy-sensitive
application. We give a simple account of such scenarios by charging the channels of
Section 4.3 with consumable energy and studying their behaviour.

A consumable channel A = (V,E, c, η) is a channel as above, endowed with an
energy function η : V → N. A flow in A is just as in Section 4.3, with the additional re-
quirement that f (v) ≤ η (v) for all v ∈ V. The energy inside a channel decreases at each
flow. For simplicity, we shall assume that the passage of one information item through
a vertex consumes one energy unit. Then, the energy dynamics is described by a tran-

sition system over consumable channels with transitions (V,E, c, η)
k
−→ (V,E, c, η′),

whenever the channel to the left admits a flow f of value k, and η′(v) = η (v) − f (v) for

all v ∈ V. Clearly, A
k
−→ A′ implies k ≤ φ (A).

A computation of a channel A is a sequence of transitions A
k1
−→ A1 . . .

kn
−→ An,

which we shorten as 〈k1, . . . , kn〉. The dynamics Φ (A) of a channel A is the set of all
its computations. The channels depicted in Figure 4 all have a maximum flow of 4.
However, while (B) and (C) have same dynamics, not so for (A) as it does not admit a
computation 〈4, 2〉 while the others do. In Section 4.5 we distinguish channels such as
(B) and (C) by introducing the notion of robustness.

As before, we model a consumable channel A by a synchronising graph Â, and relate
the dynamics of the former with the observable behaviour of the latter. Â is defined just
as in Section 4.3 except that the hyperedge vn(x y) corresponding to a vertex v is now
labelled by the energy n = η (v). The axioms vn(x y)

...
−→ vn′ (x y) are as in Section 4.3

with the additional requirement that, writing p the value
∑m

j=1 k j of the transition, p ≤ n
and n′ = n − p.

Channel dynamics do not provide a good notion of behavioural equivalence for
consumable channels. For example, consider the channels (B) and (C) in Figure 4: by
always taking the upper path, after 〈2, 1〉 (B) becomes a net that cannot transmit three
information items simultaneously (because of the capacity bound on its lower edge),
whereas (C) can always perform 〈2, 1, 3〉. Bisimulation equivalence captures such dif-
ferences in channel behaviours; moreover, it also yields a technique for proving that
two channels have identical dynamics, i.e. the same set of traces:

Proposition 4. Let Â ∈ A and B̂ ∈ B; then, A ∼ B implies Φ (A) = Φ (B).

4.5 Network robustness

The channels (B) and (C) of Figure 4 have the same dynamics in the world described in
Section 4.4 but not in a more realistic setting where vertices may fail. In such a case B
is to be considered more robust than C. Robustness is ususally defined as the minimum
number of faults that would block a net. Here we show a model where bisimulation
equivalence captures precisely this notion of robustness.

Since the interplay between robustness and dynamic flow is subtle, we shall make
the simplifying assumption that every node has infinite energy and every edge has ca-
pacity 1. Since flow values are not of interest here, we further assume that channels may
pass at most one information item at a time. We let r(A) denote the minimum number
of nodes that must be removed to disconnect a channel A (i.e. source from target).

We represent the behaviour of a faulty channel A by augmenting the theory of syn-
chronising graphs of Section 4.4 with new axioms for failure. As anticipated, all hyper-
edges of Â are now labelled by∞, and failure is represented by a sudden drop of v∞(x y)
to v0(x y). The axioms of flow are just as in Section 4.4 with the only difference that
c(i) = c(o) = 1. For modeling failure, we introduce a new action † and the following
axiom schemes, where we write v when the energy of the vertex (∞ or 0) is irrelevant:

v∞(x y)
xi,†
y j,†
−−−→ v0(x y) s(i y)

i,0
y j,†̄
−−−→ s(i y) t(x o)

xi,†̄
o,0̄
−−−→ t(x o)

v(x y)
xi,†̄
y j,†
−−−→ v(x y) for v < {s, t} v(x y)

xi,†
y j,†̄
−−−→ v(x y) for v < {s, t}

The first axiom accounts for the failure of v while the two axioms to the bottom are
to transmit such an information respectively towards the source and the target. Notice
that, in the first axiom, we can freely pick any xi ∈ x and y j ∈ y since every xi and y j

lie in a path from s to t (because we work with connected graphs). By the remaining
two axioms, source and target hide occurrences of † by issuing 0 on the free input and
output nodes. Hence, failures are not explicitly observable. Note that we engineered our

model as to admit one failure at a time. This allows us to test robustness by counting
the number of steps that a channel requires in order to die. Simultaneous failures could
of course have been modeled, at the cost of exposing the failure action † over the free
nodes i and o.

The following result shows that, in this model, the robustness of a faulty channel is
captured precisely by the notion of bisimulation equivalence.

Proposition 5. Let Â ∈ A and B̂ ∈ B; then, A ∼ B if and only if r(A) = r(B).

5 Conclusions

Synchronised graph rewriting has been proposed as a unifying semantic framework for
process calculi [12,10,15,3]; to fulfill this project, graphs must be endowed with an
abstract notion of behaviour. In this paper we do so by introducing a notion of bisim-
ulation equivalence for a system of context-free synchronising graphs and by proving
it a congruence with respect to parallel composition and node restriction. Bisimula-
tion equivalence can be used to prove the correctness of system implementations, or
(dually) of optimisation steps. For example, we have developed an application where
the specification of a simple component, called non-deterministic commuter, is shown
to be equivalent to an implementation in which the internal communication channel is
replaced by a local net.

Bisimulation techniques could have been used, of course, directly in each one of the
applications we have considered, without passing through an encoding into SG. How-
ever, the gain from our effort is twofold. On the one hand, matching the proposed notion
of graph bisimulation with well known properties in the theory of networks is a good
test for naturality and flexibility. On the other hand, SG may provide “mechanical” sup-
port for reasoning about such properties: systems such as the Concurrency workbench
[5] support bisimulation proofs in the framework of process algebra. It is a challenging
project to endow the current implementation of SG [23] with a similar capability.

Finally, our rule of synchronisation is reminiscent of the communication law of
the Fusion Calculus [21]. Linking to Fusion is therefore a natural gateway for us to the
universe of process algebra. We are working through this direction and have developed a
context-free theory of synchronising graphs which can be viewed, in a precise sense, as
a parallel and syntax-free version of the Fusion calculus. We believe that our translation
is fully abstract w.r.t. proper notions of bisimulation equivalences, but we still have not
been able to prove such a result.

Related work SG is closely related to the synchronised hyperedge rewriting (SHR)
approach [10] from which it takes inspiration. SHR rewriting acts on syntactic judge-
ments, that is term-graphs equipped with an interface consisting of their set of free
nodes. The syntax-driven presentation of SHR enables several properties to be proven
at a rather high abstraction level. For example, mimicking the approach in [20] for the
π-calculus, it is proven in [14] that a given notion of bisimulation is a congruence for
SHR parametrically in a synchronisation algebra with mobility, thus accounting for sev-
eral styles of interaction. While renouncing the generality of SHR in abstracting over
synchronisation algebras, SG exhibits a much simpler system of inference rules.

Productions are built-in SHR so as to make rewriting context-independent in a much
similar way our productions do in context-free theories. Indeed, in SHR the dependen-
cies described in Section 3 (and, in particular, those in Examples 4 and 5) are avoided by
defining rewriting rules on productions rather than on graphs. Albeit being resolutive,
this approach introduces some complexity in the definition of the operational semantics
of SHR. For example, all possible instances must be considered when synchronising
productions. We prefer to maintain the simple presentation of Section 2 and apply the
(simpler) rewriting rules [sync], [open] and [res] to contex-free theories.

However, even in the setting of contex-free theories, SHR still differs from SG both

in the notion of transition and in the proof theory. For example, while x ` e(x)
(x,a,y), id
−−−−−−→

x, y ` d(x, y) is legal in SHR, where nodes are treated as variables, e(x)
x,a,y
−−−→ d(x, y)

violates the principle of locality of Definition 1 in SG, where nodes are “constants”.
As for the proof theory, consider an application in which agent d(x) dies. This is done

in SG by the production d(x)
∅
−→ ∅, which is mimicked in SHR by the production x `

d(x)
∅, id
−−−→ x ` nil . Say this transition occurs in a larger context including an idle agent

e(y). In SG: d(x) | e(y)
∅
−→ e(y). In SHR: x, y ` d(x) | e(y)

∅, id
−−−→ x, y ` e(y). Node x

remains in the context, even if no edge is attached to it. After that, and for the rest of
its life, e(y) can procede computation in SHR only if synchronising with the identical

transition x ` nil
∅, id
−−−→ x ` nil of the graph consisting of a unique node x and no edges

(no such a graph exists in SG). Identities are therefore fundamental in SHR, and all
syntactic judgements are granted one. On the other hand, identities can be provided in
a context-free theory if desired. Interleaving could be inhibited, for example, by not
providing identities. This also impacts on behavioural equivalence as no distinction can
be made in SHR between edges whose only transition is the identity and edges with no
transitions at all.

The above examples show that no sensible matching can be made between SHR
(with synchronisation à la Milner) and context-free theories of synchronising graphs,
and none can be viewed as generalising the other.

Other interesting approaches have been applied to give congruential observational
semantics to graph rewriting. Notably, in [9] borrowed contexts enable the derivation
minimal contexts in a DPO (double-push out) approach. The idea, inspired by [17,16],
consists in computing the minimal context within which a system can react. The result-
ing observational semantics, where observations are given by such minimal contexts,
provides a bisimulation which is a congruence “by construction”. A similar approach
is taken in [18], where bigraphs are equipped with rules to form a bigraphical reac-
tive system providing a bisimilarity which is a congruence. An interesting research di-
rection is applying the mentioned approaches to SG and then compare the resulting
observational semantics with the one defined here. Indeed, it is not clear what are the
relationships between “natural” equivalences and those obtained via borrowed-context
or reactive approaches. Initial studies for process algebras show that such equivalences
may not coincide: for example, [11] shows a congruential bisimilarity obtained with
a borrowed-context approach that is finer than open bisimilarity in the π-calculus. Re-
cently, the notion of saturated semantics [1] has been shown to provide suitable con-
gruential bisimilarities (e.g. the open bisimilarity for π-calculus can be obtained). This

approach is quite promising but, at the best of our knowledge, it has not been applied to
observational semantics of graphs rewriting.

References

1. F. Bonchi, B. König, and U. Montanari. Saturated semantics for reactive systems. In Proc.
of LICS, pages 69–80, IEEE 2006.

2. L. Cardelli and A. Gordon. Mobile Ambients. Theor. Comp. Science, 1(240):177–213, 2000.
3. P. Cenciarelli, I. Talamo, and A. Tiberi. Ambient Graph Rewriting. Electronic Notes in

Theoretical Computer Science, 117:335–351, 2005.
4. P. Cenciarelli and A. Tiberi. Rational Unification in 28 Characters. Electronic Notes in

Theoretical Computer Science, 127-5:3–20, 2005.
5. R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A semantics-based

tool for the verification of concurrent systems. ACM ToPLaS, 15(1):36–72, 1993.
6. T. Cormen, C. Leiserson and R. Rivest. Introduction to algorithms. MIT Press, 1990.
7. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic Ap-

proaches to Graph Transformation I: Basic Concepts and Double Pushout Approach. In
Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1, chap.3.

8. P. Degano and U. Montanari. A model for distributed systems based on graph rewriting.
Journal of the ACM, 34:411–449, 1987.

9. H. Ehrig and B. König. Deriving Bisimulation Congruences in the DPO Approach to Graph
Rewriting. In Proc. of FoSSaCS, volume 2987 of LNCS, pages 151–166. Springer, 2004.

10. G. Ferrari, U. Montanari, and E. Tuosto. A LTS semantics of ambients via graph synchro-
nization with mobility. In Proc. of ICTCS’01, volume 2202 of LNCS. Springer, 2001.

11. G. Ferrari, U. Montanari, and E. Tuosto. Model Checking for Nominal Calculi. In Proc. of
FoSSaCS, volume 3441 of LNCS, pages 1–24. Springer, 2005.

12. D. Hirsch and U. Montanari. Synchronized hyperedge replacement with name mobility: A
graphical calculus for name mobility. Proc. of CONCUR, volume 2154 of LNCS, 2001.

13. B. König and U. Montanari. Observational equivalence for synchronized graph rewriting
with mobility. In Proc. of TACS, volume 2215 of LNCS, pages 145–164, 2001.

14. I. Lanese. Synchronization Strategies for Global Computing Models. PhD thesis, Univ. of
Pisa, 2006.

15. I. Lanese and U. Montanari. A graphical fusion calculus. In Proc. of COMETA’03, 2003.
16. J. Leifer. Operational Congruences for Reactive Systems. PhD thesis, Univ. of Cambridge

(UK), 2001.
17. J. Leifer and R. Milner. Deriving Bisimulation Congruences for Reactive Systems. In Proc.

of CONCUR, volume 1877 of LNCS, pages 243–258, 2000.
18. R. Milner. Bigraphical Reactive Systems. Proc. of CONCUR’01, volume 2154 of LNCS.
19. R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information and

Computation, 100:1–77, 1992.
20. U. Montanari and M. Buscemi. A First Order Coalgebraic Model of π-Calculus Early Ob-

servational Equivalence. Proc. of CONCUR’02, volume 2421 of LNCS, pages 449–465.
21. J. Parrow and B. Victor. The fusion calculus: Expressiveness and symmetry in mobile pro-

cesses. In Proc.of LICS. IEEE Computer Society, 1998.
22. J. Riely and M. Hennessy. Distributed Processes and Location Failures. Theoretical Com-

puter Science, 266:693–735, 2001.
23. I. Talamo. A Workbench for Distributed Programming. Masters thesis,

http://briantb.unixcab.org/shetemp/, 2004.

24. D. Turi and G. D. Plotkin. Towards a mathematical operational semantics. In Proc. of LICS.
IEEE Computer Society Press, 1997.

25. B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister. Smart dust: Communicating with a
cubic-millimeter computer. IEEE Computer, 34(1):44–51, 2001.

Appendix

Proofs from Section 2

Proof of Lemma 1 Let G
Λ
−→ H and F

Θ
−→ K be transitions, and let x belong to fn (G).

Any transition Ξ in (νxΛ) ∗ Θ must be of the form (νx G)|F
Λ∪Θ
−−−→ ρ(H′ |K), where

H′ = H if x ∈ dng (Λ) and H′ = νx H otherwise. Note first that, since νxΛ#Θ implies

Λ#Θ, the transition G|F
Λ∪Θ
−−−→ ρ(H|K) is in Λ∗Θ. Let x ∈ dng (Λ). Since Ξ is a transition,

x < ρ(H|K) by condition 3 of definition 1. Then, independently of whether [open] or

[res] is applied to G|F
Λ∪Θ
−−−→ ρ(H|K), we obtain (νx G)|F = νx (G|F)

Λ∪Θ
−−−→ ρ(H′ |K) in

νx (Λ ∗ Θ) as required. Otherwise, let x < dng (Λ). If x < |H|, then H′ = νx H = H.

If x ∈ dng (Λ ∪ Θ) then Ξ is the result of applying [open] to G|F
Λ∪Θ
−−−→ ρ(H|K). On

the other hand, since Ξ satisfies condition 3, x < dng (Λ ∪ Θ) implies x < ρ(H|K), and
hence Ξ is obtained again from Λ ∪ Θ by [res]. Finally, if x ∈ |H|, the synchronisation

of νx G
Λ
−→ νx H withΘ has no effect on x. Hence ρ(νx H|K) = νx ρ(H|K) and moreover,

again by condition 3, x < dng (Λ∪Θ). Then Ξ is the result of applying [res] to (Λ∪Θ) ∈
Λ ∗ Θ as above. �

Proof of Lemma 2 We show one inclusion; the other is proven likewise. Let F|G
Λ∪Θ
−−−→

ρ(H|K) be in Λ ∗ Θ and let F|G|I
Λ∪Θ∪Ξ
−−−−−−→ σ(ρ(H|K)|J) be in (Λ ∗ Θ) ∗ Ξ. It is easy to

check that (Λ∪Θ) #Ξ if and only if Λ #Ξ andΘ #Ξ. Hence, by synchronising Ξ withΘ,

and the result with Λ, we obtain a transition F|G|I
Λ∪Θ∪Ξ
−−−−−−→ σ(H|π(K|J)) in Λ # (Θ #Ξ).

The result follows by noticing that σρ = σπ = σ and hence σ(ρ(H|K)|J) = σ(H|K|J) =

σ(H|π(K|J)). �

Proofs from Section 3

Parallel and sequential composition have useful meta-theoretical properties in context-
free theories. Let Λ be any transition of a composite graph G|F; there exists a Y-shaped
derivation of Λ where the actions of G and those of F are synchronised separately in
each branch of the Y. More precisely:

Theorem 2. Let Λ be a transition in a context-free theory, and let G|F be its source.
Then, Λ is an element of a set νx (Θ ∗ Ξ), where G has exactly the same hyperedges as
the source of Θ and F as the source of Ξ.

Proof. Observe that, if x does not occur or it is restricted in the source of a transition
Λ, then νxΛ = Λ. Hence, the hypothesis of Lemma 1 can be assumed to hold for any

application of [open] and [res] in a derivation tree. All such applications can therefore
be moved toward the root of the tree. Moreover, since the source of productions are
single-hyperedged, all applications of [sync] can be reshuffled by Lemma 2 so as to
separate the actions of G from those of F. �

Similarly, synchronisations occurring in parallel can be serialised, provided the
axioms of the theory are suitably simple. We call simple a transition Λ such that

|dom (Λ)| ≤ 1. A simple transition of the form G
∅
−→ G is called an identity.

Theorem 3. Let G
Λ∪Θ
−−−→ H be a transition in a context-free theory generated from

simple axioms including the identities, and let dom (Λ)∩dom (Θ) be empty. Then G
Λ∪Θ
−−−→

H factorises as G
Λ
−→ F

ρΘ
−−→ H, where ρ is a unifier of Λ.

Corollary 1. Any transition in a context-free theory with simple axioms and identities
factorises as a sequence of simple transitions.

Lemma 3. Let h : N → N be a node substitution and let hG
Ψ
−→ H be derivable from a

set of productions. Then,Ψ is of the form hG
hΛ
−−→ νx ρ(hK), where G

Λ
−→ K is a derivable

transition and ρ is a unifier of hΛ.

Proof. By induction on the depth of the derivation tree. If Ψ is an axiom, the statement
holds with Λ obtained as an instance of the same production as Ψ . This is because each
tentacle in the source of a production is attached to a distinct node. As for the inductive
steps, we only show the case where Ψ is the result of a synchronisation. The others are
similar.

Let Ψ be a transition h(G1|G2)
Ψ1∪Ψ2
−−−−−→ ρ(H1|H2) obtained by synchronising hG1

Ψ1
−−→

H1 and hG2
Ψ2
−−→ H2. By inductive hypothesis Ψ1 and Ψ2 are respectively of the form

hG1
hΛ1
−−→ νx1ρ1(hK1), and hG2

hΛ2
−−→ νx2ρ2(hK2), and the transitions G1

Λ1
−−→ K1 and

G2
Λ2
−−→ K2 are derivable. Since ρ1 unifiesΨ1, while ρ unifiesΨ1∪Ψ2, we have ρ◦ρ1 = ρ,

and similarly for ρ2. Moreover, x1 and x2 are not affected by the synchronisation of Ψ1
and Ψ2, and hence by ρ. Therefore, writing x for x1x2, we have:

ρ(H1|H2) = ρ(νx1ρ1hK1|νx2ρ2hK2) = νx ρ(ρ1hK1|ρ2hK2) = νx ρ h(K1|K2).

Let G1|G2
Λ1∪Λ2
−−−−−→ σ(K1|K2) result from synchronising Λ1 and Λ2, and let x be a node of

K1|K2. Since σx ∈ [x]Λ1∪Λ2 , we have hσx ∈ h[x]Λ1∪Λ2 ⊆ [hx]h(Λ1∪Λ2). Hence, ρ hσx =

ρ hx. Then, ρ hσ(K1|K2) = ρ h(K1|K2) as required. �

We now move to the main result, i.e. that bisimulation equivalence is a congruence.
First of all, we prove that it is closed under arbitrary node substitutions and then we use
this result to prove closure under parallel compositions and restrictions. What we are
going to prove is done for ≺, but the results also hold for ∼, since all the relations we
are going to define are symmetric.

In the proofs, we shall use both abstract and ordinary graphs. However, when we
work with ordinary graphs, it will be useful to relate names occurring in two equivalent

transitions. Thus, if G
Λ
−→ G′ and F

Θ
−→ F′ are equivalent transitions, we say that x ∈ |Λ|

and y ∈ |Θ| are observationally related if either x = y ∈ fn (G)∩fn (F) or there exists o ∈
obs (Λ) such that x Λ

=o o Θ
=o y. Note that the relation is symmetrical because obs (Λ) =

obs (Θ) whenever Λ and Θ are equivalent. Note also that observational relation is not

restricted to observable nodes, being it defined by Λ
=o and Θ

=o rather then by
Λ
' and

Θ
'.

Lemma 4. Simulation is preserved by node substitution: G ≺ F implies hG ≺ hF, for
all h : N → N .

Proof. Let

R = {(νx hG, νx hF) |G ≺ F and dom (h) ⊆ fn (G) ∪ fn (F)}

Consider a pair (νx hG, νx hF) ∈ R and a transition νx hG
Ψ
−→ H fair with νx hF; by

definition and Lemma 3, we have that νx hG
hΛ
−−→ νuσhH, where G ∈ G, hΛ = Ψ ,

νuσhH ∈ H, σ is a unifier of hΛ and is the identity on u, and G
Λ
−→ H. Since G ≺ F

and Λ is fair for F, there exists F ∈ F such that F
Θ
−→ σ′K, Λ and Θ are equivalent, σ′ is

a unifier of Θ and H ≺ K. This implies that νx hF
hΘ
−−→ νvσ′hK; moreover, hΛ and hΘ

are equivalent, σ′ is a unifier of hΘ and it is the identity on v. It remains to prove that
the alpha-equivalence classes of νuσhH and of νvσ′hK are in R.

First, observe that σ (and σ′) can be written as the composition of three substitu-
tions, affecting different kinds of nodes: indeed, σ = σ f ◦ σb ◦ σb f where σ f affects
nodes free in νx hG, σb nodes bound in both νx hG and in νuσhH and σb f nodes bound
in νx hG but free in νuσhH (similarly for σ′). We can also assume σ f and σ′f be the
same function, since hΛ and hΘ are equivalent.

We now show that νuσhH and νvσ′hK are alpha-equivalent to νyσ f σ̄bσb f hH and
νyσ f σ̄bσ

′
b f hK, respectively. For every ui ∈ u, consider the class [ui] of the image

under h of a node yi ∈ |G|. If yi ∈ fn (G), because of the equivalence of Λ and Θ,
there must be a class [v j] observationally related to [ui] containing h(yi); thus, we let
σ̄b(h[ui]) = h(yi) and yi ∈ y. On the other hand, if [ui] contains only nodes already
bound in G, these nodes can not be affected by h; moreover in Θ there must be a class
[v j] that is observationally related to [ui]. In this case, choose a representative z and
define σ̄b([ui]) = σ̄b([v j]) = z.

Next, we define a function σ̄b f such that σb f ◦ h = σ̄b f = σ′b f ◦ h. Observe that
for each class [xi] that is affected by σb f , there is an observationally related class [z j]
affected by σ′b f . Consider [xi] containing the image under h of a node y free in G and let
[z j] be the class observationally related to it. Notice that [z j] must contain h(y). Define
σ̄b f ([xi]) = σ̄b f ([z j]) = h(y). Consider now the classes [xi] and [zi] which are observa-
tionally related and contain no free node of G (and hence of F). The fusion h must be the
identity on these classes. The fusion σ̄b f defined above can be extended so that on these
classes σb f = σ̄b f and σ′b f = σ̄b f . Thus, νyσ f σ̄bσb f hH and νyσ f σ̄bσ

′
b f hK (that are

alpha-equivalent to νuσhH and νvσ′hK, respectively) are equal to νy (σ f ◦ σ̄b ◦ σ̄b f)H
and νy (σ f ◦σ̄b◦σ̄b f)K, respectively; thus, by definition, their alpha-equivalence classes
are in R. This concludes the proof. �

Notice that the lemma may fail for non-context-free theories, as for instance that of
Example 3. Note also that the lemma would have to be rephrased were we adopting the
brute-force notion of node substitution of section 2.

Proposition 6. Simulation is transitive: G ≺ F and F ≺ I imply that G ≺ I.

Proof. Let
R = {(G, I) : ∃F s.t. G ≺ F ∧ F ≺ I}

Let (G, I) ∈ R and G
Λ
−→ H be a transition fair with I, with G

Λ
−→ H, G ∈ G and H ∈ H.

Let g : res (G)→ N be an injective renaming of the bound names of G with some fresh

names such that G
gΛ
−−→ gH is fair with F. By hypothesis, there exists F

Θ
−→ K such that

gΛ and Θ are equivalent; moreover, gH ≺ K. Let F
Θ
−→ K, where F ∈ F and K ∈ K.

Let f : res (F)→ N be an injective renaming of the bound names of F with some fresh

names such that F
fΘ
−−→ f K is fair with I. Again by hypothesis, there exists I

Ξ
−→ J such

that fΘ and Ξ are equivalent; moreover f K ≺ J.
By Lemma 4, (g−1 f −1) f K ≺ (g−1 f −1)J and g−1gH ≺ g−1K; since f and g are

injective, the previous relations reduce to g−1K ≺ g−1 f −1J and H ≺ g−1K. Thus, by
construction, it holds that (H, g−1 f −1J) ∈ R. Moreover, since the images of f and g

were fresh, g−1 f −1I = I; thus, I
g−1 f −1Ξ
−−−−−−→ g−1 f −1J. If we prove that Λ and g−1 f −1Ξ (that,

from now on, will be denoted by Ξ ′) are equivalent, we have done.

– First, we have to prove that
gΛ
' =

Θ
' and

fΘ
' =

Ξ
' imply that

Λ
' =

Ξ ′

' . By expanding the

definition of
Λ
', we have that (p, q) ∈

Λ
' if and only if

• either p = (y, b, j), for some y ∈ fn (G) such that Λy = {(b z)}, and q = z j ∈

fn (G);
• or there exists x ∈ |G| such that Λx = {(a y), (ā z)}, with p = yi ∈ fn (G),

q = zi ∈ fn (G), p ∈ dom (Λ) or p Λ
= n ∈ fn (G) \ {p}, and q ∈ dom (Λ) or

q Λ
= m ∈ fn (G) \ {q}.

Thus, in all cases p and q only contain (or are) nodes that are free in G. Since

dom (g) ⊆ res (G), it holds that (p, q) ∈
Λ
' implies that (p, q) ∈

gΛ
'; conversely, if

(p, q) ∈
gΛ
' , since the image of g is fresh (and, thus, dom (g−1) ∩ fn (G) = ∅), we

have that (p, q) ∈
Λ
'. Thus, (p, q) ∈

Λ
' if and only if (p, q) ∈

gΛ
' that, by hypothesis,

holds if and only if (p, q) ∈
Θ
'. With a similar reasoning, we have that (p, q) ∈

Θ
' if

and only if (p, q) ∈
fΘ
' that, by hypothesis, holds if and only if (p, q) ∈

Ξ
'. Again,

the images of g and of f are fresh (and, thus, (dom (g−1)∪ dom (f −1))∩ fn (I) = ∅);

moreover, p and q only contain (or are) nodes that are free in I. Thus, (p, q) ∈
Ξ
' if

and only if (p, q) ∈
Ξ ′

' , as desired.
– Second, we have to prove that {x ∈ fn (G) : |Λx| = 2} = {z ∈ fn (I) : |Ξ ′z| = 2},

by knowing that {x ∈ fn (G) : |gΛx| = 2} = {y ∈ fn (F) : |Θy| = 2} and {y ∈
fn (F) : | fΘy| = 2} = {z ∈ fn (I) : |Ξz| = 2}. Notice that g and f only work on the
bound names of G and F; thus, |gΛx| = |Λx| and | fΘy| = |Θy|, for every x ∈ fn (G)
and y ∈ fn (F). Since the images of f and g were fresh, dom (g−1 f −1) ∩ fn (I) = ∅;
thus, |Ξ ′z| = |Ξz| for every z ∈ fn (I), and this suffices to conclude. �

Proof of Theorem 1 We show that the relation

R = {(νx (G|U), νx (F|U)) : G ≺ F}

is a simulation. Let G ≺ F. For simplicity we consider the transitions of G|U and F|U,
rather than νx (G|U) and νx (F|U); the general proof is only slightly more complicated.

So, let G|U
Φ
−→W be a transition; thus, there exist G ∈ G, U ∈ U and W ∈W such that

G|U
Φ
−→ W.

We start by exhibiting an equivalent transition of F|U to some Z. To this aim, define
the focus in a derivation of a transition Ξ to be Ξ itself if it is an axiom or the conclusion
of a [sync]; otherwise the focus is that of the sub-derivation of the premise of Ξ. By
Theorem 2, there exists a derivation of Φ in which all the actions of G are separated

from those of U. Let G0|U0
Λ∪Ψ
−−−→ ρ(H0 |V0) be its focus, with G0

Λ
−→ H0 and U0

Ψ
−→ V0

as premises, where G = νx0 G0 and U = νu0 U0. Since, by assumption, x0 ∩ |U | = ∅,
there are no unsynchronised actions on x0 in Λ (such actions would otherwise occur

unsynchronised in Φ as well), and a transition G
Λ
−→ H can therefore be derived from

G0
Λ
−→ H0. Since G ≺ F, there exist F ∈ F (that, without loss of generality, we can as-

sume be such that F|U is defined) and a transition F
Θ
−→ K which is equivalent to Λ and

such that H ≺ K, where H and K are the alpha-equivalence classes of H and K respec-
tively. By Lemmata 1 and 2, there exists a derivation ofΘwhere all synchronisations are

applied first. Let F0
Θ
−→ H0 be its focus, with F = νy0 F0, and let F0|U0

Θ∪Ψ
−−−−→ σ(K0 |V0)

be derived by synchronising U0
Ψ
−→ V0 with F0

Θ
−→ H0. By restricting Θ ∪ Ψ on y0 and

u0, a transition F|U
Θ∪Ψ
−−−−→ Z is obtained, which is easily shown to be equivalent to Φ.

Thus, the desired transition is F|U
Θ∪Ψ
−−−−→ Z, where Z is the alpha-equivalence class of Z.

We now have to prove that (W,Z) ∈ R. Let H = νx1 H0 and V = νw1 V0, with x1 ⊆

x0 and w1 ⊆ u0. Since the nodes in x1 and w1 are not affected by the synchronisation
of Λ and Ψ , νx1 ρH0 = ρH and νw1 ρV0 = ρV; and similarly for σ. Hence, W and Z are
respectively of the form νx2 ρ(H|V) and νy2 σ(K|V), where x2 ⊆ x0u0 are the dangling
nodes of Λ and Ψ which are fused by the synchronisation, and similarly for y2 ⊆ y0u0.
Summarising, we have to prove that the alpha-equivalence classes of νx2 ρ(H|V) and
νy2 σ(K|V)) are in R.

Calling interface of a transition Ξ the set of its unsynchronised parameters |Ξ|ι =

{(x, a, i) ∈ P : Ξx = {(a, y)} and 0 ≤ i ≤ |y |}, we let x R y hold on |Λ ∪ Ψ | × |Θ ∪ Ψ |
precisely when x and y are related either observationally or by the interface of Ψ , that
is: x Λ∪Ψ

= o Θ∪Ψ
= y, for some o ∈ |Ψ |ι. The projections of R form a pushout diagram

?

-

? -

R |Θ ∪ Ψ |

|Λ ∪ Ψ | N ⊆ N

f

g

in which N is a set of fresh nodes, and g and f are such that g x = f y if and only
if x R y. Let ξ : fn (H) ∪ fn (K) → N be the node renaming function mapping x to

g(x) if x ∈ fn (H), or else to f (x) if x ∈ fn (K). This is a good definition because, if
x ∈ fn (H)∪ fn (K), then g(x) = f (x). Since fn (H) = fn (H) and fn (K) = fn (K), it holds
that g(ρH) = ξ(H) and f (σK) = ξ(K); thus, since H ≺ K, Lemma 4 implies that

g(ρH) ≺ f (σK). (1)

Now, let x be a free node of V . Either x is free in U, in which case x (as an object
of |Λ∪Ψ |) is observationally related with itself (as an object of |Θ∪Ψ |) or there exists
a parameter o in the interface of Ψ such that x Λ∪Ψ

= o Θ∪Ψ
= x. In both cases ρx Rσx and,

therefore, g(ρV) = f (σV); this trivially implies that

g(ρV) = f (σV). (2)

Moreover, there exists a vector v such that

νv gρ(H|V) = ν(gx2) gρ(H|V) and (3)
νv fσ(K|V) = ν(f y2) fσ(K|V). (4)

In fact, any node x ∈ x2 must be either dangling in Λ or in Ψ . Since Λ and Θ are equiva-
lent, there must exist y ∈ |Θ∪Ψ | such that x Λ∪Ψ

= o Θ∪Ψ
= y for some o ∈ |Ψ |ι; hence, x R y

holds. Then, either [y]Θ∪Ψ∩|σ(K|V)| = ∅, in which case gx < | fσ(K|V)|, or else there ex-
ists y′ ∈ y2 such that gx = f y′. In either cases ν(gx) ν(f y2) fσ(K|V) = ν(f y2) fσ(K|V).
The dual argument applies when x ∈ y2. So, we obtain the equations (3) and (4) by
taking v to be gx2 ∪ f y2.

Now notice that νx2 ρ(H|V) and ν(gx2) gρ(H|V) are alpha-equivalent (because N is
a set of fresh names), and so are νy2 σ(K|V) and ν(f y2) fσ(K|V). Moreover, νv gρ(H|V)
is the alpha-equivalence class of νv gρ(H|V) and it is the same abstract graph as
νv (gρH|gρV); similarly, νv fσ(K|V) = νv (fσK| fσV) and it is the alpha-equivalence
class of νv fσ(K|V). Noted these facts, we easily conclude:

νx2 ρ(H|V) α
= ν(gx2) gρ(H|V) = νv gρ(H|V) by (3)

(νv (gρH|gρV) , νv(fσK| fσV)) ∈ R by (1), (2) and definition of R

νv fσ(K|V) = ν(f y2) fσ(K|V) α
= νy2 σ(K|V) by (4). �

Proofs from Section 4.1

Proof of Proposition 1. Writing CG the commuter obtained from an abstract graph G
of sockets and connectors as described in the hypothesis, the set of all pairs of the form
(G,CG) is a bisimulation. In fact, any transition of CG must involve the synchronisation
of one (because the infrastructure is acyclic) and only one (because a pivot exists) in-
put/output pair of sockets. By an easy check, the echoing actions (u1, a, v) and (u2, a, v)
performed by the connectors preseve the equivalence of transitions. �

Proofs from Section 4.2

Lemma 5. The services of a non-deterministic commuter are in one-to-one correspon-

dence with its transitions. Moreover, if s corresponds to Λ, then ŝ =
Λ
'.

Lemma 6. Let C be a non-deterministic commuter and let C
Λ
−→ D be a transition; s is

a service of D if and only if s = sC − sΛ, where sC is a service of C and sΛ corresponds
to Λ as by Lemma 5.

Proof of Proposition 2. (If) Let C and D be bisimulation equivalent non-deterministic
commuters; let C ∈ C and s be a service of C. By Lemma 5, C has a transition Λ with

ŝ =
Λ
'. Since C ∼ D, there exists D ∈ D and a transition Θ of D which is equivalent to

Λ, and hence, again by Lemma 5, a service r of D such that r̂ =
Θ
' =

Λ
' = ŝ.

(Only if) We show that functional equivalence extended to abstract graphs is a

bisimulation. Let C and D be functionally equivalent, and let C
Λ
−→ E be a transition

fair with D. Then,
Λ
' = ŝΛ = r̂Θ =

Θ
' , where D

Θ
−→ F is a transition and sΛ and rΘ are

related respectively with Λ and Θ as in Lemma 5. If s is a service of (a representative
of) E, then s = sC − sΛ by Lemma 6, where sC is a service of (a representative of) C.
Since C and D are functionally equivalent, there exists a service rD of (a representative
of) D such that ŝC = r̂D. Then, again by Lemma 6, r = rD − rΘ is a service of (a repre-
sentative of) F and r̂ = r̂D − r̂Θ = ŝC − ŝΛ = ŝ. Since the argument is symmetrical, E is
functionally equivalent to F, as required. �

Proofs from Section 4.3

In what follows, we shall use notation Λ|v to denote {(e, ·) ∈ Λ : e = (u, v) ∨ e = (v, u)}.
Moreover, in(v) and out(v) will denote the input and output edges of a vertex v.

Lemma 7.

1. If Â
Λ
−→ F then there exists a k ≤ φ (A) s.t. Λ(i) = {k}, Λ(o) = {k̄}, i and o are the

only visible nodes in dom (Λ), obj (Λ) = ∅ and F = Â.
2. Conversely, for every k ≤ φ (A), there exists a Λ such that Λ(i) = {k}, Λ(o) = {k̄}, i

and o are the only visible nodes in dom (Λ), obj (Λ) = ∅ and Â
Λ
−→ Â.

Proof. For the first part, notice that the transitions of a graph ·̂ do not change the
graph and have no objects; thus, trivially, F = Â and obj (Λ) = ∅. Then, notice that
the only visible nodes in Â are i and o, so they are the only possible visible nodes in
dom (Λ); moreover, since Λ is a transition, by definition every restricted node contained
in dom (Λ) must host a synchronisation and, since every hyperedge incides at least one
restricted node, i and o must occur in dom (Λ) and it must be |Λ(i)| = |Λ(o)| = 1. It re-
mains to prove that Λ(i) = {k} and Λ(o) = {k̄}, for some k ≤ φ (A). To this aim, consider
function f such that

f (u, v) =

{
h if h ∈ Λ(e), for e = (u, v)
0 otherwise

By definition of the transitions in Â, it follows that f is a flow in A. Thus,

φ (A) ≥ | f | =
∑

e ∈ out(s)

f (e) =
∑

e ∈ in(t)

f (e) (5)

where the last equality easily follows from the definition of the value of a flow. Now,

Ns
Λ|s
−−→ Ns, where Λ|s = {(i, h)} ∪ {(e, he) : e ∈ out(s)} and

h =
∑

e ∈ out(s)

he =
∑

e ∈ out(s)

f (e) (6)

Similarly, Nt
Λ|t
−−→ Nt, where Λ|t = {(o, k̄)} ∪ {(e, ke) : e ∈ in(t)} and

k =
∑

e ∈ in(t)

ke =
∑

e ∈ in(t)

f (e) (7)

The thesis follows from (5), (6) and (7).
For the second part, we can find a flow f with value k; we aim at proving that

the desired transition is Λ = {(i, | f |), (o, | f |)} ∪ {(e, f (e)), (e, f (e)) : e ∈ E}. The only

non-trivial thing to prove is that Â
Λ
−→. To this aim, first notice that Nv

Λ|v
−−→ Nv, where

dom (Λ|v) = in(v) ∪ out(v); indeed, since f is a flow,
∑

e ∈ out(v) f (e) =
∑

e ∈ in(v) f (e) and
f (e) ≤ c(e) for every e ∈ in(v) ∪ out(v). Then, notice that, if u , v, we have that either
e < dom (Λ|u) ∩ dom (Λ|v) or Λ|u(e) = { f (e)} and Λ|v(e) = { f (e)} (or vice versa); hence,

Nu | Nv
Λ|u∪Λ|v
−−−−−→ Nu | Nv. We can easily conclude by noting that Λ =

⋃
v ∈V Λ|v. �

Proof of Proposition 3. First, notice that, for every A, it holds that A
Λ
−→ G if and only

if Â
Λ
−→ G, for some G ∈ G; thus, by definition of Â, every transition of A is also a

transition of Â. Thus, in the bisimulation game, it suffices to work on the transitions of
Â (that coincides with those of A).

For the ‘if’ part, we show that

S = {(A,B) : φ (A) = φ (B) ∧ Â ∈ A ∧ B̂ ∈ B}

is a simulation. Let Â
Λ
−→ F; by Lemma 7(1), Λ(i) = {k}, Λ(o) = {k̄}, k ≤ φ (A), i and o

are the only visible nodes in dom (Λ), obj (Λ) = ∅ and F = Â. Since φ (A) = φ (B) and

because of Lemma 7(2), B̂
Λ′

−→ B̂, for some Λ′ such that Λ′(i) = {k}, Λ′(o) = {k̄}, i and
o are the only visible nodes in dom (Λ′) and with obj (Λ′) = ∅; this suffices to conclude
that Λ′ is equivalent to Λ.

For the ‘only if’ part, let k = φ (A); by Lemma 7(2), we know that Â
Λ
−→ Â, for some

Λ such that Λ(i) = {k}, Λ(o) = {k̄}, i and o are the only visible nodes in dom (Λ) and

with obj (Λ) = ∅. By definition of bisimilarity, B̂
Λ′

−→ F, for some Λ′ equivalent to Λ. By
Lemma 7(1), we can conclude that k ≤ φ (B); but it cannot be k < φ (B), otherwise, to be
bisimilar to B̂, Â would have to perform a Λ such that Λ(i) = {φ (B)} and Λ(o) = {φ (B)},
in contradiction with Lemma 7(1). �

Proofs from Section 4.4

Proofs for this refined scenario can be easily derived from those given in the previous
subsection; we only give the statements.

Lemma 8. If A
k
−→ B is a transition of a consumable channel A, then the synchronising

graph Â has a transition Â
k
−→ B̂. Conversely, if Â

k
−→ F then there exists A

k
−→ B such

that F = B̂.

Proof. Similar to the proof of Lemma 7.

Proof of Proposition 4. Similar to the ‘only if’ part of Proposition 3.

Proofs from Section 4.5

To prove the correspondence between bisimilarity and robustness, we first need the
notion of cut in a synchronised graph F of the theory defined by the previous axiom
shemata. A cut for F is a subset of hyperedges C such that, for every positive flow f ,
there exists a e(z) ∈ C such that f (z j) > 0, for some j. The robustness of F, denoted
R(F), is the minimal cardinality of a cut in F.

Lemma 9. Let F be a synchronised graph of the theory defined by the axiom shemata

in Section 4.5. Then, F
Λ
−→ F′ implies that Λ and R(F′) can only be such that:

1. Λi = {1} and R(F′) = R(F);
2. Λi = {0} and R(F′) = R(F);
3. Λi = {0} and R(F′) = R(F) − 1 (clearly, this case is possible only if R(F) > 0).

Proof. First, notice that any Λ such that Λi = {1} leaves F as it was before the transition;
thus, trivially, R(F′) = R(F). On the other hand, if Λi = {0}, it can either be that F′ = F
(and in this case R(F′) = R(F) holds trivially) or F′ is generated by a failure in F.
In the latter case, the failed hyperedge could belong or not to a minimal cut: in the
first case, the minimal cut has at least cardinality 1 and R(F′) = R(F) − 1; otherwise,
R(F′) = R(F). �

Proof of Proposition 5. Like in the proof of Proposition 3, we have that, for every A

with alpha-equivalence class A, it holds that A
Λ
−→ G if and only if Â

Λ
−→ G, for some

G ∈ G. So, in the bisimulation game, we shall only consider the transitions of Â.
For the ‘if’ part, we prove that S = {(F,G) : R(F) = R(G) ∧ F ∈ F ∧ G ∈ G} is

a simulation; indeed, it is easy to see that R(Â) = r(A). Let F
Λ
−→ F′; by Lemma 9, we

have only three possibilities for Λ and R(F′). In the first two cases, we can always find

a Λ′ equivalent to Λ such that G
Λ′

−→ G′ and R(G′) = R(G); then, trivially, (F′,G′) ∈ S,
where F′ ∈ F′ and G′ ∈ G′. Assume instead that Λi = {0} and R(F′) = R(F) − 1; thus,
R(F) > 0. But then also R(G) > 0 and we can find a hyperegde in G whose failure
decreases of 1 unit the robustness of G; but such a failure can only have been generated
by a Λ′ equivalent to Λ and it leads G in a G′ whose alpha-equivalence class is related
by S to the alpha-equivalence class of F′, by construction of S.

For the ‘only if’ part, let n be R(Â); thus, there exists a cut of Â of cardinality n, say
{v1, . . . , vn}. Then, consider the transition Λi that makes (the hyperedge associated to) vi

fail; thus, Â
Λ1
−−→ F1 . . .

Λn
−−→ Fn, where R(F j) = n− j. Since Â ∈ A ∼ B 3 B̂, it must be that

B̂
Λ′1
−−→ G1 . . .

Λ′n
−−→ Gn, where Λ′j is equivalent to Λ j and the alpha-equivalence class of F j

is bisimilar to the alpha-equivalence class of G j, for every j. Hence, Λ′j(i) = Λ j(i) = 0;
so, by Lemma 9, r(A) = R(Â) ≥ R(B̂) = r(B). We can now repeat the same steps starting
from B̂; we then obtain that r(B) ≥ r(A) and easily conclude. �

