
From Flow Logic to Static Type Systems for
Coordination Languages?

Rocco De Nicola1, Daniele Gorla2, René Rydhof Hansen3, Flemming Nielson4,
Hanne Riis Nielson4, Christian W. Probst4, and Rosario Pugliese1

1 Dip. Sistemi e Informatica, Univ. di Firenze
2 Dip. Informatica, Univ. di Roma “La Sapienza”

3 Department of Computer Science, Aalborg University
4 Informatics and Mathematical Modelling, Technical University of Denmark

In Proc. of COORDINATION’08, LNCS 5052, pages 100–116. c© Springer.

Abstract. Coordination languages are often used to describe open ended sys-
tems. This makes it challenging to develop tools for guaranteeing security of the
coordinated systems and correctness of their interaction. Successful approaches
to this problem have been based on type systems with dynamic checks; therefore,
the correctness properties cannot be statically enforced. By contrast, static anal-
ysis approaches based on Flow Logic usually guarantee properties statically. In
this paper we show how to combine these two approaches to obtain a static type
system for describing secure access to tuple spaces and safe process migration
for a dialect of the language K.

1 Introduction

Coordination languages allow two or more components of an application to commu-
nicate, by reading/removing/adding data to a shared communication medium, in order
to accomplish shared goals. These languages are often being used to program appli-
cations in open ended systems, namely systems whose overall structure can change
dynamically in unpredictable ways because the entities involved can join and leave at
any time. This open nature exposes applications/systems to malicious accesses to their
data/resources. Also, when process mobility is permitted, one can easily conceive trojan
horses or viruses spawned at remote localities by malicious entities.

This scenario makes it challenging to develop tools for guaranteeing security of co-
ordinated components and correctness of their interaction. Discretionary access control
mechanisms have been then designed based either on specifying the permitted opera-
tions associated to the objects, or on specifying the capabilities that the different sub-
jects have on the objects. The capability-based approach appears to be more appropriate
than the access-control one for open distributed systems (see e.g. [12]), because capa-
bilities can be distributed to the subjects, rather than being attached to the objects, and
can be passed on. Moreover, their different categories need not to be statically fixed.

Different techniques have also been devised to enforce access control (see e.g. [11]).
The most traditional one is based on a reference monitor that dynamically intercepts

? This work has been supported by the EU project SENSORIA, IST-2005-016004.

each attempted access to a (critical) resource and determines whether the intended op-
erations should be allowed or denied. The main disadvantage of this approach is that
security properties can only be checked dynamically, thus lowering the performance of
systems. In order to limit these drawbacks, many static analysis techniques [8] have
been devised. These techniques originate from the work on compilers [1] where it is
imperative that all relevant behaviour of systems be determined statically. The result of
analysing a program is an analysis estimate that gives a global summary of the proper-
ties of interest. However, these approaches require a knowledge of the full system and
make the analysis more difficult.

To overcome all these limitations, hybrid approaches have been investigated that
take advantage of both static and dynamic checks. This is, e.g., the case of the
capability-based type systems for K (Kernel Language for Agents Interaction and
Mobility, [2]), an experimental language specifically designed to program distributed
systems made up of several mobile components. K has proved to be suitable for
programming a wide range of distributed applications with agents and code mobility.
Its primitives allow programmers to distribute/retrieve data and processes to/from the
nodes of a net and extend Linda’s notion of generative communication [4] through mul-
tiple shared tuple spaces.

In the capability-based type systems for K (see e.g. [3, 5]), capabilities are used
to specify the access control policies stating which operations (in, out, eval, ...) pro-
cesses are allowed to perform while running at a given node; type checking then deter-
mines if processes comply with the policy of their hosting node. Access requests are
mostly checked statically, but some dynamic type check is used to deal with data com-
munication and process migration. In the former case, the dynamic checks are needed
because no constraint is put on the kind of data inserted in tuple spaces; hence, with-
drawal of data must be type controlled to establish matching with the input pattern. In
the latter case, the type check has to be deferred to run-time because the target node of
a process migration, and, hence, its policy, could be statically unknown.

In this paper we show how to use ideas from the Flow Logic approach [10] to static
analysis to enhance K’s type systems with means for giving a global account of
the behaviour of the system. Indeed, this seems necessary in order to deal with the
distributed nature of tuple spaces; furthermore, it allows us to develop a fully static
type system. On the other hand, the Flow Logic approach borrows from the type-based
approach in being compositional in axiomatising when analysis estimates are valid for
a given system (although the actual computation of the best, i.e. least, analysis estimate
requires global solution of a system of constraints [9]).

The rest of the paper is structured as follows. In Section 2 we introduce the syn-
tax and semantics of the dialect of K considered; we dispense with an operation
for creating new localities but instead use a primitive for accepting processes from the
environment. A Flow Logic for the language is developed in Section 3 and used as in-
spiration to design the fully static type system presented in Section 4. Our major results,
stated in Sections 3 and 4, prove that the two analysis techniques are in accordance. We
conclude in Section 5.

2 A Dialect of K

Syntax. The process calculus used here, like other members of the K family, con-
sists of three layers: nets, processes, and actions. Nets specify the overall structure of a
system, including where processes and tuple spaces are located. Processes are the actors
in this system and execute by performing actions. The syntax for all these components
is presented in the upper part of Figure 1, whereas in the lower part it is reported the
syntax of the capability-based types.

N

N ::= l ::eδ P process
| l :: 〈et〉 located tuple
| N1 ‖N2 net composition

P

P ::= nil empty process
| α.P action prefixing
| P1 | P2 parallel composition
| ∗P replication

A

α ::= out(t)@` output
| in(T)@` input
| read(T)@` read
| eval(P : δ)@` migration
| accept(δ) admission

L

` ::= l locality constant
| self self
| u locality variable

T

T ::= ` locality
| !u input variable
| `, T multiple fields
| !u,T multiple fields

T

t ::= ` element
| `, t multiple elements

E T

et ::= l evaluated element
| l, et multiple evaluated elements

Capabilities
{o, i, r, e, a}

Policies
δ : Loc ∪ {self} → P(Capabilities)

EvaluatedPolicies
eδ : Loc→ P(Capabilities)

Fig. 1. Syntax of K

A net consists of processes or tuples located at a locality l, or a composition of
two nets. Processes are built up from the special process nil, that does not perform
any action (and is often omitted), and from the basic actions by means of prefixing,
parallel composition and replication. hence, the actual building blocks of processes are
actions: out and in actions permit to produce/withdraw tuples to/from a possibly remote
tuple space; read is a non-destructive variant of in; eval models mobility by spawning
processes from a locality to another one, where it will be evaluated; accept allows
processes coming from the environment to get into the system. In fact, accept, first
introduced in [6], makes the language more suitable to model open systems.

As regards the tuples used for communication, we distinguish between tuples and
evaluated tuples. An evaluated tuple is a sequence of values, that in our case are ele-
ment of the set Loc of localities, and can be stored in tuple spaces. In contrast, tuples are
allowed to contain variables and self-references denoted by self. Tuples are used in pro-

match(l, l) = ε match(!u, l) = [u 7→ l]
match(T1, et1) = σ1 match(T2, et2) = σ2

match((T1,T2), (et1, et2)) = σ1 ◦ σ2

Fig. 2. Matching function

cesses to compose data to be communicated. When inputting tuples from tuple spaces,
processes need to be able to select which tuple should be read or input. This filtering is
performed by means of templates, that are similar to tuples, but can also contain input
variables denoted as !u. In the latter case, u is bound in the continuation process and
will be used to retrieve information dynamically (u will be replaced with some locality
in the continuation process upon successful matching of the template against a tuple –
see function match in Figure 2). A variable that is not bound is called free.

Network nodes are equipped with a policy that expresses the discretionary access
control policy that should be enforced upon the system. As usual, a discretionary access
control policy states which subjects can access which objects using what capabilities.
Here we take subjects to be the localities where the action is executed, objects to be the
localities accessed (for example, placing a new evaluated tuple there, inputting or read-
ing an evaluated tuple, or spawning a new process), and capabilities to be indicators
of the access operation, i.e., elements of the set Capabilities representing the out-, in-,
read-, eval-, and accept-capability respectively. Policies are represented as capability
lists. Thus, a policy, placed at some locality ls, maps an object locality lo to the set of
capabilities with which the subject ls can access lo. Formally, we distinguish between
Policies and EvaluatedPolicies. They both are functions from localities to sets of ca-
pabilities and differ only in whether they allow self to be used as a locality. Policies δ
embedded in the syntax can use self, whereas (evaluated) policies eδ placed at some
locality, written l ::eδ . . ., may not.

Semantics. The semantics is an operational semantics in the form of a reduction se-
mantics. It makes use of the function match, defined in Figure 2, for performing the
variable bindings when reading or inputting. The matching proceeds by comparing a
template T componentwise with an evaluated tuple et. There are two possibilities for
the match to succeed. Either both the template and the tuple begin with the same local-
ity, or the template begins with an input variable. The result of a successful match is a
substitution1 that replaces the template’s input variables with the values that occurred
at corresponding positions in the evaluated tuple. In the sequel, we shall assume that
templates T are well-formed in the sense that they do not contain both u and !u, and do
not contain multiple occurrences of !u for the same locality variable u.

The reduction semantics operates on closed processes, i.e. processes without free
variables, but it still needs to take care of the occurrences of self. This is achieved by
two auxiliary functions that map tuples (without free locality variables) to evaluated
tuples, and policies to evaluated policies, respectively. They are both indexed with the

1 As usual, ‘ε’ denotes the empty substitution and ‘◦’ denotes composition of substitutions with
disjoint domains.

N1 ‖N2 ≡ N2 ‖N1 (N1 ‖N2) ‖N3 ≡ N1 ‖(N2 ‖N3)

l ::eδ P ≡ l ::eδ (P | nil) l ::eδ (P1 | P2) ≡ l ::eδ P1 ‖ l ::eδ P2 l ::eδ ∗P ≡ l ::eδ P | ∗P

Fig. 3. Structural Congruence

locality to be used instead of self and we shall allow to use the same syntax for both.

L·Ml : (Loc ∪ {self})→ Loc given by L`Ml =

{
l if ` = self
l′ if ` = l′ ∈ Loc

L·Ml : Policy→ EvaluatedPolicy given by LδMl(l′) =
⋂{δ(`)| L`Ml = l′}

The first function simply replaces any occurrence of self with the subscript, which is
supposed to denote the intended meaning of self. We trivially extend it from working on
single localities to working on sequences in a componentwise manner. We also trivially
extend it to work on templates (without free locality variables) by defining it to act as
the identity on input variables. The second function gives LδMl(l′) = δ(l′) except when
l′ = l in which case it gives LδMl(l) = δ(l) ∩ δ(self) meaning that both the policies of l
and self are imposed.

Figure 4 shows the semantics for our calculus. In the reduction rules, we use L to
keep track of used localities and test if a given locality exists. The formulae of the form
RM[· · ·] correspond to the checks that the (eventually superfluous) reference monitor
must perform and make the intentions of the security policy clear. As an example, for
the output action the formula RM[eδ(l′) 3 o] is intended to ensure that the local policy,
eδ, does indeed allow output to the locality l′. As usual, reductions are given composi-
tionally and up-to a (quite standard) structural congruence, defined in Figure 3.

The out action takes an evaluated tuple and outputs it at the tuple space identified
by `. Note that, as for all other actions, execution of the current subprocess is stuck if
the tuple is not fully evaluated, that is if it still contains variables. The in action takes
a template T and a locality `, and uses the judgement for match previously defined to
select a tuple from the tuple space at ` by matching all tuples against T . As an effect
of the in action, the matched tuple is removed from the tuple space and the substitution
σ computed by match is applied to the rest of the process, thereby substituting input
variables in T by the values bound to them. The eval action sends its argument Q for
evaluation to the locality identified by `; the policy used is the evaluated version of the
one specified and our static analysis techniques will ensure that such a policy conforms
to the policy specified for the target node. The accept action admits into a system new
processes coming from the environment. In case of dynamic enforcement, i.e. using
reference monitors, this rule is as straightforward as the rest, since the behaviour of
incoming processes is checked dynamically during their execution. In case of static
enforcement, as is the focus of the present paper, we need to ensure that a new process,
Q, is only admitted if it satisfies sufficiently strong guarantees that have been used
in validating the known part of the system. We use the formula RM[φacc] to express
this. We will need to postpone the explanation of the formula φacc used until after the
two static analysis techniques have been developed. Intuitively, it will ensure that the

L`Ml = l′ ∈ L LtMl = et RM[eδ(l′) 3 o]
L . l ::eδ out(t)@`.P −→ l ::eδ P ‖ l′ :: 〈et〉

L`Ml = l′ match(LTMl, et) = σ RM[eδ(l′) 3 i]
L . l ::eδ in(T)@`.P ‖ l′ :: 〈et〉 −→ l ::eδ Pσ

L`Ml = l′ match(LTMl, et) = σ RM[eδ(l′) 3 r]
L . l ::eδ read(T)@`.P ‖ l′ :: 〈et〉 −→ l ::eδ Pσ ‖ l′ :: 〈et〉
L`Ml = l′ ∈ L Lδ′Ml = eδ′ RM[eδ(l′) 3 e]
L . l ::eδ eval(Q : δ′)@`.P −→ l ::eδ P ‖ l′ ::eδ′ Q

Lδ′Ml = eδ′ RM[eδ(l) 3 a] RM[φacc]
L . l ::eδ accept(δ′).P −→ l ::eδ P ‖ l ::eδ′ Q

L . N1 −→ N′1
L . N1 ‖N2 −→ N′1 ‖N2

N ≡ N1 L . N1 −→ N2 N2 ≡ N′

L . N −→ N′

Fig. 4. Operational Semantics of K

incoming process (viz., Q) respects the specified policy δ′ that, in turn, respects the
policy eδ of the node where the action is performed (viz., l).

As we stated in the Introduction, there are two main approaches to enforce a given
access control policy on a system: one is to check it dynamically by means of a reference
monitor; the other is to develop a static analysis technique. Subsequently, we shall refer
to the reference monitor semantics by writing L . N −→on N′. It is specified as in Fig-
ure 4 by letting RM[φ] mean φ and RM[φ] mean true (and so can be removed). Similarly,
we shall refer to the semantics without reference monitors by writing L . N −→off N′.
It is specified as in Figure 4 by letting RM[φ] mean true (and so can be removed) and
RM[φ] mean φ.

Running Example. As a running example, throughout the paper we will consider a
scenario where a user wants to collect and elaborate some pieces of information, e.g.,
electronic books, scattered on network nodes. The user can exploit both remote oper-
ations and process migration, e.g., to deal with possible network failures. The K

net modelling the scenario includes the user process (located at lU), a directory service
process (located at lD), and some data containers; for simplicity sake, we consider only
two data containers, located at lC1 and lC2. Moreover, in the example we assume that
some sort of primitive data, like e.g. strings, are available and can be used as fields of
data tuples. This is only for convenience, since all of the primitive data can be encoded
in terms of localities.

lU ::eδU PU ‖ lD ::eδD PD ‖ lC1 ::eδC1 nil ‖ lC2 ::eδC2 nil
‖ lD :: 〈library, lC1〉 |〈library, lC2〉 ‖ lC1 :: 〈J.R.R. Tolkien,The Hobbit〉

Each node hosts running processes that must obey a given access policy and/or contains
data tuples. The processes are defined as

PU = eval(P1 : δ)@lD. ∗ in(!source, !data)@lU . < elaborate data >
P1 = ∗read(library, !u)@lD.eval(P2 : δ)@u
P2 = read(J.R.R. Tolkien, !title)@self.out(self, title)@lU
PD = accept(δa)

and use the policies

δ = [lU 7→ {o}, lD 7→ {r}, lC1 7→ {e, r}, lC2 7→ {e, r}]
δa = [lD 7→ {r}, lC1 7→ {e, r}, lC2 7→ {e, r}]

while the access policies of nodes are the following ones:

eδU = [lU 7→ {i}, lD 7→ {e}]
eδD = [lD 7→ {r, a}, lC1 7→ {e}, lC2 7→ {e}]
eδC1 = [lC1 7→ {r}, lU 7→ {o}]
eδC2 = [lC2 7→ {r}, lU 7→ {o}]

For completeness sake, we note that the example is intended to illustrate how the cal-
culus and, in later sections, the analysis and the type system work. It is not meant to
be a complete specification of a distributed system and therefore it does not include
modelling of, e.g., scheduling and similar concepts.

3 Flow Logic

We shall now develop an analysis that captures the behaviour of nets. The analysis
computes an over-approximation of the actual behaviour of a K net. We first present
the abstract domains underlying the analysis and next define the judgements for nets,
processes, actions and matchings. We conclude this section by analysing our running
example and presenting the theoretical properties of our approach.

Analysis Domains. We shall use the following analysis domains:

– T̂ ∈ Loc → P(Loc∗) is an abstract tuple space; it is an over-approximation of the
set of all tuples (of locality constants) that may at some point reside in the tuple
space of a given locality constant.

– σ̂ ∈ LocVar → P(Loc) is an abstract environment; it keeps a record of all locality
constants that a given locality variable might at some point be bound to. (This func-
tionality suffices because the structural congruence does not contain α-renaming of
bound variables.)

– ∂ ∈ AbstractPolicy = Loc → P(Capabilities) is an abstract policy somewhat like
the concrete policy δ ∈ Policy; however, it takes the union of possibilities rather
than the intersection because it is descriptive rather than prescriptive. Abstract poli-
cies form a lattice based on the natural ordering on partial functions, written v, i.e.
∂ v ∂′ if and only if dom(∂) ⊆ dom(∂′) and ∂(l) ⊆ ∂′(l), for every l ∈ dom(∂).

(T̂ , ∆, σ̂) |={l}P P : ∂′, %′ ∂′ \{l} eδ v % ∆(l) \{l} eδ v % %′ v %
(T̂ , ∆, σ̂) |=N l ::eδ P : %

{et} ⊆ T̂ (l)

(T̂ , ∆, σ̂) |=N l :: 〈et〉 : %

(T̂ , ∆, σ̂) |=N N1 : % (T̂ , ∆, σ̂) |=N N2 : %

(T̂ , ∆, σ̂) |=N N1 ‖N2 : %

Fig. 5. Static Analysis of Nets

– ∆ ∈ Loc→ AbstractPolicy is a record of policies for remotely evaluated processes.
– % ∈ Loc → AbstractPolicy is a record of violations of policies. It records all the

actions that may have been performed during the evolution of the net and that were
not permitted by the local policy; the first argument is the subject locality where
the action was initiated, and the second argument is the object locality where the
action had effect, and the resulting set of capabilities are the offending ones. Hence
a program will only be acceptable if it can be analysed with % = ⊥.

– Λ ∈ P(Loc) is a set of localities of interest at a given point. In general, we shall
analyse processes at sets of localities (rather than a single locality) in order to ob-
tain a context insensitive analysis. A context sensitive analysis, i.e., a more precise
analysis, can be obtained by analysing processes at single localities.

Analysis of Nets. The judgement for the analysis of a net N has the form

(T̂ , ∆, σ̂) |=N N : %

and is defined by the inference system of Figure 5. As is usual in Flow Logic, we
provide a componentwise definition.

To determine the potential violations of the policy for a located process, we use the
following auxiliary notation for “subtracting” two policies:

∂1 \Λ ∂2 : Loc→ AbstractPolicy

(∂1 \Λ ∂2)(λs)(λo) =

{
∂1(λo) \ ∂2(λo) if λs ∈ Λ
∅ otherwise

Analysis of Processes. The judgement for the analysis of a process P has the form

(T̂ , ∆, σ̂) |=Λ
P P : ∂, %

and is defined by the inference system of Figure 6. The intention is that when true, the
components T̂ , ∆, σ̂, ∂ and % correctly capture not only the behaviour of the process P
(when located at one of the localities λ ∈ Λ) but also the behaviour of all the processes
it may evolve into. Any violation encountered during analysis of the process is recorded
in %, whereas ∂ approximates the actual policy employed by the process. The definition
is fairly straightforward in that it inspects the components of a process in a structural
way making use of the judgement for actions to be introduced next.

(T̂ , ∆, σ̂) |=Λ
P nil : ∂, %

(T̂ , ∆, σ̂) |=Λ
P P1 : ∂, % (T̂ , ∆, σ̂) |=Λ

P P2 : ∂, %

(T̂ , ∆, σ̂) |=Λ
P P1 | P2 : ∂, %

(T̂ , ∆, σ̂) |=Λ
P P : ∂, %

(T̂ , ∆, σ̂) |=Λ
P ∗P : ∂, %

(T̂ , ∆, σ̂) |=Λ
P P : ∂, % (T̂ , ∆, σ̂) |=Λ

A α : ∂, %

(T̂ , ∆, σ̂) |=Λ
P α.P : ∂, %

Fig. 6. Static Analysis of Processes

LtMΛσ̂ ⊆ T̂ 〈L`MΛσ̂〉 [L`MΛσ̂ → {o}] v ∂
(T̂ , ∆, σ̂) |=Λ

A out(t)@` : ∂, %

σ̂ |=L`M
Λ
σ̂

1 T : T̂ [L`MΛσ̂] . Ŵ [L`MΛσ̂ → {i}] v ∂
(T̂ , ∆, σ̂) |=Λ

A in(T)@` : ∂, %

LδMΛ v ∂ [Λ→ {a}] v ∂
(T̂ , ∆, σ̂) |=Λ

A accept(δ) : ∂, %

σ̂ |=L`M
Λ
σ̂

1 T : T̂ [L`MΛσ̂] . Ŵ [L`MΛσ̂ → {i}] v ∂
(T̂ , ∆, σ̂) |=Λ

A read(T)@` : ∂, %

(T̂ , ∆, σ̂) |=L`M
Λ
σ̂

P P :∂′,% ∀λ ∈ L`MΛσ̂ : LδMΛ v ∆(λ) ∂′\L`MΛ
σ̂
LδMΛ v % [L`MΛσ̂ → {e}] v ∂

(T̂ , ∆, σ̂) |=Λ
A eval(P : δ)@` : ∂, %

Fig. 7. Static Analysis of Actions

Analysis of Actions. The judgement for the analysis of an action α has the form

(T̂ , ∆, σ̂) |=Λ
A α : ∂, %

and is defined by the inference system of Figure 7.
To transform localities ` ∈ Loc ∪ {self} ∪ LocVar into the set of localities that they

denote, we make use of the auxiliary function

L·MΛσ̂ : Loc ∪ {self} ∪ LocVar→ P(Loc)

L`MΛσ̂ =


{`} if ` ∈ Loc
Λ if ` = self
σ̂(`) if ` ∈ LocVar

This transformation is straightforward for locality constants, while it exploits the set
Λ of locality constants that self might stand for, in the case of self, and the abstract
environment σ̂, in the case of locality variables. This operation is extended to tuples
t by taking the cartesian product of all components. For evaluated tuples et, we have
LetMΛσ̂ = {et}.

To transform concrete policies into abstract policies, we make use of the auxiliary
function

LδMΛ : AbstractPolicy
LδMΛ(λ) =

⋂{δ(`)| λ ∈ L`MΛ⊥, ` ∈ Loc ∪ {self}}

This operation is somewhat reminiscent of the way tuples were transformed into eval-
uated tuples. Since (concrete) policies are not defined on locality variables, it suffices
using the empty abstract environment ⊥ in the conversion of localities. For evaluated
policies, we have LeδMΛ(l) = eδ(l).

To more easily express that the appropriate record of actions is captured by the
policy component ∂, we use the notation

[X → Y] : Loc→ P(Capability)

[X → Y](λ) =

{
Y if λ ∈ X
∅ otherwise

where λ denotes the locality constant where the action might have effect and Y usually
is a singleton set. In the case of out, in, read and eval, we take X to be the set L`MΛσ̂; in
the case of accept, we take X to be the set Λ of current localities.

Since most of the rules need to take effect for any element in some set X of local-
ity constants, it is frequently necessary to write logical formulae using universal and
existential quantifiers. The resulting formulae tend to clutter the understanding of the
more subtle features of the Flow Logic specification and we have therefore decided to
introduce two notational shorthands so as to reduce the explicit use of quantifiers. The
notations are formally defined by:

Ψ [X] =
⋃

x∈X Ψ (x) = {z | ∃x ∈ X : z ∈ Ψ (x)}
Ψ〈X〉 =

⋂
x∈X Ψ (x) = {z | ∀x ∈ X : z ∈ Ψ (x)}

It is worth pointing out that this permits to use them in inclusions and that they can be
expanded away using the following tautologies:

Ψ [X] ⊆ Z ⇐⇒ ∀x ∈ X:Ψ (x) ⊆ Z

Z ⊆ Ψ〈X〉 ⇐⇒ ∀x ∈ X: Z ⊆ Ψ (x)

As an example, in the rule for out(t)@` the premise LtMΛσ̂ ⊆ T̂ 〈L`MΛσ̂〉 expresses that
all the values that t may evaluate to are included in all the tuple spaces that could be
associated with the locality `.

Analysis of Matching. The auxiliary judgement

σ̂ |=Λ
i T : Û . Ŵ

defined by the inference system of Figure 8 is used in the rules for in(T)@` and
read(T)@` in Figure 7 to ensure that the matching may succeed. The set of tuples
of interest are those of the tuple space of `, that is, T̂ [L`MΛσ̂]. The judgement expresses
that matching should start at position i in the template T , Û contains the set of tuples
that we are matching against, Ŵ contains the tuples from Û that successfully match T
from position i and onwards, and σ̂ records the appropriate bindings that need to be
performed. In the rules of Figure 7, πi(et) denotes the i’th component of the tuple et and
πi(V̂) is the componentwise extension of the operation to sets of tuples.

{et ∈ Û | πi(et) ∈ L`MΛσ̂ ∧ |et| = i} ⊆ Ŵ

σ̂ |=Λ
i ` : Û . Ŵ

{et ∈ Û | |et| = i} ⊆ Ŵ πi(Ŵ) ⊆ σ̂(u)

σ̂ |=Λ
i !u : Û . Ŵ

{et ∈ Û | πi(et) ∈ L`MΛσ̂ ∧ |et| ≥ i} ⊆ V̂ σ̂ |=Λ
i+1 T : V̂ . Ŵ

σ̂ |=Λ
i `, T : Û . Ŵ

{et ∈ Û | |et| ≥ i} ⊆ V̂ σ̂ |=Λ
i+1 T : V̂ . Ŵ πi(Ŵ) ⊆ σ̂(u)

σ̂ |=Λ
i !u,T : Û . Ŵ

Fig. 8. Static Analysis of Matching

Acceptable Programs. Before an external program can be accepted into a given net it
has to be analysed with respect to an access policy defined by the accepting process.
This ensures that the accepting process can control what access privileges it is willing
to pass onto programs that may be unknown a priori. For an accepting process, l ::eδ

accept(δ′).P, willing to admit external programs, Q, that comply with policy δ′ this
check amounts to the following requirement on Q:

(T̂ , ∆, σ̂) |={l}P Q : Lδ′M{l},⊥
The check guarantees that a process Q, when evaluated at locality l, will only perform
actions that do not violate the accepting policy, δ′, as indicated by Lδ′M{l},⊥ on the right
hand side of the colon. Here T̂ , ∆ and σ̂ should be considered “global constants” to be
used for an entire execution of a net; this will be clarified in Theorem 1 below. Thus we
may complete the semantics in Figure 4 by letting φacc = (T̂ , ∆, σ̂) |={l}P Q : Lδ′M{l},⊥.

Analysis of the Running Example. For the running example, we have (T̂ , ∆, σ̂) |=N N : ⊥
for the following choice of T̂ , ∆ and σ̂:

T̂ : lU 7→ {〈lC1, ”The Hobbit”〉}
lD 7→ {〈library, lC1〉, 〈library, lC2〉}
lC1 7→ {〈J.R.R.Tolkien,The Hobbit〉}
lC2 7→ ∅

σ̂ : u 7→ {lC1, lC2}
title 7→ {The Hobbit}
source 7→ {lC1}
data 7→ {The Hobbit}

∆ : lU 7→ ⊥
lD 7→ δ

lC1 7→ δ

lC2 7→ δ

Properties of the Analysis. Consistency of the analysis is formalised as a subject-
reduction theorem.

Theorem 1 (Subject Reduction). If L . N −→off N′ and (T̂ , ∆, σ̂) |=N N : ⊥, then
(T̂ , ∆, σ̂) |=N N′ : ⊥.

Proof. The proof is by induction on L . N −→off N′, using a few auxiliary results:

– The analysis result is invariant under the structural congruence; that is, if N ≡ N′

then (T̂ , ∆, σ̂) |=N N : % if and only if (T̂ , ∆, σ̂) |=N N′ : %.
– The analysis of matching is correct; that is, if match(LT Ml, et) = σ, l ∈ Λ, et ∈ Û,

and σ̂ |=Λ
1 T : Û . Ŵ, then et ∈ Ŵ and ∀u ∈ dom(σ) : σ(u) ∈ σ̂(u).

Note that this result also holds with % in place of ⊥, but it is more instructive to
consider executions where no security policy is violated; the result clearly does not
hold if −→on is used (as any accepted process may violate the analysis and the security
policy). Overall correctness of the analysis is formalised as an adequacy result.

Theorem 2 (Adequacy). If L.N −→off N′ and (T̂ , ∆, σ̂) |=N N : ⊥, then L.N −→on N′.

Proof. The proof is by induction on L . N −→off N′, by inspecting Figures 5, 6, 7,
and 8.

More informally, we can show that if L.N −→off N′ and (T̂ , ∆, σ̂) |=N N : %, then all
offending actions performed are listed in %. Finally, existence of best analysis estimates
is formalised as a Moore-family result:

Theorem 3 (Moore Family). For all nets N, the set Y of analysis estimates
{(T̂ , ∆, σ̂, %) | (T̂ , ∆, σ̂) |=N N : %} is a Moore Family; i.e., ∀Y ⊆ Y : uY ∈ Y.

Proof. The proof is by structural induction on N using that all constraints on (T̂ , ∆, σ̂, %)
occur in positive positions only.

Comparison with previous analyses of K. The analysis presented in this paper is
an extension of a reworked version of the analysis specified in [6]. The main extension
being an added ∆ component to give a record of the policies imposed by the local eval’s.
We have also reworked and rationalised the notation and introduced a number of auxil-
iary functions (most notably, 〈 〉 and []) to increase readability of the analysis. Finally,
we have added the Λ component (essentially allowing remotely evaluated processes to
be analysed only once rather than at each receiving locality as in [6]). Among other
things, this makes implementation easier.

4 A Static Type System

Typing approaches to K usually exploit dynamic checks; we now present a totally
static type system whose design has been inspired by the Flow Logic developed in the
previous section. We conclude this section by presenting the theoretical properties of
the type system and the analysis of our running example.

Types and Auxiliary Functions. We can get rid of dynamic checks by following the
philosophy underlying the Flow Logic approach. Indeed, it suffices to associate to every
locality an upper bound of the tuples it can contain and a lower bound on its policy (like
functions T̂ and ∆ did in Section 3); moreover, we should also provide an upper bound to
the set of localities that can instantiate every variable. Thus, types for localities are pairs
〈T ; ∂〉, where T ⊂fin Loc∗. Intuitively, if 〈T ; ∂〉 is the type of l, T is an upper bound
on the tuples that l can contain and ∂ is a lower bound on l’s policy. Types for input
variables are, instead, just sets of localities; we can assign to u the type T ⊂fin Loc,
meaning that T are the localities that u can assume. A typing environment Γ assigns
types to localities and variables.

Given a typing environment Γ, we now define some functions that will be used in
the type system. First, we need to specify the values an identifier can assume. Thus,
valΓ(l) = {l} and valΓ(u) = Γ(u); the definition of function valΓ is extended to tuples
component-wise. In the type system, we shall frequently look at the possible tuples
a node can contain, at its policy or at the privileges it owns over the other nodes of
the net. These pieces of information are easily accessible when the node is specified
by a locality constant, thanks to the typing environment given. However, it can also
happen in the typing phase to have nodes specified by variables (take, e.g., process
in(!u)@l.eval(Q : δ)@u.P, where Q must be typed at u). In this case, the information
must be extracted from Γ as follows.

The tuples that can appear at a node identified by a variable are obtained by con-
sidering the tuples that can appear at every node whose locality is associated to the
variable. However, from case to case, we need to know the tuples shared by all such
nodes or all the possible tuples; accordingly, we combine the tuples contained at the
different nodes by intersection or union. The following functions perform these tasks:

Γ〈`〉 =
⋂

l ∈ valΓ(`) π1(Γ(l)) Γ[`] =
⋃

l ∈ valΓ(`) π1(Γ(l))

To know the rights a policy grants over a node identified by a variable, we consider
the intersection of all the privileges over the localities that the variable can assume:

PrivΓ(∂, `) =
⋂

l ∈ valΓ(`) ∂(l)

Similarly, the policy of a node identified by a variable is the greatest subset of access
rights present in the policy of every locality that the variable can assume:

PolΓ(`) =
l

l ∈ valΓ(`) π2(Γ(l))

where u denotes the greatest lower bound.
In the typing rules, we shall need to evaluate localities and policies to replace oc-

currences of self. In both cases, we extend the evaluation function for localities and
policies introduced when presenting the operational semantics to allow the subscript to
also be a variable (in the case in which the node where the evaluation takes place is
identified by a variable). This leads to notations L`′M` and LδMΓ` ; for the latter, we have
that LδMΓ` (l) is δ(l), if l < valΓ(`), and is δ(l) ∩ δ(self), otherwise.

Finally, given a typing environment Γ and a template T used by a process running
at locality `, we need to check that Γ provides the right information on the variables
bound in T . Thus, we define the check of Γ with T at `, written check`(Γ,T), as the
judgement:

∀i.πi(T) = !u⇒
πi({et ∈ Γ[`] : |et| = |T | ∧ ∀ j ∈ {1..|T |}. π j(T) = `′ ⇒ π j(et) ∈ valΓ(`′)}) ⊆ Γ(u)

In particular, every variable bound in T will be associated to all the possible localities
that, at runtime, can be used to instantiate such a variable. The latters are obtained by
taking all the possible tuples (of the same length as T and that can match against it) that
can appear at ` and consider their i-th projection, for every i such that the i-th field of T
is a variable.

Γ ` N1 Γ ` N2

Γ ` N1 ‖ N2

et ∈ π1(Γ(l))
Γ ` l :: 〈et〉

π2(Γ(l)) v eδ Γ; eδ `l P
Γ ` l ::eδ P

Fig. 9. Typing Nets

L`′M` = `′′ o ∈ PrivΓ(∂, `′′) valΓ(LtM`) ⊆ Γ〈`′′〉 Γ; ∂ `` P
Γ; ∂ `` out(t)@`′.P

L`′M` = `′′ e ∈ PrivΓ(∂, `′′) LδMΓ` = ∂′ v PolΓ(`′′) Γ; ∂′ ``′′ Q Γ; ∂ `` P
Γ; ∂ `` eval(Q : δ)@`′.P

L`′M` = `′′ i ∈ PrivΓ(∂, `′′) check`′′ (Γ, LTM`) Γ; ∂ `` P
Γ; ∂ `` in(T)@`′.P

L`′M` = `′′ r ∈ PrivΓ(∂, `′′) check`′′ (Γ, LTM`) Γ; ∂ `` P
Γ; ∂ `` read(T)@`′.P

a ∈ PrivΓ(∂, `) LδMΓ` v ∂ Γ; ∂ `` P
Γ; ∂ `` accept(δ).P

Γ; ∂ `` P1 Γ; ∂ `` P2

Γ; ∂ `` P1 | P2

Γ; ∂ `` P
Γ; ∂ `` ∗P

Fig. 10. Typing Processes

Typing Rules. We are now ready to present the typing system. The typing rules for nets
are in Figure 9; they define judgements of the form Γ ` N that should be read as: “net
N respects the constraints specified on its nodes by Γ”. The rules are simple: to type
a compound net we should type the components isolately; to type a located tuple, we
must ensure that the tuple is allowed by Γ; to type a located process, we must ensure
that the policy eδ conforms to the policy specified by Γ and that the process respects eδ.

The typing rules for processes are in Figure 10 and define judgements of the form
Γ; ∂ `` P. Intuitively, such a judgement is needed to type under Γ a process P running
at ` (where, by construction of the typing system, ` cannot be self) associated with
policy ∂. The key rules are for action prefixes. In all cases, it is verified that the policy
associated to the process provides a proper access right; moreover, to this aim, if the
action can take place remotely, a preliminary evaluation of the locality target of the
action is needed. For action out, the main thing to check is that the tuples that the
action can produce can appear at every possible target locality (thus, we need here the
intersection of all the possible tuple spaces, as calculated by Γ〈〉); of course, we also
have to check that the continuation is well-typed. For action eval, apart from checking
that the continuation is well-typed, we have to check that the specified policy conforms
to the policy associated to the target and, in this case, that the spawned process can run
under the specified policy at the target locality. For actions in and read, we have to type
the continuation in a typing environment obtained by extending the current environment
with the possible values that variables bound in the template can assume. Finally, for

action accept, we only need to verify that the specified policy conforms to the policy of
the hosting node and that the continuation is well-typed.

We can now complete the semantics in Figure 4 by using as φ in the rule for the
accept action the judgement Γ; ∂′ `l Q, where Γ is the typing environment used to type
the net containing l ::eδ accept(δ′).P and ∂′ = Lδ′Ml.

Soundness Results. A net N is typeable if there exists a Γ such that Γ ` N. We now
prove that typeable nets are exactly the ones that can be accepted by the Flow Logic
without errors; as a corollary of Theorems 1 and 2, this result trivially entails that also
the type system enjoys subject reduction and adequacy.

Theorem 4. N is typeable if and only if (T̂ , ∆, σ̂) |=N N : ⊥.

Proof. (If) We first sketch how to prove that acceptable nets are typeable. To this aim,
given a triple (T̂ , ∆, σ̂) and a net N such that (T̂ , ∆, σ̂) |=N N : ⊥, we define the typing
environment Γ as follows:

Γ(u) = σ̂(u) for every u ∈ LocVar
Γ(l) = 〈T̂ (l); ∂l〉 for every l ∈ Loc, where ∂l =

∏
l::eδP in N eδ

where “l ::eδP in N” means that N ≡ l ::eδ P ‖ N′, for some N′. Then, the proof works
by induction on the length of the inference for (T̂ , ∆, σ̂) |=N N : ⊥, by exploiting two
lemmata:

1. If (T̂ , ∆, σ̂) |=Λ
P P : ∂1,⊥ then Γ; ∂2 `` P, whenever Λ = valΓ(`) and ∂1 v ∂2.

2. If match(LT Ml, et) = σ, l ∈ Λ, et ∈ Û and σ̂ |=Λ
1 T : Û . Ŵ, then et ∈ Ŵ and σ v σ̂.

(Only if) We now sketch how to prove that typeable nets are acceptale. To this aim,
given a typing environment Γ and a net N such that Γ ` N, we define the triple (T̂ , ∆, σ̂)
as follows:

σ̂(u) = Γ(u) for every u ∈ LocVar
T̂ (l) = π1(Γ(l)) for every l ∈ Loc

To define ∆, we first need to remove every occurrence of self occurring as target of
actions in N as follows (we only give the non-homomorphic cases):

Ll ::eδ PM = l ::eδ LPMl Lα.PM` = LαM`.LPM`
Lout(t)@`′M` = out(t)@L`′M` Leval(Q : δ)@`′M` = eval(LQML`′M` : δ)@L`′M`
Lin(T)@`′M` = in(T)@L`′M` Lread(T)@`′M` = read(T)@L`′M`

Then, for every l ∈ Loc, we let

∆(l) =
∐

eval(P:δ)@` in LNM : l ∈ valΓ(`)

LδMΓl

The proof then works by induction on the length of the inference for Γ ` N, by exploit-
ing two auxiliary lemmata:

1. If Γ; ∂ `` P and Λ = valΓ(`), then (T̂ , ∆, σ̂) |=Λ
P P : ∂,⊥ and, for every

eval(Q : δ)@`′ in P, it holds that LδMΓl v π2(Γ(l)), for every l ∈ valΓ(`′).
2. Let l ∈ Λ and assume that, for every et ∈ Û ∩ Ŵ, it holds that match(LT Ml, et) = σ v

σ̂; then σ̂ |=Λ
1 T : Û . Ŵ.

Analysis of the Running Example. Thanks to the previous theorem, we know that the
running example can be typed; by looking at the proof of Theorem 4 (that shows how
to define a proper Γ out of T̂ , σ̂ and the typed net N), we have that the following typing
environment makes the running example typeable:

Γ(lK) = 〈T̂ (lK); eδK〉 Γ(x) = σ̂(x)

for every K ∈ {U,D,C1,C2} and x ∈ {u, title, source, data}.

Final Remarks. Notice that π2(Γ(l)) and ∆(l) are both used to statically analyze mi-
grations at l of a process labeled with a policy δ, but are defined and used in different
ways. The former is a lower bound on the policy of the receiving node and, hence, δ
(properly evaluated) must be lower than π2(Γ(l)). The latter is an upper bound to the
policy specified for the migrating process and, hence, ∆(l) must be greater than δ (prop-
erly evaluated). For this reason, π2(Γ(l)) is defined as the greatest lower bound of the
policies specified for nodes with address l; instead, ∆(l) is defined as the lowest upper
bound of the policies specified for migrations at l. In this way, if we have two migra-
tions at l (say, with policies δ1 and δ2) and the nodes l ::eδ1 · · · and l ::eδ2 · · ·, the type
system checks that δi v eδ1 u eδ2 = π2(Γ(l)), whereas the Flow Logic checks that
∆(l) = δ1 t δ2 v eδ j. These two checks are equivalent, in that they are both equivalent
to δi v eδ j.

5 Conclusions and Further Work

We have considered a dialect of K, an experimental language designed for modeling
and programming distributed systems with mobile components, and have presented an
operational semantics for it that, by taking advantage of a reference monitor, permits
controlling the kind of operations processes can perform at the different localities. We
have then considered an alternative approach to access control based on Flow Logic that
permits statically checking absence of access violations. Finally, we have reconsidered
one of the type systems for access control previously developed that contained some
dynamic checks, and, by exploiting concepts already used in the Flow Logic section,
we have designed a fully static type system. To the best of our knowledge, this is the
first completely static type system for controlling accesses in the context of a tuple
space-based coordination language. We have also shown that both static approaches are
sound with respect to the dynamic one based on reference monitor and provide the same
analysis results.

We see this work just as an initial step towards understanding the relationships be-
tween static and dynamic approaches to access control and studying the relative merit
of type systems and Flow Logic specifications (expanding on [7]). In future work, we
want to investigate the impact of extending the analysis to a language with a primi-
tive for dynamically creating new nodes with assigned policies (this is usually called
newloc in the K setting). Indeed, the semantics treatment of such a primitive would
require the policies of nodes to change dynamically. Clearly, making policies on nodes
much more dynamic, would entail a number of differences in the static analysis, that
was never conceived to cater for this possibility. We also want to study the relationships

between the global approach of type systems and Flow Logic and the more local one
of the more traditional type systems that may contain dynamic components. Finally, we
find it challenging to understand the relative expressive power of reference monitors
and the static analysis approaches also in light of the considerations of [11], where it
is claimed that the two approaches can capture different properties and are somehow
incomparable. It would be interesting to understand what assumptions on the models
are necessary to guarantee relative soundness.

Acknowledgements. We thank the anonymous referees for their useful comments.

References

1. A.V. Aho, M.S. Lam, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques, and
Tools (2nd Edition). Addison Wesley, August 2006.

2. R. De Nicola, G. Ferrari, and R. Pugliese. KLAIM: a Kernel Language for Agents Interaction
and Mobility. IEEE Transactions on Software Engineering, 24(5):315–330, May 1998.

3. R. De Nicola, G. Ferrari, R. Pugliese, and B. Venneri. Types for Access Control. Theoretical
Computer Science, 240(1):215–254, 2000.

4. D. Gelernter. Generative communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1):80–112, 1985.

5. D. Gorla and R. Pugliese. Resource access and mobility control with dynamic privileges
acquisition. In Proc. of ICALP’03, volume 2719 of LNCS, pages 119–132. Springer, 2003.

6. R.R. Hansen, C.W. Probst, and F. Nielson. Sandboxing in myKlaim. In The First Interna-
tional Conference on Availability, Reliability and Security, ARES’06, Vienna, Austria, April
2006. IEEE Computer Society.

7. F. Nielson and H. Riis Nielson. Types from control flow analysis. In Program Analysis and
Compilation, Theory and Practice, Essays Dedicated to Reinhard Wilhelm on the Occasion
of His 60th Birthday, volume 4444 of Lecture Notes in Computer Science, pages 293–310.
Springer, 2007.

8. F. Nielson, H. Riis Nielson, and C. Hankin. Principles of Program Analysis. Springer Verlag,
Berlin, Germany, second edition, 2005.

9. F. Nielson, H. Seidl, and H. Riis Nielson. A succinct solver for alfp. Nord. J. Comput.,
9(4):335–372, 2002.

10. H. Riis Nielson and F. Nielson. Flow logics: a multi-paradigmatic approach to static analysis.
In The Essence of Computation: Complexity, Analysis, Transformation, LNCS no. 2566,
pages 223–244. Springer-Verlag, 2002.

11. F.B. Schneider, G. Morrisett, and R. Harper. A language-based approach to security. In
Informatics - 10 Years Back 10 Years Ahead, volume 2000 of LNCS, pages 86–101. Springer,
2001.

12. N. Izura Udzir, A.M. Wood, and J.L. Jacob. Coordination with multicapabilities. Sci. Com-
put. Program., 64(2):205–222, 2007.

