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Abstract

Coordination languages are often used to describe open-ended systems. This makes it
challenging to develop tools for guaranteeing security of the coordinated systems and cor-
rectness of their interaction. Successful approaches to this problem have been based on
type systems with dynamic checks; therefore, the correctness properties cannot be stati-
cally enforced. By contrast, static analysis approaches based on Flow Logic usually guar-
antee properties statically. In this paper we show how the insights from the Flow Logic
approach can be used to construct a type system for statically ensuring secure access to
tuple spaces and safe process migration for an extension of the language K.

Key words: Global computing, Coordination languages, Formal methods, Flow logic,
Type systems

1. Introduction

Coordination languages allow two or more components of an application to commu-
nicate, by reading/removing/adding data to a shared communication medium, in order to
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accomplish shared goals. These languages are often used to program applications in open
ended systems, namely systems whose overall structure can change dynamically in unpre-
dictable ways because the entities involved can join and leave at any time. This open nature
exposes applications/systems to malicious accesses to their data/resources. Also, when
process mobility is permitted, one can easily conceive Trojan horses or viruses spawned
at remote localities by malicious entities.

This scenario makes it challenging to develop tools for guaranteeing security of co-
ordinated components and correctness of their interaction. Discretionary access control
mechanisms have been designed by relying either on specifying the lists of permitted
operations associated to the objects, or on specifying the capabilities that the different
subjects have on the objects. The capability-based approach appears to scale better when
users are distributed across organizational boundaries and to be more appropriate for open
distributed systems (see e.g. [37]), because capabilities can be distributed to the subjects
and can be passed on. Moreover, different categories of capabilities need not be statically
fixed.

Different techniques have been devised not only to specify but also to enforce access
control (see e.g. [36]). The most traditional one is based on a reference monitor that
dynamically intercepts each attempted access to any (critical) resource and determines
whether the intended operations should be allowed or denied. The main disadvantage
of this approach is that security properties can only be checked dynamically, thus low-
ering the performance of systems. To limit these drawbacks, many static analysis tech-
niques [28] have been devised. These techniques originate from the work on compilers [1]
where it is imperative that all relevant behaviour of systems be statically determined. The
result of analyzing a program is an analysis estimate that gives a global summary of the
properties of interest. However, these approaches often require knowledge of the full sys-
tem which makes the analysis more difficult.

To overcome these limitations, hybrid approaches have been investigated that take ad-
vantage of both static and dynamic checks. This is the case in the capability-based type
systems for K (Kernel Language for Agents Interaction and Mobility, [10]), a lan-
guage specifically designed to program distributed systems made up of several mobile
components. K has proved to be suitable for programming a wide range of distributed
applications with agents and code mobility. Its primitives allow programmers to dis-
tribute/retrieve data and processes to/from the nodes of a net and extend the generative
communication in Linda [14] with multiple shared tuple spaces.

In the capability-based type systems for K (see e.g. [11, 15]), capabilities are used
to specify the access control policies stating which operations (in, out, eval, ...) processes
are allowed to perform while running at a given node; type checking then determines
if processes comply with the policy of their hosting node. Access requests are mostly
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checked statically, but some dynamic type checks are used to deal with data communica-
tion and process migration. In the former case, the dynamic checks are needed because
no constraint is put on the kind of data inserted in tuple spaces; hence, withdrawal of data
must be type controlled to establish matching with the input template. In the latter case, the
type check has to be deferred to run-time because the target node of a process migration,
and, hence, its policy, could be statically unknown.

Of course, dynamic checks downgrade system performance and, thus, should be min-
imized. Therefore, in this paper we shall show how ideas from the Flow Logic ap-
proach [35] to static analysis can be used to enhance K’s type systems with means
for giving a global account of the behaviour of the system under analysis. Indeed, this
seems necessary for dealing with the distributed nature of tuple spaces and furthermore, it
allows us to develop a fully static type system.

The Flow Logic approach borrows from the type-based approach its compositionality
in axiomatizing validity of analysis estimates for a given system. We shall formulate the
correctness of our Flow Logic by a subject reduction result and we shall also establish
a Moore family result showing that a best, i.e. most precise, analysis result exists; the
actual computation of this usually requires global solution of a system of constraints [29].
Thanks to the tight correspondence between the Flow Logic and the type system, these
properties hold for the type system as well.

As a further contribution of this paper, the version of the language K that we take
into account is enhanced with a novel construct, named accept, that allows us to model
truly open systems, i.e. systems where new code can be injected from the outside. In
similar scenarios, a reference monitor semantics is usually used to ensure that the security
of the overall system is not violated. One of the main results of our work is that the static
analysis (and the equivalent static type system) provides a mechanism for checking the
behaviour of the new code, thereby allowing us to dispense with the reference monitor
when the code does not violate certain simple conditions.

The rest of the paper is structured as follows. In Section 2 we present the syntax and
semantics of K extended with the accept construct; we temporarily dispense with a
primitive for creating new localities – this will be rectified in Section 5. We also introduce
a running example that will be used throughout the paper to illustrate how the calculus,
the Flow Logic and the type system work. A Flow Logic for the language is developed
and proved correct in Section 3 and it is used as inspiration to design the fully static type
system presented in Section 4. Our major result, proved in Section 4, shows that the two
analysis techniques are in accordance. In Section 5 we show how our techniques can be
tailored to accommodate the addition of a primitive for creating new localities and briefly
discuss alternative formulations. We conclude in Section 6 with some hints for future work
and a discussion of related work.
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N
N ::= l ::eδ P process

| l :: 〈et〉 located tuple
| N1 ‖N2 net composition

P
P ::= nil empty process

| α.P action prefixing
| P1 | P2 parallel composition
| ∗P replication

A
α ::= out(t)@` output

| in(T )@` input
| read(T )@` read
| eval(P : δ)@` migration
| accept(δ) admission

L
` ::= l locality constant
| self self
| u locality variable

T
T ::= ` locality

| !u input variable
| `,T multiple fields
| !u,T multiple fields

T
t ::= ` element
| `, t multiple elements

E T
et ::= l evaluated element

| l, et multiple eval. elem.

Capabilities
c ∈ {o, i, r, e, a}

Policies
δ : Loc ∪ {self} → P(Capabilities)

EvaluatedPolicies
eδ : Loc→ P(Capabilities)

Figure 1: Syntax of K

2. An Extension of K

In this section we introduce syntax and operational semantics of the extension of the
language K we consider in this paper. We also present a running example that will be
used in the rest of the paper for illustration purposes.

2.1. Syntax
The process calculus used here, like other members of the K family, consists of

three layers: nets, processes, and actions. Nets specify the overall structure of a system,
including where processes and tuple spaces are located. Processes are the actors in this
system and execute by performing actions. The syntax for all these components is pre-
sented in the upper part of Figure 1, whereas the syntax of the capability-based types is
presented in the lower part.

A net consists of processes or tuples located at a locality l, or of a composition of two
nets. Processes are built up from the special process nil, that does not perform any action
(and whose tailing occurrences are often omitted), and from the basic actions by means
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of prefixing, parallel composition and replication. Hence, the actual building blocks of
processes are actions: out and in permit to produce/withdraw tuples to/from a possibly re-
mote tuple space; read is a non-destructive variant of in; eval models mobility by spawn-
ing processes from a locality to another one, where it will be evaluated. These actions
are all classical K actions whereas the action accept is new: it enables (selectively)
processes coming from the environment to get into the system. Indeed, accept, first intro-
duced in [17], makes the language more suitable to model open systems, where processes
are not necessarily known at the outset and can unpredictably appear during a computation.

For communication, we distinguish between tuples and evaluated tuples. An evaluated
tuple is a sequence of values, that in our case are elements of the set Loc of localities, and
can be stored in tuple spaces. In contrast, tuples can contain variables and self-references,
denoted by self, that allow programmers to write processes in a location-independent way.
Tuples are used in processes to compose data to be communicated. We will use πi(t) to
denote the i-th component of the tuple t.

For selectively accessing tuples in tuple spaces and, hence, dynamically retrieving
information, processes use templates and a matching function (see Figure 2). Templates
are similar to tuples, but can also contain input variables, denoted as !u, that are bound
in the continuation process. This means that actions in and read are binders for input
variables. A variable occurrence that is not bound is called free.

Network nodes are equipped with a policy that expresses the discretionary access con-
trol policy that should be enforced upon the system. As usual, a discretionary access
control policy states which subjects can access which objects using what capabilities1.
Here we take subjects to be the localities where the action is executed, objects to be the lo-
calities accessed (for example, placing a new evaluated tuple there, inputting or reading an
evaluated tuple, or spawning a new process), and capabilities, c, to be indicators of the ac-
cess operation, i.e., elements of the set Capabilities representing the out-, in-, read-, eval-,
and accept-actions, respectively. We use C to denote a generic set of capabilities, i.e., a
subset of the set Capabilities. Policies are represented as capability lists. Thus, a policy
for some locality ls maps a locality lo to the set of capabilities with which the subject ls can
access the object lo. Formally, we distinguish between Policies and EvaluatedPolicies.
They both are functions from localities to sets of capabilities and differ only in whether
they allow self to be used as a locality. Policies, δ, embedded in the syntax can use self,
whereas (evaluated) policies, eδ, associated to some locality, written l ::eδ . . ., cannot.

The policies associated to nodes at the outset and the policies specified in the actions

1Although the security model we take into account in this paper exploits the power of capabilities only
in a limited way (see, e.g., the semantics of the newloc action in Section 5), we retain this terminology for
uniformity with other papers on K [15, 16] where more sophisticated security models are considered.
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eval and accept must be explicitly defined by the programmer as an integral part of the
specification.

2.2. Running Example
As a running example, throughout the paper we will consider a scenario where a user

wants to collect and elaborate some pieces of information scattered on network nodes.
The K net modeling the scenario includes the user process (located at lU), a bookshop
service process (located at lB), and a data container (located at lC). Moreover, in the
example we assume that some sort of primitive data, like strings, are available and can be
used as fields of data tuples. This is only for convenience, since all of the primitive data
can be interpreted as localities. The overall structure of the network is as follows:

lU ::eδU PU ‖ lB ::eδB PB ‖ lC ::eδC nil ‖

lC :: 〈J.R.R. Tolkien,The Hobbit〉 ‖ lC :: 〈J.R.R. Tolkien,The Lord of the Rings〉

Each locality hosts running processes that must obey a given access policy and/or contains
data tuples. The processes are defined as follows:

PU = eval(P1 : δ)@lB.in(!data)@self. < elaborate data >
P1 = read(J.R.R. Tolkien, !title)@lC.out(title)@lU

PB = accept(δa)

The policies associate with the eval and the accept actions are

δ = [lU 7→ {o}, lC 7→ {r}] δa = [lC 7→ {r, o}]

and the policies of the localities are

eδU = [lU 7→ {i}, lB 7→ {e}] eδB = [lC 7→ {r, i, o}, lU 7→ {o}] eδC = [ ]

The intended workflow in the example is as follows. The user launches process P1 at
lB (this is permitted because e ∈ eδU(lB)). The process starts by looking for a book written
by Tolkien at the repository lC, by reading a tuple with first component “J.R.R. Tolkien”
(this is permitted because r ∈ δ(lC)). When such a book is found, the user is informed
by receiving a datum in its tuple space containing the title (this is permitted because o ∈
δ(lU)). The user then starts working on it, for example by deciding whether to buy and
read the book or look for another one. The bookshop has inserted in its policy eδB also the
i and o capabilities for updating the repository, when a book is out of print or when one
becomes available.

Notice the presence of action accept(δa) at the bookshop. It allows entrance of code
not present at the outset; however, the accepted code will only be allowed to perform a
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match(l, l) = ε match(!u, l) = [u 7→ l]
match(T1, et1) = σ1 match(T2, et2) = σ2

match((T1,T2), (et1, et2)) = σ1 σ2

Figure 2: The partial matching function

limited set of operations (delimited by δa). For example, an incoming process can read the
repository and update it by adding new titles; however, it cannot remove existing titles2.

The example is intentionally simplistic and several features have been omitted. We
aim only at illustrating how the calculus, the Flow Logic and the type system work. The
example is not meant to be a complete specification of a distributed system and therefore it
does not include modeling of, e.g., scheduling of different processes and similar concepts.

2.3. Operational Semantics
The operational semantics is in the form of a reduction semantics. It uses the partial

function match of Figure 2 when reading or inputting, for checking agreement between
a template and an (evaluated) tuple. The matching proceeds by comparing a template
T componentwise with an evaluated tuple et. There are two possibilities for the match
to succeed. Either both the template and the tuple begin with the same locality, or the
template begins with an input variable; in both cases, the rest of the tuples must match.
The result of a successful match is a substitution function, σ, that is used to replace in
the continuation process all the free occurrences of the template’s input variables with the
values that occurred at corresponding positions in the matched tuple3. In the sequel, to
ensure that match returns a valid substitution function upon successful matching, we shall
assume that templates T are well-formed in the sense that, for every given u, they do not
contain both u and !u, and do not contain multiple occurrences of !u.

The reduction semantics operates on closed processes, i.e. processes without free vari-
ables, but it still needs to properly deal with self. This is achieved by two auxiliary func-
tions that map tuples (without free locality variables) to evaluated tuples, and policies to
evaluated policies, respectively. They are both indexed with the locality to be used instead

2Of course, the use of more fine-grained capabilities (like those in [16]) would simplify the specification
of more realistic policies, prescribing, e.g., that the new agent can only add/remove certain kinds of tuples
and/or must authenticate before performing its tasks.

3As usual, ‘ε’ denotes the empty function and juxtaposition, e.g., σ1σ2, denotes composition of functions
with disjoint domains.
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of self and have the same syntax.

L·Ml : (Loc ∪ {self})→ Loc given by L`Ml =

{
l if ` = self
l′ if ` = l′ ∈ Loc

L·Ml : Policy→ EvaluatedPolicy given by LδMl(l′) =

{
δ(l′) if l , l′

δ(l) ∩ δ(self) if l = l′

The first function simply replaces self with the subscript, which is supposed to denote
the intended meaning of self. We trivially extend it from working on single localities to
working on sequences in a componentwise manner. We also trivially extend it to work
on templates (without free locality variables) by defining it to act as the identity on input
variables. The second function imposes both the policies of l and self whenever l′ = l.

Figure 3 shows the semantics for our calculus – or, to be more precise, it defines two
different semantics, one that checks the access control policies dynamically, and one that
checks them statically. In both cases the transitions take the form

L . N −→ N′

where the set L ⊂ Loc keeps track of used localities and is exploited for testing localities’
existence. Given a net N and an L as above, the configuration L . N is well-formed if all
the localities syntactically occurring in N (both in its tuples, processes and policies) are
contained in L. The semantics is defined only for well-formed configurations.

The reference monitor semantics is obtained by taking RM[φ] to be simply φ, thereby
reflecting that the conditions are checked dynamically; in the following, we shall refer to
this semantics by writing L . N −→on N′. As an example, for the output action the formula
RM[eδ(l′) 3 o] is intended to ensure that the local policy, eδ, does indeed permit output to
the locality l′. In the reference monitor semantics of the accept action, we check that l is
ready to accept a process from the environment by the condition RM[eδ(l) 3 a], whereas
the condition RM[· · ·] is ignored by taking it to be universally true.

The alternative semantics will perform the checks statically and dispenses with the dy-
namic checks of the reference monitor. It is obtained from Table 3 by taking RM[· · ·] to be
universally true and, in the rule for accept, by letting RM[φacc] be φacc. The static analy-
sis/type system to be developed in the next sections will specify φacc in details; intuitively,
it ensures that a new process is admitted only if it complies with the policy specified as
argument of the accept action. We shall refer to this semantics by writing L . N −→off N′.

Returning to the details of the rules of Table 3, we first observe that the out action
takes an evaluated tuple and outputs it at the tuple space identified by `. As for all other
actions, execution of the current subprocess is stuck if the tuple is not fully evaluated, that
is if it still contains variables. The in action takes a template T and a locality `, and uses
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L`Ml = l′ ∈ L LtMl = et RM[eδ(l′) 3 o]
L . l ::eδ out(t)@`.P −→ l ::eδ P ‖ l′ :: 〈et〉

L`Ml = l′ match(LT Ml, et) = σ RM[eδ(l′) 3 i]
L . l ::eδ in(T )@`.P ‖ l′ :: 〈et〉 −→ l ::eδ Pσ

L`Ml = l′ match(LT Ml, et) = σ RM[eδ(l′) 3 r]
L . l ::eδ read(T )@`.P ‖ l′ :: 〈et〉 −→ l ::eδ Pσ ‖ l′ :: 〈et〉

L`Ml = l′ ∈ L Lδ′Ml = eδ′ RM[eδ(l′) 3 e]
L . l ::eδ eval(Q : δ′)@`.P −→ l ::eδ P ‖ l′ ::eδ

′

Q

Lδ′Ml = eδ′ RM[eδ(l) 3 a] RM[φacc]
L . l ::eδ accept(δ′).P −→ l ::eδ P ‖ l ::eδ

′

Q

L . N1 −→ N′1
L . N1 ‖N2 −→ N′1 ‖N2

N ≡ N1 L . N1 −→ N2 N2 ≡ N′

L . N −→ N′

Figure 3: Operational Semantics of K

the judgment for match previously defined to select a tuple matching against T from the
tuple space at `. As an effect of the in action, the matched tuple et is removed from the
tuple space and the substitution σ computed by match is applied to the rest of the process,
thereby substituting input variables in T with the corresponding values in et. The read
action acts as the in but leaves the matched tuple in place.

The eval action sends its argument Q for execution to the locality identified by `.
Notice that the receiving node has no control on the incoming code. Of course, we could
introduce a sort of complementary coeval action for authorizing migrations (in the same
spirit as co-capabilities in [21]) but, for the sake of simplicity, we prefer the present version
of the language. The ‘sandbox’ policy under which Q will run results from evaluation of
the policy specified in the argument of the action.

The accept action admits into a system new processes coming from the environment
(i.e. processes that do not occur in the term representing the net under consideration) that
will run under the ‘sandbox’ policy resulting from evaluation of the policy specified as
argument of the action.

In the rules for eval and accept, we do not impose any condition on the sandbox policy
with respect to other policies that might apply at the target locality; thus, it is expectable to
have processes at the same locality but with different policies. Of course, it is possible to
add a runtime check imposing that the sandbox policy is less permissive than the policy of
the target node. In the rule for accept, this is simply done by adding the premise eδ′ v eδ,
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N1 ‖N2 ≡ N2 ‖N1 (N1 ‖N2) ‖N3 ≡ N1 ‖(N2 ‖N3) l ::eδ ∗P ≡ l ::eδ P | ∗P

l ::eδ P ≡ l ::eδ (P |nil) l ::eδ (P1 | P2) ≡ l ::eδ P1 ‖ l ::eδ P2

Figure 4: Structural Congruence

where ‘v’ is inclusion of partial functions (see Section 3.1 for a formal definition); in the
rule for eval, this is done by checking the existence of a node at locality l′ with some
policy eδ′′ and by adding the premise eδ′ v eδ′′. Although from a security point of view
this modeling could seem more convincing, we prefer not to implement it because of two
reasons: first, it requires more runtime checks, that downgrade system performance and are
not necessary when working with nets that have already passed a static analysis phase (the
only ones we are really interested in); second, the focus of this work is on the relationships
between the Flow Logic and the type system, thus we prefer to keep the language under
consideration as simple as possible. However, it has to be said that our choice leads to
some nets that can safely run with the reference monitor on, but that cannot pass the static
checks; we shall be back on this point in Section 3.9, after having presented the Flow
Logic.

To conclude, the last two rules in Figure 3 are quite standard: the former allows a net
to evolve whenever a subnet evolves, the latter assigns the same semantics to nets related
by the structural congruence relation defined by the laws in Figure 4. In fact, as usual,
reductions are given up-to a (quite standard) structural congruence. Its laws say that ‖ is
commutative and associative, that as many copies as needed can be spawned of a replicated
process, that process nil can be absorbed/spawned, and that a parallel between co-located
processes can be turned into a parallel between nodes (and viceversa, provided that the
policies coincide). As a consequence, also | is commutative and associative, and has nil as
identity element.

3. Flow Logic

We shall now develop an analysis that captures the behaviour of nets. The analysis
computes an over-approximation of the actual behaviour of a K net. The analysis is
specified using the Flow Logic approach to static analysis. A Flow Logic specification
axiomatizes when an analysis estimate is acceptable for a program and relies on various
algorithms for computing the analysis estimate – just like a type system specifies when a
program is type correct and relies on type inference algorithms to actually construct the
types. Thus, Flow Logic is a more specification oriented approach to program analysis
than traditional methods, e.g., data flow analysis (see [28]).
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Flow Logic specifications usually take the form of a number of judgments one for
each syntactic category to be analyzed. The judgments specify when an analysis estimate
is acceptable for a fragment of a term from the relevant syntactic category. In the rest of
the section, we first introduce the abstract domains underlying the analysis, then define
the judgments for actions, processes, nets, and matchings, finally present the theoretical
properties of the analysis.

3.1. Analysis Domains
In our analysis we shall make use of the following analysis domains:

• T̂ ∈ Loc → P(Loc∗) is an abstract tuple space; it is an over-approximation of the
set of all tuples (of locality constants) that might at some point during the execution
reside in the tuple space of a given locality constant.

• σ̂ ∈ LocVar → P(Loc) is an abstract environment; it keeps a record of all locality
constants that a given locality variable might at some point during execution be
bound to. (This functionality suffices because the structural congruence does not
contain α-renaming of bound variables.)

• ∂ ∈ AbstractPolicy = Loc → P(Capabilities) is an abstract policy; it summarizes
all the concrete policies that a given locality might have at some point during the
execution. Abstract policies form a lattice based on the natural ordering on partial
functions, written v, i.e. ∂ v ∂′ if and only if dom(∂) ⊆ dom(∂′) and ∂(l) ⊆ ∂′(l), for
every l ∈ dom(∂).

• ∆ ∈ Loc → AbstractPolicy is a record of policies that may arise at localities dur-
ing execution due to remotely executed processes. For every target locality of a
remotely executed process (i.e., targets of an eval-action), it summarizes all the
“sandbox” policies specified by the eval-action in question. This results in an over-
approximation of the possible actions taken by processes remotely executed at a
given locality.

• % ∈ Loc → Loc → P(Capabilities) is a record of potential violations of policies. It
records all the actions that might have been performed during the evolution of the
net and where it was not possible to determine that the actions were permitted by the
local policy. The first argument is the subject locality where the action was initiated,
and the second argument is the object locality where the action had effect, and the
resulting set of capabilities are the offending ones. Note that this domain is equiv-
alent to Loc → AbstractPolicy; however, since policy violations are conceptually
different from abstract policies, we retain the above definition.
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LtMΛ
σ̂ ⊆ T̂ 〈L`MΛ

σ̂〉 [L`MΛ
σ̂ → {o} ] v ∂

(T̂ ,∆, σ̂) |=Λ
A out(t)@` : ∂, %

σ̂ |=
L`MΛ

σ̂

1 T : T̂ [L`MΛ
σ̂] . Ŵ [L`MΛ

σ̂ → {i} ] v ∂

(T̂ ,∆, σ̂) |=Λ
A in(T )@` : ∂, %

LδMΛ
∪ v ∂ [Λ→ {a} ] v ∂

(T̂ ,∆, σ̂) |=Λ
A accept(δ) : ∂, %

σ̂ |=
L`MΛ

σ̂

1 T : T̂ [L`MΛ
σ̂] . Ŵ [L`MΛ

σ̂ → {r} ] v ∂

(T̂ ,∆, σ̂) |=Λ
A read(T )@` : ∂, %

(T̂ ,∆, σ̂) |=
L`MΛ

σ̂
P P :∂′,% ∂′\L`MΛ

σ̂
LδMΛ
∩ v % ∀λ ∈ L`MΛ

σ̂ : LδMΛ
∪ v ∆(λ) [L`MΛ

σ̂ → {e} ] v ∂

(T̂ ,∆, σ̂) |=Λ
A eval(P : δ)@` : ∂, %

Figure 5: Static Analysis of Actions

• Λ ∈ P(Loc) is a (usually nonempty) set of localities of interest at a given point.
In general, we shall analyze processes at sets of localities (rather than at a single
locality) in order to obtain a context insensitive analysis and to keep the complexity
of the analysis low. A more precise analysis can be obtained by analyzing processes
at single localities but it would require that some processes are analyzed more than
once – indeed this approach is taken in [17].

3.2. Analysis of Actions
The judgment for an action α has the following form:

(T̂ ,∆, σ̂) |=Λ
A α : ∂, %

and is defined by the inference system of Figure 5 to be explained in more detail below.
Intuitively, the above judgment reads: “(T̂ ,∆, σ̂) is an acceptable analysis estimate for the
action α when occurring in the context Λ and it can only give rise to the policy violations
recorded in % and it can only impose the policy requirements ∂ on other localities”. In
other words: T̂ , ∆, and σ̂ correctly capture the behaviour of the action α when executed in
the context Λ and at the same time ∂ and % provide records of the potential policies that α
might impose on other localities and the potential policy violations that α might give rise
to. As is usual in Flow Logic, we provide a componentwise definition.

Before explaining the rules of Table 5 we introduce some notation. We shall need to
transform localities ` ∈ Loc ∪ {self} ∪ LocVar into the set of localities that they denote;
this is necessary both because we have locality variables and because we have the self
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construct. For this we make use of the auxiliary function

L·MΛ
σ̂ : Loc ∪ {self} ∪ LocVar→ P(Loc)

L`MΛ
σ̂ =


{`} if ` ∈ Loc
Λ if ` = self
σ̂(`) if ` ∈ LocVar

This transformation is straightforward for locality constants, while it exploits the set Λ of
locality constants that self might stand for, in the case of self, and the abstract environment
σ̂, in the case of locality variables. This operation is extended to tuples t by taking the
cartesian product of all components. As an example, in the rule for out we write LtMΛ

σ̂ for
the set of potential tuples that could be output to one of the localities of L`MΛ

σ̂. It is easy to
see that for evaluated tuples et, we have Let MΛ

σ̂ = {et}.
To more easily express that the appropriate record of actions is captured by the policy

component ∂, we use the notation

[X → Y] : Loc→ P(Capability)

[X → Y](λ) =

{
Y if λ ∈ X
∅ otherwise

Here X is the set of localities where the actions recorded in Y might have effect and Y is
usually is a singleton set, namely the action taking place. In the case of out, in, read and
eval, we take X to be the set L`MΛ

σ̂; in the case of accept, we take X to be the set Λ of current
localities. As an example, for the out action we will write [L`MΛ

σ̂ → {o} ] v ∂ to record that
at any of the localities of L`MΛ

σ̂ we might perform an out action and this must be recorded in
the overall abstract policy ∂ of the particular occurrence of the action we are interested in.
As another example, for the accept action we will have the somewhat simpler condition
[Λ→ {a} ] v ∂ where we exploit that the process accepted from the environment will have
to be executed at the current locality which will be one of the localities in Λ.

Since most of the rules need to take effect for any element in some set of locality con-
stants, it is frequently necessary to write logical formulae using universal and existential
quantifiers. The resulting formulae tend to clutter the understanding of the more subtle
features of the Flow Logic specification and we have therefore decided to introduce two
notational shorthands so as to reduce the explicit use of quantifiers. The notations are
formally defined by:

Ψ[X] =
⋃

x∈X Ψ(x) = {z | ∃x ∈ X : z ∈ Ψ(x)}

Ψ〈X〉 =
⋂

x∈X Ψ(x) = {z | ∀x ∈ X : z ∈ Ψ(x)}

13



It is worth pointing out that this permits to use them in inclusions and that they can be
expanded away using the following tautologies:

Ψ[X] ⊆ Z ⇐⇒ ∀x ∈ X: Ψ(x) ⊆ Z

Z ⊆ Ψ〈X〉 ⇐⇒ ∀x ∈ X: Z ⊆ Ψ(x)

As an example, in the rule for out the premise LtMΛ
σ̂ ⊆ T̂ 〈L`MΛ

σ̂〉 expresses that all the values
that t may evaluate to are included in all the tuple spaces that could be associated with the
locality `.

The semantics of in and read make use of pattern matching and we also need to capture
this in the analysis. We have developed an analysis for this making use of judgments of
the form

σ̂ |=Λ
1 T : Û . Ŵ

The detailed definition is given later; at this stage it is sufficient to know that the judgment
expresses that Ŵ contains the tuples of Û that can be successfully matched against the
template T in the context Λ, and that σ̂ records the corresponding bindings to the variables
of T . In the rules for in and read we make use of the premise σ̂ |=L`MΛ

σ̂

1 T : Û . Ŵ where
Û = T̂ [L`MΛ

σ̂]. This expresses that the template T is matched against all the possible tuples
of Û, which is constructed as the union of all the sets of tuples that the localities of ` might
denote. In the analysis we are mainly interested in the bindings that the successful matches
impose on σ̂ so the actual set of successful matches Ŵ is not used in the analysis.

The next piece of notation needed in order to explain Table 5 is concerned with how to
transform concrete policies into abstract policies. Here we make use of two functions; the
first, denoted LδMΛ

∪ , is used in conjunction with the ∂ component of the analysis to over-
approximate the potential set of actions permitted by the concrete policy δ. It is defined
by

LδMΛ
∪(λ) =

⋃
λ′∈ΛLδM{λ′}(λ)

LδM{λ′}(λ) =

{
δ(λ) if λ , λ′

δ(λ) ∩ δ(self) if λ = λ′

where the use of LδM{λ′}(λ) makes sure to include contributions from self of δ in the abstract
policy. As an example, the rule for accept includes the premise LδMΛ

∪ v ∂ in order to
ensure that the abstract policy ∂ records all the actions that a process accepted from the
environment might perform. Similarly the rule for eval includes the premise ∀λ ∈ L`MΛ

σ̂ :
LδMΛ
∪ v ∆(λ) to ensure that the correct information is recorded in ∆ for all the localities

where a process might be remotely executed at.
The second function, denoted LδMΛ

∩ , is used to compute the set of actions definitely
permitted by a concrete policy. This results in an under-approximation that can be used to
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remove definitely allowed actions from the error component, %, and thereby improve the
accuracy of the analysis. The function is defined by

LδMΛ
∩(λ) =

⋂
λ′∈ΛLδM{λ′}(λ)

where LδM{λ′} is as above.
The definitions of LδMΛ

∪ and LδMΛ
∩ are based on the observation that LδM{λ′} is the “precise”

function that is needed when we know that the only possible value of self is the single
value λ′ (hence the superscript is {λ′}). We already observed that the set Λ of possible
localities for self will in practice never be empty because we will always be at least at
one place. Then the over-approximation is taken to be the pointwise union and the under-
approximation is taken to be the pointwise intersection of the “precise” function.

The under-approximation is used in the rule for eval where one of the premises is
∂′\L`MΛ

σ̂
LδMΛ
∩ v %. Here ∂′ is the abstract policy obtained by analyzing the remotely executed

process P and LδMΛ
∩ is a record of the access rights that we have specified for P. However,

before explaining that in detail, we need to introduce an operation for “subtracting” two
policies:

∂1 \Λ ∂2 : Loc→ AbstractPolicy

(∂1 \Λ ∂2)(λs)(λo) =

{
∂1(λo) \ ∂2(λo) if λs ∈ Λ

∅ otherwise

The subscript Λ is used to identify the localities where the subtraction should have effect.
In the premise ∂′\L`MΛ

σ̂
LδMΛ
∩ v % discussed above we are only concerned about access viola-

tions at the localities where the new process may be spawned (that is, L`MΛ
σ̂) and we want the

analysis to record in % the violations that potentially might be problematic, that is, the dif-
ference between those recorded by the abstract policy obtained by analyzing the spawned
process (that is, the over-approximation ∂′) and those that definitely are non-problematic
(that is, LδMΛ

∩). Since the latter is an under-approximation, the subtraction ∂′\L`MΛ
σ̂
LδMΛ
∩ will

still be an over-approximation.
Having these notations in place, we can now return to the rules in Figure 5 on page 12.

The rule for out evaluates the tuple t using LtMΛ
σ̂ to identify all possible tuples that could be

output. Similarly, L`MΛ
σ̂ identifies all localities that could be the target of the action. The

subset constraint LtMΛ
σ̂ ⊆ T̂ 〈L`MΛ

σ̂〉 ensures that all possible tuples are stored in the abstract
tuple spaces of all possible target localities. Additionally, we record in the abstract policy
∂ that out could have been performed on all possible target localities.

The remaining rules are similar and we only point out novel features. In the rule for in
we first need to pattern match the template T against all the possible tuples that could be
input. The idea behind the analysis has been sketched above, pattern matching itself is
discussed in Section 3.5. The analysis ensures that the environment σ̂ correctly represents
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(T̂ ,∆, σ̂) |=Λ
P nil : ∂, %

(T̂ ,∆, σ̂) |=Λ
P P1 : ∂, % (T̂ ,∆, σ̂) |=Λ

P P2 : ∂, %

(T̂ ,∆, σ̂) |=Λ
P P1 | P2 : ∂, %

(T̂ ,∆, σ̂) |=Λ
P P : ∂, %

(T̂ ,∆, σ̂) |=Λ
P ∗P : ∂, %

(T̂ ,∆, σ̂) |=Λ
P P : ∂, % (T̂ ,∆, σ̂) |=Λ

A α : ∂, %

(T̂ ,∆, σ̂) |=Λ
P α.P : ∂, %

Figure 6: Static Analysis of Processes

bindings of free variables in the template. The rule for the non-destructive read proceeds
identically; this is because the analysis needs to be conservative. The rule for accept uses
LδMΛ
∪ v ∂ to ensure that the abstract policy ∂ records all the actions that a process accepted

from the environment might perform.
The rule for eval is the most complex one. To ensure that the analysis correctly captures

all possibly executed actions, the process P is analyzed in all localities it possibly could
be executed at. From the abstract policy ∂′ obtained from analyzing the process P we
remove all those privileges that have been definitely granted to P. The remaining elements
are added to the error component. As for accept, we must also ensure that ∆ records all
the actions that process P might possibly perform, for all the localities where P might be
remotely executed at.

3.3. Analysis of Processes
Let us now turn our attention to the analysis of processes. The judgment for the anal-

ysis of a process P has the form

(T̂ ,∆, σ̂) |=Λ
P P : ∂, %

and is defined by the inference system of Figure 6 to be explained shortly. The intention
is that when true, the components T̂ , ∆, σ̂, ∂ and % correctly capture the behaviour of
the process P (when located at one of the localities λ ∈ Λ). Any violation encountered
during analysis of the process is recorded in %, whereas ∂ approximates the actual policy
employed by the process.

We now return to the rules of Figure 6. The rule for nil should be obvious. For
processes in parallel we analyze both of them using the same error component and ab-
stract policy as for their parallel composition. This is merely for simplicity: an alternative
would be to use premises (T̂ ,∆, σ̂) |=Λ

P Pi : ∂i, %i with different error components and ab-
stract policies and then additionally require that ∂i v ∂ and %i v % in order to conclude
(T̂ ,∆, σ̂) |=Λ

P P1 | P2 : ∂, %. The same holds for the rule for action prefixing, where both
the action and the remaining process are analyzed using the same components. Finally, we
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(T̂ ,∆, σ̂) |={l}P P : ∂′, %′ ∂′ \{l} eδ v % ∆(l) \{l} eδ v % %′ v %

(T̂ ,∆, σ̂) |=N l ::eδ P : %

{et} ⊆ T̂ (l)

(T̂ ,∆, σ̂) |=N l :: 〈et〉 : %

(T̂ ,∆, σ̂) |=N N1 : % (T̂ ,∆, σ̂) |=N N2 : %

(T̂ ,∆, σ̂) |=N N1 ‖N2 : %

Figure 7: Static Analysis of Nets

note that the analysis for replication only considers the process once as this is sufficient
for collecting the relevant information.

3.4. Analysis of Nets
The judgment for a net N has the following form:

(T̂ ,∆, σ̂) |=N N : %

and intuitively it reads: “(T̂ ,∆, σ̂) is an acceptable analysis estimate for the net N and it
will only give rise to the policy violations recorded in %”. The judgment is defined by the
rules of Table 7 that we now comment on.

When analysing a process P located at locality l with policy eδ we first analyse that
process. Using the subtraction operator introduced earlier we ensure that all actions possi-
bly performed by P but not allowed by the policy eδ are included in the error component.
Finally, also the error component %′ obtained from P must be included in the overall error
component %. For an evaluated tuple located at l we record that the tuple is stored at the
abstract tuple space T̂ (l). Finally, parallel nets are analyzed individually using the same
error component as explained above (viz. for parallel processes).

3.5. Analysis of Matching
In the analysis of the in and read actions in Figure 5, we made use of a judgment for

analyzing pattern matching that has the following general form:

σ̂ |=Λ
i T : Û . Ŵ

It expresses that matching should start at position i in the template T , that Û contains the set
of tuples that we are matching against, that Ŵ contains the tuples from Û that successfully
match T from position i and onwards, and finally that σ̂ records the appropriate bindings
that need to be performed. In the rules of Figure 8, recall that πi(et) denotes the i-th
component of the tuple et; πi(V̂) is its componentwise extension to sets of tuples.
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{et ∈ Û | πi(et) ∈ L`MΛ
σ̂ ∧ |et| = i} ⊆ Ŵ

σ̂ |=Λ
i ` : Û . Ŵ

{et ∈ Û | |et| = i} ⊆ Ŵ πi(Ŵ) ⊆ σ̂(u)

σ̂ |=Λ
i !u : Û . Ŵ

{et ∈ Û | πi(et) ∈ L`MΛ
σ̂ ∧ |et| ≥ i} ⊆ V̂ σ̂ |=Λ

i+1 T : V̂ . Ŵ

σ̂ |=Λ
i `,T : Û . Ŵ

{et ∈ Û | |et| ≥ i} ⊆ V̂ σ̂ |=Λ
i+1 T : V̂ . Ŵ πi(Ŵ) ⊆ σ̂(u)

σ̂ |=Λ
i !u,T : Û . Ŵ

Figure 8: Static Analysis of Matching

Pattern matching is triggered by the input rules in Figure 5 by invoking it with i = 1
and with Û being initialized to the abstract tuple space from which the input action is
reading. The rules in Figure 8 then traverse the template from left to right to construct a
set of tuples that could match. After this, each element of the template is inspected again,
and tuples that do not match are deleted.

We first look at the traversal of templates from left to right (last two rules of Figure 8).
If the current template element is an input variable, all sufficiently long tuples from Û are
selected. If the element is a locality constant ` then only tuples in Û with ` at position i are
selected. The resulting set V̂ is then forwarded to the analysis of the rest of the template
for i + 1.

If the end of the template is reached, the first two rules of Figure 8 apply. Both rules
apply the same constraints as their siblings just discussed. Additionally they select only
those tuples that have the correct length; since we now are at the last element of the tem-
plate, we know that the index i is the length of tuples we can match. Furthermore in the
case of an input variable u we ensure that the i-th component of the remaining tuples is
added to the abstract environment of u. Once these rules end the left-right traversal of
the template, this is also ensured for all input variables encountered before (last rule of
Figure 8).

3.6. Acceptable Terms
If we for a moment ignore the accept action, we would be ready to establish the se-

mantic correctness of our analysis. This would be expressed as a subject reduction result:

If L . N −→off N′ and (T̂ ,∆, σ̂) |=N N : ⊥, then (T̂ ,∆, σ̂) |=N N′ : ⊥.

Here (T̂ ,∆, σ̂) |=N N : ⊥ expresses that the net N is policy conformant and the above
result states that this property is preserved by the semantics even when dispensing with
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the reference monitor. Also, we would be able to show that the semantics without the
reference monitor does not allow more transitions than the one with the reference monitor
as expressed by the adequacy result:

If L . N −→off N′ and (T̂ ,∆, σ̂) |=N N : ⊥, then L . N −→on N′.

However, our calculus does include the accept action; so, we are not ready to prove the
above results for the full calculus. We first need to finalize the semantics presented in Table
3 and, in particular, to define the premise RM[φacc] of the rule for accept. The idea is that
an external process can be accepted into a given net if it can be analyzed with respect to
an access policy defined by the accepting process. This ensures that the accepting process
can control what access privileges it is willing to pass onto programs that may be unknown
a priori. For an accepting process l ::eδ accept(δ′).P willing to admit an external process
Q that complies with policy δ′, this check amounts to the following requirement on Q:

(T̂ ,∆, σ̂) |={l}P Q : Lδ′M{l},⊥

The check guarantees that process Q, when executed at locality l, will only perform actions
that do not violate the accepting policy δ′, as indicated by “Lδ′M{l},⊥” on the right hand side
of the colon. Here T̂ , ∆ and σ̂ should be considered “global constants” to be used for an
entire execution of a net; this will be clarified in Theorem 3.1 below. Thus, we may
complete the semantics in Figure 3 by letting

φacc = (T̂ ,∆, σ̂) |={l}P Q : Lδ′M{l},⊥

3.7. Analysis of the Running Example
For the running example, we have (T̂ ,∆, σ̂) |=N N : ⊥ for the following choice of T̂ , ∆

and σ̂:

T̂ : lU 7→ {〈The Hobbit〉, 〈The Lord of the Rings〉, 〈The Silmarillion〉}
lB 7→ {}

lC 7→ {〈J.R.R. Tolkien,The Hobbit〉, 〈J.R.R. Tolkien,The Lord of the Rings〉,
〈J.R.R. Tolkien,The Silmarillion〉}

σ̂ : title 7→ {The Hobbit,The Lord of the Rings,The Silmarillion}
data 7→ {The Hobbit,The Lord of the Rings,The Silmarillion}

∆ : lU 7→ ⊥

lB 7→ δ

lC 7→ ⊥

This is an acceptable analysis result for the net although it is not the best (or least) solution.
Consider now the two processes

Q1 = out(J.R.R. Tolkien,The Silmarillion)@lC
Q2 = in(J.R.R. Tolkien,The Hobbit)@lC

19



Here (T̂ ,∆, σ̂) |={lB}
P Q1 : δa,⊥ because [lC 7→ {o}] v δa and this means that Q1 can be

accepted into the net. On the other hand, it is not the case that (T̂ ,∆, σ̂) |={lB}
P Q2 : δa,⊥

since [lC 7→ {i}] @ δa and this means that Q2 will not be accepted into the net.

3.8. Properties of the Analysis
We are now ready to prove the results envisioned above. As already mentioned the

overall correctness of the analysis is formalized as a subject-reduction and an adequacy
theorem.

Theorem 3.1 (Subject Reduction). If L . N −→off N′ and (T̂ ,∆, σ̂) |=N N : ⊥, then
(T̂ ,∆, σ̂) |=N N′ : ⊥.

Proof: The proof is by induction on L . N −→off N′, using a few auxiliary results:

• The analysis result is invariant under the structural congruence:
If N ≡ N′ then (T̂ ,∆, σ̂) |=N N : % if and only if (T̂ ,∆, σ̂) |=N N′ : %.
The proof is by induction on the proof tree establishing N ≡ N′ and is standard.

• The analysis of matching is correct:
If match(LT Ml, et) = σ, l ∈ Λ, et ∈ Û, and σ̂ |=Λ

1 T : Û . Ŵ, then et ∈ Ŵ and
∀u ∈ dom(σ) : σ(u) ∈ σ̂(u).
The proof is by structural induction on the template T and is standard.

• The analysis result is stable under substitution:
If (T̂ ,∆, σ̂) |=Λ

P P : % and λ ∈ σ̂(u) then (T̂ ,∆, σ̂) |=Λ
P P[λ/u] : %.

If (T̂ ,∆, σ̂) |=Λ
A α : ∂, % and λ ∈ σ̂(u) then (T̂ ,∆, σ̂) |=Λ

A α[λ/u] : ∂, %.
If σ̂ |=Λ

i T : Û . Ŵ and λ ∈ σ̂(u) then σ̂ |=Λ
i T [λ/u] : Û . Ŵ.

The proof is a standard proof by mutual structural induction (mutual structural in-
duction is used because actions may occur inside processes as well as processes
inside actions).

The proof of the main theorem is then fairly standard and we only show how to prove
subject reduction for the in and eval actions.

Assume that N = l ::eδ in(T )@`.P ‖ l′ :: 〈et〉, N′ = l ::eδ Pσ, match(LT Ml, et) = σ,
L`Ml = l′ such that L . N −→off N′, and further assume that (T̂ ,∆, σ̂) |=N l ::eδ

in(T )@`.P ‖ l′ :: 〈et〉 : ⊥. By the premises of the rules for action prefixing and action
in, we have that (for some ∂′)

1. match(LT Ml, et) = σ

2. (T̂ ,∆, σ̂) |={l}P in(T )@` : ∂′,⊥
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3. (T̂ ,∆, σ̂) |={l}P P : ∂′,⊥
4. ∂′ \{l} eδ v ⊥
5. ∆(l) \{l} eδ v ⊥

We have that L`M{l}σ̂ = {l′} and we then get that σ̂ |=
L`M{l}

σ̂

1 T : T̂ [L`M{l}σ̂ ] . Ŵ using points (1)
and (2); using next the auxiliary results stated above we have ∀u ∈ dom(σ) : σ(u) ∈ σ̂(u).
From point (3) and the auxiliary results stated above we get (T̂ ,∆, σ̂) |={l}P Pσ : ∂′,⊥.
Combined with points (4), and (5) we arrive at (T̂ ,∆, σ̂) |=N l ::eδ Pσ : ⊥ which concludes
the case.

Assume that N = l ::eδ eval(Q : δ′)@`.P, N′ = l ::eδ P ‖ l′ ::eδ′ Q, L`Ml = l′ such that
L . N −→off N′, and further assume that (T̂ ,∆, σ̂) |=N l ::eδ eval(Q : δ′)@`.P : ⊥; by the
premises of the semantic rule and analysis clause for eval we have that (for some ∂′)

1. (T̂ ,∆, σ̂) |={l}A eval(Q : δ′)@` : ∂′,⊥
2. (T̂ ,∆, σ̂) |={l}P P : ∂′,⊥
3. ∂′ \{l} eδ v ⊥
4. ∆(l) \{l} eδ v ⊥

From points (2), (3), and (4) we get that (T̂ ,∆, σ̂) |=N l ::eδ P : ⊥ and from point (1) we
have that (for some ∂′′)

5. (T̂ ,∆, σ̂) |=
L`M{l}

σ̂
P Q : ∂′′,⊥

6. ∂′′ \L`M{l}
σ̂

Lδ′M{l}∩ v ⊥

7. ∀λ ∈ L`M{l}σ̂ : Lδ′M{l}∪ v ∆(l)

Point (5) gives us that (T̂ ,∆, σ̂) |={l}P Q : ∂′′,⊥ since l′ = L`Ml ∈ L`M{l}σ̂ . We further have
that eδ′ = Leδ′M{l}∩ and thus ∂′ \{l′} eδ′ v ⊥. From point (7) above we get that eδ′ v ∆(l′).
Combining all of the above we now have (T̂ ,∆, σ̂) |=N l ::eδ P ‖ l′ ::eδ′ Q : ⊥ which
concludes the case.

Note that this result also holds with % in place of⊥, but it is more instructive to consider
executions where no security policy is violated; the result clearly does not hold if −→on

is used (as RM[· · ·] then equals true and any accepted process may violate not only the
analysis but also the security policy).

Theorem 3.2 (Adequacy). If L .N −→off N′ and (T̂ ,∆, σ̂) |=N N : ⊥, then L .N −→on N′.

Proof: The proof is by induction on L . N −→off N′, by inspecting Figures 7, 6, 5, and 8.
It is straightforward and we only consider two cases.
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We first consider the case of input. Suppose that

L . l ::eδ in(T )@`.P ‖ l′ :: 〈et〉 −→off l ::eδ Pσ

because L`Ml = l′ and match(LT Ml, et) = σ. To show that

L . l ::eδ in(T )@`.P ‖ l′ :: 〈et〉 −→on l ::eδ Pσ

it suffices to additionally show that eδ(l′) 3 i. It is immediate from the assumption of
Theorem 3.2 that

(T̂ ,∆, σ̂) |={l}P in(T )@`.P : ∂,⊥
with ∂ \{l} eδ v ⊥

Since Figure 5 ensures that [{l} → {i} ] v ∂ this gives eδ(l′) 3 i.
Next we consider the case of accept. Suppose that

L . l ::eδ accept(δ′).P −→off l ::eδ P ‖ l ::eδ′ Q

because Lδ′Ml = eδ′ and φacc. To show that

L . l ::eδ accept(δ′).P −→on l ::eδ P ‖ l ::eδ′ Q

it suffices to additionally show that eδ(l) 3 a. It is immediate from the assumption of
Theorem 3.2 that

(T̂ ,∆, σ̂) |={l}P l ::eδ accept(δ′).P : ∂,⊥
with ∂ \{l} eδ v ⊥

Since Figure 5 ensures that [{l} → {a} ] v ∂ this gives eδ(l′) 3 a.
This finishes the proof.

In fact, it can be shown that, if L.N −→off N′ and (T̂ ,∆, σ̂) |=N N : %, then all offending
actions performed are listed in %.

Finally, the existence of best analysis estimates is formalized as a Moore-family (or
model intersection) property. As a corollary we get that for all nets N there exist T̂ , ∆, σ̂
and % such that (T̂ ,∆, σ̂) |=N N : %. Thus the analysis in itself does not impose any of the
limitations or policies of the reference monitor. But surely only some nets can be analysed
with % = ⊥ and in that case the results of above theorems apply.

Theorem 3.3 (Moore Family). For all nets N, the set Y of analysis estimates
{(T̂ ,∆, σ̂, %) | (T̂ ,∆, σ̂) |=N N : %} is a Moore Family; i.e., ∀Y ⊆ Y : uY ∈ Y where
u is the greatest lower bound operation.
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Proof: We prove the result by mutual structural induction using also the following results.

• For all processes P, the set of analysis estimates {(T̂ ,∆, σ̂,Λ, ∂, %) | (T̂ ,∆, σ̂) |=Λ
P P :

∂, %} is a Moore Family.

• For all actions α, the set of analysis estimates {(T̂ ,∆, σ̂,Λ, ∂, %) | (T̂ ,∆, σ̂) |=Λ
A α :

∂, %} is a Moore Family.

• For all templates T and indices i, the set of analysis estimates {(σ̂,Λ, Û, Ŵ) | σ̂ |=Λ
i

T : Û . Ŵ} is a Moore Family.

The proof of the main result is standard. Intuitively it uses that all “constraints” on the
analysis information occur in “positive” positions only. It is by mutual structural induction
because actions may occur in processes as well as processes in actions. We only illustrate
the case of input.

Consider a family J of indices ranged over by j. Suppose that

∀ j ∈ J : (T̂ j,∆ j, σ̂ j) |=
Λ j

A in(T )@` : ∂ j, % j

By Figure 5 we have

∀ j ∈ J : σ̂ j |=
L`M

Λ j
σ̂ j

1 T : T̂ j[L`M
Λ j

σ̂ j
] � Ŵ j

∀ j ∈ J : [L`MΛ j

σ̂ j
→ {i} ] v ∂ j

Next write
(T̂?,∆?, σ̂?,Λ?, ∂?, %?) = u j(T̂ j,∆ j, σ̂ j,Λ j, ∂ j, % j)

From the induction hypothesis we have

σ̂? |=
L`MΛ?

σ̂?

1 T : T̂?[L`MΛ?

σ̂?
] � Ŵ?

since u jL`M
Λ j

σ̂ j
= L`MΛ?

σ̂?
and

u jT̂ j[L`M
Λ j

σ̂ j
] = u j{z | ∃x ∈ L`MΛ j

σ̂ j
: z ∈ T̂ j(x)}

= {z | ∃x ∈ L`MΛ?

σ̂?
: z ∈ T̂?(x)}

= T̂?[L`MΛ?

σ̂?
]

Next, ∀ j ∈ J : [L`MΛ?

σ̂?
→ {i} ] v ∂ j and hence [L`MΛ?

σ̂?
→ {i} ] v ∂?. This suffices for showing

(T̂?,∆?, σ̂?) |=Λ?

A in(T )@` : ∂?, %?

as desired.
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The Moore family result ensures that a best, or least, analysis result can be found but it
does not give a constructive algorithm for finding the analysis result. To do so the idea is to
develop an algorithm converting the clauses into constraints and in particular Alternation-
free Least Fixed Point Logic [29] has proved very useful for expressing these constraints
as it is the basis for obtaining efficient implementations using for example the Succinct
Solver [29, 27].

3.9. Final Remarks
The analysis presented in this paper is an extension of a reworked version of the anal-

ysis specified in [17], the main extension being an added ∆ component to give a record of
the policies imposed by the local eval’s. We have also reworked and rationalized the nota-
tion and introduced a number of auxiliary functions (most notably, 〈 〉 and [ ]) to increase
readability of the analysis. Finally, we have added the Λ component (essentially allowing
remotely executed processes to be analyzed only once rather than at each receiving locality
as in [17]). This reduces the computational cost of computing the analysis result as it will
only be necessary to analyse each fragment of a term once.

As we have already mentioned, the static analysis is a sound but not complete tech-
nique, as expectable. Indeed, there are examples of nets that can safely run with the ref-
erence monitor on, but that are not acceptable. This may happen, for example, when the
policy associated to an eval-action is more permissive than the local policy of the receiving
node. As a simple example, consider the net

l ::eδ eval(P : δ)@l′ ‖ l′ ::eδ′ nil

where eδ = [l′ 7→ {e}], δ = [l′ 7→ {e, r}] and eδ′ = [l′ 7→ {r}]. This net is not policy
conformant – indeed it is analysable with [l′ 7→ {e}] as the potential policy violations. To
see this, note that the analysis component ∆ must satisfy {e, r} ⊆ ∆(l′)(l′) (see the third
premise of the last rule in Figure 5) and therefore the policy violations % of the overall net
will have to satisfy ∆(l′) \l′ eδ′ v % (see the third premise of the first rule of Figure 7).
Since eδ′ maps l′ to {r} it cannot be the case that % = ∅. Nevertheless, in one reduction step
the net reduces to

l ::eδ nil ‖ l′ ::δ P ‖ l′ ::eδ′ nil

that can go on reducing also with the reference monitor on, assuming that P only performs
read- and eval-actions over l′ (by the way, the net so obtained will be policy conformant).

4. A Static Type System

Typing approaches to K usually exploit dynamic checks; we now present a totally
static type system whose design has been inspired by the Flow Logic developed in the

24



previous section. We conclude this section by presenting the theoretical properties of the
type system and the analysis of our running example.

4.1. Types and Auxiliary Functions
We can get rid of dynamic checks by following the philosophy underlying the Flow

Logic approach. Indeed, it suffices to associate to every locality an upper bound of the
tuples it can contain (like function T̂ in Section 3) and a lower bound on its policy; more-
over, we should also provide an upper bound to the set of localities that each variable can
assume (like function σ̂). Thus, types for localities are pairs 〈T ; ∂〉, where T ⊂fin Loc∗.
Intuitively, if 〈T ; ∂〉 is the type of l, T is an upper bound on the tuples that l can contain
and ∂ is a lower bound on l’s policy. Types for input variables are, instead, just sets of
localities; we can assign to u the type T ⊂fin Loc, meaning that T are the localities that u
can assume. A typing environment Γ assigns types to localities and variables.

Given a typing environment Γ, we now define some functions that will be used in
the type system. First, we need to specify the values an identifier can assume. Thus,
valΓ(l) = {l} and valΓ(u) = Γ(u); the definition of function valΓ is extended to tuples
component-wise. In the type system, we shall frequently look at the possible tuples a
node can contain, at its policy or at the privileges it owns over the other nodes of the net.
These pieces of information are easily accessible when the node is specified by a locality
constant, thanks to the typing environment given. However, it can also happen in the typing
phase to have nodes specified by variables (take, e.g., process in(!u)@l.eval(Q : δ)@u.P,
where Q must be typed at u). In this case, the information must be extracted from Γ as
follows.

The tuples that can appear at a node identified by a variable are obtained by consid-
ering the tuples that can appear at every node whose locality is associated to the variable.
However, from case to case, we need to know the tuples shared by all such nodes or all
the possible tuples; accordingly, we combine the tuples contained at the different nodes by
intersection or union. The following functions perform these tasks:

Γ〈`〉 =
⋂

l ∈ valΓ(`) π1(Γ(l)) Γ[`] =
⋃

l ∈ valΓ(`) π1(Γ(l))

To know the rights a policy definitely grants over a node identified by a variable, we
consider the intersection of all the privileges over the localities that the variable can as-
sume:

PrivΓ(∂, `) =
⋂

l ∈ valΓ(`) ∂(l)

Similarly, the policy of a node identified by a variable is the intersection of all the policies
of every locality that the variable can assume:

PolΓ(`) =
l

l ∈ valΓ(`) π2(Γ(l))
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where u denotes the greatest lower bound.
In the typing rules, we shall need to evaluate localities and policies to replace occur-

rences of self. In both cases, we extend the evaluation function for localities and policies
introduced when presenting the operational semantics to allow the subscript to also be a
variable (in the case in which the node where the execution takes place is identified by a
variable). This leads to notations L`′M` and LδMΓ

` : for the former, we have that L`′M` is `′, if
`′ , self, and is ` otherwise; for the latter, we have that LδMΓ

` (l) is δ(l), if l < valΓ(`), and
is δ(l) ∩ δ(self), otherwise.

Finally, given a typing environment Γ and a template T used by a process for matching
tuples located at locality `, we need to check that Γ provides an upper bound on the lo-
calities that variables bound in T can assume. This is needed to ensure that function valΓ

(and, consequently, functions PrivΓ, PolΓ, Γ〈·〉 and Γ[·]) correctly overapproximates the
values (the privileges, the policy and the tuples, respectively) of every variable. Thus, we
define the check of Γ with T at `, written check`(Γ,T ), as the judgment:

∀i.πi(T ) = !u⇒
πi({et ∈ Γ[`] : |et| = |T | ∧ ∀ j ∈ {1..|T |}. π j(T ) = `′ ⇒ π j(et) ∈ valΓ(`′)})
⊆ Γ(u)

In particular, every variable bound in T will be associated to all the possible localities
that, at runtime, can be used to instantiate such a variable. For every i such that the i-th
field of T is a variable, these localities are obtained by taking all the possible tuples of the
same length as T that can match against it and can appear at `, and considering their i-th
projection.

4.2. Typing Rules
We are now ready to present the typing system. The typing rules for processes are in

Figure 9 and define judgments of the form Γ; ∂ `` P. Intuitively, such a judgment is needed
to type under Γ a process P running at ` (where, by construction of the typing system, `
cannot be self) associated with policy ∂. The key rules are for action prefixes. In all cases,
it is verified that the policy associated to the process provides a proper access right; to this
aim, if the action can take place remotely, a preliminary evaluation of the locality target of
the action is needed. Moreover, it is also checked that the continuation is well-typed. There
are then some other specific checks that depend on the action. For action out, it is checked
that the tuples that the action can produce can appear at every possible target locality; thus,
it is used here the intersection of all the possible tuple spaces, as calculated by Γ〈〉. For
action eval, it is checked that the specified policy conforms to the policy associated to the
target and, in this case, that the spawned process can run under the specified ‘sandbox’
policy at the target locality. For actions in and read, it is checked that Γ provides the right

26



L`′M` = `′′ o ∈ PrivΓ(∂, `′′) valΓ(LtM`) ⊆ Γ〈`′′〉 Γ; ∂ `` P
Γ; ∂ `` out(t)@`′.P

L`′M` = `′′ e ∈ PrivΓ(∂, `′′) LδMΓ
` = ∂′ v PolΓ(`′′) Γ; ∂′ ``′′ Q Γ; ∂ `` P

Γ; ∂ `` eval(Q : δ)@`′.P

L`′M` = `′′ i ∈ PrivΓ(∂, `′′) check`′′(Γ, LT M`) Γ; ∂ `` P
Γ; ∂ `` in(T )@`′.P

L`′M` = `′′ r ∈ PrivΓ(∂, `′′) check`′′(Γ, LT M`) Γ; ∂ `` P
Γ; ∂ `` read(T )@`′.P

a ∈ PrivΓ(∂, `) LδMΓ
` v ∂ Γ; ∂ `` P

Γ; ∂ `` accept(δ).P
Γ; ∂ `` P1 Γ; ∂ `` P2

Γ; ∂ `` P1 | P2

Γ; ∂ `` P
Γ; ∂ `` ∗P

Figure 9: Typing Processes

Γ ` N1 Γ ` N2

Γ ` N1 ‖ N2

et ∈ π1(Γ(l))
Γ ` l :: 〈et〉

π2(Γ(l)) v eδ Γ; eδ `l P
Γ ` l ::eδ P

Figure 10: Typing Nets

information on the variables bound in T . Finally, for action accept, it is checked that the
specified policy conforms to the policy of the hosting node.

The typing rules for nets are in Figure 10; they define judgments of the form Γ ` N that
should be read as: “net N respects the constraints specified on its nodes by Γ”. The rules
are simple: to type a compound net we should type the components individually; to type a
located tuple, we must ensure that the tuple is allowed by Γ; to type a located process, we
must ensure that the policy eδ conforms to the policy specified by Γ and that, when located
at l, the process respects eδ.

We can now complete the semantics in Figure 3 by using as φ in the rule for the action
accept the judgment Γ; ∂′ `l Q, where Γ is the typing environment used to type the net
containing l ::eδ accept(δ′).P and ∂′ = Lδ′Ml.

4.3. Soundness Results
A net N is typeable if there exists a Γ such that Γ ` N. We now prove that typeable nets

are exactly the ones that can be accepted by the Flow Logic without errors (in Section 3.6
such nets were called policy conformant); as a corollary of Theorems 3.1 and 3.2, this
result trivially entails that also the type system enjoys subject reduction and adequacy.
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Theorem 4.1 (Accordance of the analyses). N is typeable if and only if it is policy con-
formant.

To prove the theorem, we start by listing some preliminary results on some auxiliary
functions of the Flow Logic and of the type system, whose proof is easily derivable from
the corresponding definitions.

Proposition 4.2. Let Λ = valΓ(`), T̂ (l) = π1(Γ(l)) for every l and σ̂(u) = Γ(u) for every
u; then,

1. L`′MΛ
σ̂ = valΓ(L`′M`);

2. T̂ 〈L`′MΛ
σ̂〉 = Γ〈L`′M`〉 and T̂ [L`′MΛ

σ̂] = Γ[L`′M`];
3. LδMΛ = LδMΓ

` .

We now show that the analysis of matching in Figure 8 is correct; this will be needed
here to prove that function check`(Γ,T ) holds true whenever a read/input with target ` and
template T has passed the static analysis. Also in this case, the proof easily follows from
the definitions.

Proposition 4.3.

1. If match(LT Ml, et) = σ, l ∈ Λ, et ∈ Û and σ̂ |=Λ
1 T : Û . Ŵ, then et ∈ Ŵ and σ v σ̂.

2. Let l ∈ Λ and assume that for every et ∈ Û∩Ŵ it holds that match(LT Ml, et) = σ v σ̂;
then, σ̂ |=Λ

1 T : Û . Ŵ.

We can now prove that policy conformant processes and nets are typeable; this suffices
to prove the “if” part of Theorem 4.1. To this aim, given a triple (T̂ ,∆, σ̂) and a net N such
that (T̂ ,∆, σ̂) |=N N : ⊥, we define the typing environment Γ as follows:

Γ(u) = σ̂(u) for every u ∈ LocVar
Γ(l) = 〈T̂ (l); ∂l〉 for every l ∈ Loc, where ∂l =

d
l::eδP in N eδ

where “l ::eδ P in N” means that N ≡ l ::eδ P ‖ N′, for some N′.

Lemma 4.4. If (T̂ ,∆, σ̂) |=Λ
P P : ∂1,⊥ then Γ; ∂2 `` P, whenever Λ = valΓ(`) and ∂1 v ∂2.

Proof: The proof is by induction on the structure of P. The base step is trivial; for the
inductive step, we only give the most complex cases.

Assume that P = eval(Q : δ)@`′.P′; by the premises of the rules for action prefixing
and action eval, we have that
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1. (T̂ ,∆, σ̂) |=Λ
P P′ :∂1,⊥

2. (T̂ ,∆, σ̂) |=L`′MΛ
σ̂

P Q :∂,⊥
3. ∀λ ∈ L`′MΛ

σ̂ : LδMΛ v ∆(λ)
4. ∂\L`′MΛ

σ̂
LδMΛ v ⊥

5. [L`′MΛ
σ̂ → {e} ] v ∂1.

Point (1) and induction imply that Γ; ∂2 `` P′. Point (5), the hypothesis ∂1 v ∂2 and Propo-
sition 4.2(1) imply that e ∈ PrivΓ(∂2, `

′′), where L`′M` = `′′. Point (4) is equivalent to
∂ v LδMΛ; by Proposition 4.2(3) and induction, this implies that Γ; LδMΓ

` ``′′ Q. By Proposi-
tion 4.2(3) and point (3), we have that LδMΓ

` = LδMΛ v
∏

λ∈L`′MΛ
σ̂

∆(λ) v
∏

λ∈L`′MΛ
σ̂
π2(Γ(λ)) =

PolΓ(`′′); the latter inequality holds because, by the hypothesis (T̂ ,∆, σ̂) |=N N : ⊥ (that is
assumed to build Γ), ∆(k) v eδ for every k ::eδ P in N. By construction of Γ, this implies
that ∆(k) v π2(Γ(k)), since π2(Γ(k)) =

d
k ::eδP in N eδ. We have all the premises of the

typing rule for action eval; hence, Γ; ∂2 `` P, as desired.
Assume that P = in(T )@`′.P′; by the premises of the rules for action prefixing and

action in, we have that

1. (T̂ ,∆, σ̂) |=Λ
P P′ :∂1,⊥

2. σ̂ |=L`′MΛ
σ̂

1 T : T̂ [L`′MΛ
σ̂] . Ŵ

3. [L`′MΛ
σ̂ → {i} ] v ∂1.

Point (1) and induction imply that Γ; ∂2 `` P′. Point (3), the hypothesis ∂1 v ∂2 and Propo-
sition 4.2(1) imply that i ∈ PrivΓ(∂2, `

′′), where L`′M` = `′′. Point (2), Propositions 4.2(2)
and 4.3(1) imply that check`′′(Γ, LT M`). Indeed, whenever Û = T̂ [L`′MΛ

σ̂] = Γ[L`′M`], we
have that the set K = {et ∈ Û : match(LT M`, et) is defined} is such that πi(K) ⊆ Γ(u),
for every i such that πi(T ) =! u; this suffices to conclude check`′′(Γ, LT M`). Thus, we can
conclude Γ; ∂2 `` P, as desired.

Proposition 4.5 (“If” part of Theorem 4.1). If (T̂ ,∆, σ̂) |=N N : ⊥ then Γ ` N.

Proof: The proof is by induction on the length of the inference for (T̂ ,∆, σ̂) |=N N : ⊥.
We have two possible base cases:

• N = l :: 〈et〉: in this case, we have that {et} ⊆ T̂ (l). By Proposition 4.2(2), this
implies that et ∈ π1(Γ(l)) and, hence, Γ ` N.

• N = l ::eδ P: in this case, we have that

1. (T̂ ,∆, σ̂) |={l}P P : ∂, %
2. ∂ \{l} eδ v ⊥
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3. ∆(l) \{l} eδ v ⊥
4. % v ⊥.

Point (4) implies that % = ⊥ and, similarly, points (2,3) imply that ∂ v eδ and
∆(l) v eδ. By Lemma 4.4, we have that Γ; eδ `l P. Moreover, by construction of Γ,
it holds that π2(Γ(l)) v eδ; this suffices to conclude that Γ ` l ::eδ P, as desired.

The inductive step is trivial.

Conversely, we now prove that typeable processes and nets are policy conformant; this
suffices to prove the “only if” part of Theorem 4.1. To this aim, given a typing environment
Γ and a net N such that Γ ` N, we define the triple (T̂ ,∆, σ̂) as follows:

σ̂(u) = Γ(u) for every u ∈ LocVar
T̂ (l) = π1(Γ(l)) for every l ∈ Loc

To define ∆, we have to take, for every locality, the least upper bound of all the policies
specified for sandboxes at that locality. To this aim, we first need to remove every occur-
rence of self as target of eval actions in N as follows (we only give the cases where the
function is not the identity):

LN1 ‖N2M = LN1M ‖ LN2M Ll ::eδ PM = l ::eδ LPMl

LP1 | P2M` = LP1M` | LP2M` L∗PM` = ∗ LPM`
Lα.PM` = LαM`.LPM` Leval(Q : δ)@`′M` = eval(LQML`′M` : δ)@L`′M`

Then, for every l ∈ Loc, we have to calculate the least upper bound of the policies argument
of eval actions whose target is l or a variable that can assume value l:

∆(l) =
⊔

eval(P:δ)@` in LNM : l ∈ valΓ(`) LδMΓ
l

Lemma 4.6. If Γ; ∂ `` P and Λ = valΓ(`), then

1. (T̂ ,∆, σ̂) |=Λ
P P : ∂,⊥

2. for every eval(Q : δ)@`′ in P, it holds that LδMΓ
l v π2(Γ(l)), for every l ∈ valΓ(`′) (for

the sake of compactness, we shall write the previous claim as PredEval(P,Γ)).

Proof: By induction on the inference for Γ; ∂ `` P. The base step is trivial; for the
inductive step, we only give the most complex cases.

Assume that P = eval(Q : δ)@`′.P′; by the premises of the rule for action eval, we
have that
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1. L`′M` = `′′

2. e ∈ PrivΓ(∂, `′′)
3. LδMΓ

` = ∂′ v PolΓ(`′′)
4. Γ; ∂′ ``′′ Q
5. Γ; ∂ `` P′

Points (4,5) and induction imply that (T̂ ,∆, σ̂) |=L`′MΛ
σ̂

P Q : ∂′,⊥ and (T̂ ,∆, σ̂) |=Λ
P P′ :

∂,⊥. Points (1,2) and Proposition 4.2(1) imply that [L`′MΛ
σ̂ → {e} ] v ∂. Point (3) and

Proposition 4.2(3) imply that LδMΛ = ∂′ and, hence, ∂′\L`MΛ
σ̂
LδMΛ v ⊥. To obtain (T̂ ,∆, σ̂) |=Λ

P

P : ∂,⊥ it suffices to prove that, for every λ ∈ L`′MΛ
σ̂, it holds that LδMΛ v ∆(λ). By

construction of ∆, we have considered LδMΓ
λ when defining ∆(λ), for every λ ∈ L`′MΛ

σ̂; since
∆(λ) has been defined as a least upper bound, because of Proposition 4.2(3) we have that
LδMΛ v ∆(λ).

We are left with proving PredEval(P,Γ). By point (3), we have that LδMΓ
` v PolΓ(`′′) =d

λ ∈ valΓ(`′′) π2(Γ(λ)) v π2(Γ(λ)), where the last inequality holds for every λ ∈ valΓ(`′′)
by definition of greatest lower bound. This fact, together with PredEval(Q,Γ) and
PredEval(P′,Γ) (that hold by points (4,5) and induction), suffices to conclude.

Assume that P = in(T )@`′.P′; by the premises of the rule for action in, we have that

1. L`′M` = `′′

2. i ∈ PrivΓ(∂, `′′)
3. check`′′(Γ, LT M`)
4. Γ; ∂ `` P′

Point (4) and induction imply that (T̂ ,∆, σ̂) |=Λ
P P′ : ∂,⊥ and PredEval(P′,Γ); hence,

PredEval(P,Γ) holds as well. Points (1,2) and Proposition 4.2(1) imply that [L`′MΛ
σ̂ →

{i} ] v ∂. Point (3), Propositions 4.2(2) and 4.3(2) imply that σ̂ |=L`′MΛ
σ̂

1 T : T̂ [L`′MΛ
σ̂] . Ŵ, for

some Ŵ. Indeed, whenever Û = T̂ [L`′MΛ
σ̂] = Γ[L`′M`], we have that the set K = {et ∈ Û :

match(LT M`, et) is defined} is such that σ v σ̂, for every σ such that σ = match(LT M`, et)

for some et ∈ K; this suffices to conclude σ̂ |=L`′MΛ
σ̂

1 T : T̂ [L`′MΛ
σ̂] . K.

Proposition 4.7 (“Only if” part of Theorem 4.1). If Γ ` N then (T̂ ,∆, σ̂) |=N N : ⊥.

Proof: The proof is by induction on the length of the inference for Γ ` N. We have two
possible base cases:

• N = l :: 〈et〉: in this case, we have that et ∈ π1(Γ(l)). By Proposition 4.2(2), this
implies that {et} ⊆ T̂ (l) and, hence, (T̂ ,∆, σ̂) |=N N : ⊥.

• N = l ::eδ P: in this case, we have that
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1. Γ; eδ `l P
2. π2(Γ(l)) v eδ.

Point (1) and Lemma 4.6(1) imply that (T̂ ,∆, σ̂) |={l}P P : eδ,⊥ and, clearly, eδ\{l}eδ v
⊥. Point (2) and Lemma 4.6(2) imply that ∆(l) \{l} eδ v ⊥. Indeed,

∆(l) =
⊔

l′::eδR in N
⊔

eval(Q:δ)@` in LRMl′ : l ∈ valΓ(`)LδMΓ
l

v
⊔

l′::eδR in N
⊔

eval(Q:δ)@` in LRMl′ : l ∈ valΓ(`) π2(Γ(l))
v eδ

The inductive step is trivial.

4.4. Analysis of the Running Example
Thanks to the previous theorem, we know that the running example can be typed; by

looking at the proof of Theorem 4.1 (that shows how to define a proper Γ out of T̂ , σ̂
and the typed net N), we have that the following typing environment Γ makes the running
example typeable:

Γ(lK) = 〈T̂ (lK); eδK〉 Γ(x) = σ̂(x)

for every K ∈ {U, B,C} and x ∈ {title, data}.

4.5. Final Remarks
Notice that π2(Γ(l)) and ∆(l) are both used to statically analyze migrations at l of a

process labeled with a policy δ, but are defined and used in different ways. The former is a
lower bound on the policy of the receiving node and, hence, δ (properly evaluated) must be
lower than π2(Γ(l)). The latter is an upper bound to the policy specified for the migrating
process and, hence, ∆(l) must be greater than the evaluated policy resulting from replacing
self with the actual locality in δ. For this reason, π2(Γ(l)) is defined as the greatest lower
bound of the policies specified for nodes with address l; instead, ∆(l) is defined as the
lowest upper bound of the policies specified for migrations at l. In this way, if we have
two migrations at l (say, with policies δ1 and δ2) and the nodes l ::eδ1 · · · and l ::eδ2 · · ·,
the type system checks that δi v eδ1 u eδ2 = π2(Γ(l)), whereas the Flow Logic checks that
∆(l) = δ1 t δ2 v eδ j. These two checks are equivalent, in that they are both equivalent to
δi v eδ j.
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5. Dynamic Creation of Localities

Having presented the Flow Logic and the type system for our extension of K,
we are now ready to consider the newloc action, which allows processes to dynamically
extend systems structure by creating new localities. The main challenge when dealing
with this construct is how the policies have to be modified to take into account the new
locality. We investigate here an approach where newloc takes three arguments, namely
a variable u that is bound to the new locality name, a set C of capabilities that describes
the capabilities that the creating locality should get with respect to the new locality, and a
policy δ′ that describes the policy associated to the newly created locality.

In the rest of this section, we first present the semantics of the newloc action and
then show how to handle it with the Flow Logic and with the type system, respectively.
We conclude with a short discussion on how to handle more sophisticated versions of the
newloc action.

5.1. Semantics
To account for the creation of new localities, and to ensure their uniqueness, we change

the form of the semantic reduction rules from L . N −→ N′ to L . N −→ L′ . N′.
We add the following reduction rule for newloc:

l′ < L l′ = u Lδ′Ml′ = eδ′ RM[eδ(l) 3 n]
L . l ::eδ newloc(u : C, δ′).P −→ L ∪ {l′} . l ::eδ[l′ 7→C] P[u 7→ l′] ‖ l′ ::eδ′ nil

The newloc(u : C, δ′) action creates a new locality with a fresh name in the system. The
name is bound to the variable u declared in the newloc action, thereby allowing the creating
process to access and communicate with the newly created locality as well as sending it to
other processes in the system.

The decorated localities l′ and u in the premise of the rule above are used to denote
canonical representatives. We do assume that each locality and locality variable, say `,
belongs to a family containing infinitely many localities with canonical representative `.
Hence, condition l′ = u ensures that variables can be instantiated at runtime only by local-
ities ‘of the same kind’. This condition is essential for the Flow Logic to compute sound
estimates of all possible future behaviours of the system without knowing in advance the
exact localities created during execution. The condition does not impose any severe re-
quirement on the semantics and indeed later we argue that it can be safely ignored (and,
hence, removed) when introducing the type system.
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5.2. Reconsidering the Running Example
We reconsider the example presented in Subsection 2.2 and show how to make use

of the newloc action. We extend the example with a new process PBL running at lB that
offers a special service to loyal customers, by which they can get books out of the library
directly. Let us assume that lU is a loyal customer, running process PUL, and add to the
system the sub-net

lB ::eδBL PBL ‖ lU ::eδUL PUL

The processes are:

PUL = in(!clubloc)@self.out(clubloc, self, J.R.R. Tolkien)@lBS. < await response >
PBL = newloc(club : {r, o}, [ ]).out(club)@lU .out(lU)@club.

in(club, !member, !request)@self.read(member)@club. < handle request >

The access policies of nodes are:

eδUL = [lU 7→ {i}, lB 7→ {o}]
eδBL = [lB 7→ {i, n}, lU 7→ {o}]

The process PBL creates a new locality stored in variable club that it shares with loyal
customers, and uses it to check whether a request comes from any such customer (again,
in this simple example we have omitted other, possibly disloyal, costumers). The only
requirement is that lLC and lBS have the capability to output tuples at each others locality.
Of course, for executing activity < handle request >, lBL might need more capabilities
(according to the kind of the activity), but that is beyond the scope of this example.

5.3. Flow Logic
We now show how to extend the Flow Logic from Section 3 to handle newloc. This

extension mostly amounts to exploiting canonical localities, that is replacing Loc with
Loc. As a consequence of this, the analysis domains must be updated to reflect the use of
canonical localities:

• T̂ ∈ Loc→ P(Loc
∗

)

• σ̂ ∈ LocVar→ P(Loc)

• ∂ ∈ AbstractPolicy = Loc→ P(Capabilities)

• ∆ ∈ Loc→ AbstractPolicy

• % ∈ Loc→ Loc→ P(Capabilities)
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• Λ ∈ P(Loc)

The rule for newloc to be added to the Flow Logic specification differs in format from
the rules used previously in that we, for the sake of simplicity, decide to analyze the con-
tinuation process together with the newloc itself.

u ∈ σ̂(u) [Λ→ {n}] v ∂ ∆(u) \{u} LδM{u} v %
(T̂ ,∆, σ̂) |=Λ

P P : ∂′, % ∂′[u→ ∂′(u) \C] v ∂

(T̂ ,∆, σ̂) |=Λ
P newloc(u : C, δ).P : ∂, %

In σ̂ we record that the locality variable u is associated with the canonical name u and
then we use u in the environment entries. The premise [Λ → {n}] v ∂ ensures that
all localities where this action might be executed record the n capability. The premise
∆(u) \{u} LδM{u} v % ensures that we correctly record potential violations that might arise
from processes remotely executed on the newly created locality. The fact that we analyze
the continuation process in the rule that deals with the newloc action itself makes it easy
to modify the analysis result arising from the continuation process: the actions of C are
permitted for any process running at the creating locality, so they should be removed as
potential errors for processes running at that locality – this is expressed by the premise
∂′[u→ ∂′(u) \C] v ∂.

To ensure soundness of the analysis result we require evaluated policies to be canonical
consistent as defined below.

Definition 5.1 (Canonical Consistence). An evaluated policy eδ is canonical consistent
iff l = l′ ⇒ eδ(l) = eδ(l′). A net is canonical consistent if all evaluated policies occurring
in it are canonical consistent.

When a canonical consistent net evolves, canonical consistence is preserved if

• in the original net, no newloc(u : C, δ) has a value of u that equals the canonical
name l of any locality l in the net or some u′ for any other newloc(u′ : C′, δ′)
occurring in the net, and

• in the original net, no distinct localities have the same canonical name, i.e. l , l′ ⇒
l = l′,

In the analysis of processes, this allows us to avoid computing the most restrictive or most
permissive policy for analyzing processes, as the evaluated policies coincide for all newly
created localities.

The results proved for the analysis presented in Section 3.8 hold also in the enhanced
framework; the newloc has no dramatic impact on the proofs of such results, that are left
to the interested reader.
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5.4. Type System
The type system can be easily adapted to deal with the form of newloc discussed

so far. First of all, like in the Flow Logic approach we have to work with canonical
localities, that are locality sorts and are associated by the type system to the localities and
variables occurring in the analized net. Thus, we assign types to canonical localities and
to variables: types for canonical localities are pairs 〈T ; ∂〉, where T ⊂fin Loc

∗

and ∂ ∈
AbstractPolicy = Loc → P(Capabilities); types for input variables are sets of canonical
localities T ⊂fin Loc. Of course, we now have that valΓ(l) = {l} and we still have that
valΓ(u) = Γ(u); consequently,

Γ〈`〉 =
⋂

l ∈ valΓ(`) π1(Γ(l)) PrivΓ(∂, `) =
⋂

l ∈ valΓ(`) ∂(l)

Γ[`] =
⋃

l ∈ valΓ(`) π1(Γ(l)) PolΓ(`) =
d

l ∈ valΓ(`) π2(Γ(l))

The typing rule for the newloc can be defined as follows:

u ∈ Γ(u) n ∈ PrivΓ(∂, `) LδMΓ
u v PolΓ(u) Γ; ∂[u 7→ C] `` P

Γ; ∂ `` newloc(u : C, δ).P

The main result of our paper, the accordance between the two analyses (Theorem 4.1),
holds also in this new setting. To establish this result, it suffices to add one more inductive
case to the proofs of Lemmas 4.4 and 4.6.

It is worth noticing that, while the premise “l′ = u” in the operational rule for the
newloc presented in Section 5.1 is needed for the Flow Logic analysis, it could be removed
when considering the type system. We have kept it to take advantage of the results already
proved for the Flow Logic. If we get rid of it, we could still use the type system as
presented so far, but we would need to explicitly prove the subject reduction theorem.
Such a result would be formulated as follows:

If N1 is typeable and L1 . N1 −→off L2 . N2, then N2 is typeable.

Notice that, if L2 = L1, we can routinely prove that Γ ` N1 implies Γ ` N2. Otherwise, it
must be L2 = L1 ∪ {l′}, for some fresh l′ that has been created by some l as the result of a
newloc(u : C, δ); in this case, we prove that Γ ` N1 implies Γ′ ` N2, where Γ′ extends Γ in
the following way:

• dom(Γ′) = dom(Γ) ∪ {l̄′};

• Γ′( ¯̀) =

 Γ( ¯̀) if ¯̀ , l′

〈Γ〈u〉; PolΓ(u)〉 otherwise

Then, we can freely let u be the canonical locality associated to l′ and this would make the
premise “l′ = u” useless in the semantics for newloc.
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5.5. Final Remarks
The version of newloc described in this section only supports modifications of the

policies at the creating and at the created localities. There are no provisions for granting
any right to the other localities in the net relatively to the newly created one. A possibility
to generalize our approach would take the form of broadcasting capabilities throughout
the system (possibly in a ‘controlled’ way) when a new locality is created.

To add broadcasting to the Flow Logic specification, one would need to add a com-
ponent very similar to the ∆ component in Section 3, which records policies for remotely
executed processes as shown in Figure 5. In the case of eval, it made sense to compute
the most permissive policy of all possible targets of the remote execution; in the case of
newloc, it would be more sensible to compute the most restrictive policy. This may be
achieved by letting the Flow Logic calculate the set of relevant policies and then take the
intersection. The technical details in pursuing this approach are somewhat complex in the
general case, but become tractable when we take advantage of the restriction to canonical
consistent policies.

As expected from what we already observed, the type system can be easily tailored
for accommodating the handling of the ‘broadcasting’ version of the newloc. Indeed, the
typing rules remain the same. We just need to change part of the proof of the subject
reduction theorem of Section 5.4 in the case of a newloc: when passing from Γ to Γ′,
we add the entry for the newly created node (as shown before) and update the existing
information with the capabilities C over the canonical locality associated to the new node.

6. Conclusions and Future and Related Work

We have considered an extension of K, an experimental language designed for
modeling and programming distributed systems with mobile components, and have pre-
sented an operational semantics for it that, by taking advantage of a reference monitor,
permits controlling the kind of operations processes can perform at the different localities.
We have then considered an alternative approach to access control based on Flow Logic
that permits statically checking absence of access violations. Finally, we have reconsid-
ered one of the existing type systems for access control with some dynamic checks and,
by exploiting concepts from the Flow Logic, we have designed a fully static type system.
To the best of our knowledge, this is the first completely static type system for control-
ling accesses in the context of a tuple space-based coordination language. We have also
shown that the two static approaches are sound with respect to the dynamic one based on
a reference monitor and provide the same analysis results.

Future work. We see this work just as an initial step towards understanding the relation-
ships between static and dynamic approaches to access control and towards studying the
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relative merit of type systems and Flow Logic specifications (expanding on [25]). In fu-
ture work, we intend to study the relationships between the global approach of static type
systems (and Flow Logic) and the more local one of type systems with dynamic checks.
Moreover, we find it challenging to understand the relative expressive power of reference
monitors and static analysis approaches also in light of the considerations of [36], where
it is claimed that the two approaches can capture different properties and are somehow
incomparable. It would be interesting to understand what assumptions on the models are
necessary to guarantee relative soundness. Finally, it would also be interesting to make
the security model assumed in this paper more powerful, by following some directions
already taken for K via type systems with dynamic type checks [15, 16]. In particular,
it would be challenging to allow dynamically evolving policies (by means of capability
passing, loss, expiration and/or removal) as in [15], or policies for migrating agents that
depend on the “source” site, as in [16].

Related work. In literature, there are many papers proposing static analysis techniques for
process calculi, mostly based on or inspired by type systems. Due to space limitations,
we mention here only some of the most recent ones for process calculi with distribution
and process mobility. For type systems, we would like to mention [6, 8, 9, 19, 21]. In all
these papers, a type is assigned to the communication medium (either a located channel
[19] or an ambient [6, 8, 9, 21]) for regulating the data exchanges in every computation.
This is similar to our type-based approach. Indeed, also in our case every communication
medium (i.e., tuple space) is assigned a type that describes the kind of data that can be
placed there. The main difference between these approaches and ours is that our types
are in principle less prescriptive, in the sense that different kinds of data can appear in
the same tuple space; on the contrary, channels and ambients usually host just one kind of
data (actually, this condition is sometimes relaxed by exploiting subtyping). Of course, the
greater freedom of our types is compensated by the check performed by function match.

The use of canonical localities somehow resembles the use of abstract names in [22].
Both notions are used to group together names (of localities in our case and of ambients
in theirs) which can be assigned the same type. This turns out to be very useful in calculi
where names can be dynamically created. Also in the type system of [22], sets of abstract
names are used to overapproximate the behaviour of a system and the sort of data that can
appear within an ambient. The approach based on group types adopted in another paper
on the Ambient calculus [7] is similar.

Flow Logics have been developed over the last decade as an approach for combining
insights from Data Flow Analysis, Control Flow Analysis, Abstract Interpretation and
Type and Effect Systems [28]. The approach has been used for analysing a wide variety of
programming languages exhibiting a variety of functional, imperative, or object-oriented
features; we refer to [30] for an overview.

38



Only recently Flow Logic has been extended to deal with calculi of computation with
concurrent, distributed and mobile features. It has been used to analyse security properties
in concurrent calculi, as for example the π-calculus [3] and the LySa calculus [2, 5], viz. a
variant of π-calculus with cryptographic primitives. Also several variants of the Ambient
calculus have been analysed with focus on security properties, see e.g. [26, 24, 13, 4,
31]; in particular, the latter presents various access control policies. We would also like
to mention [23], that studies security problems in the context of wireless networks as
represented by a calculus with broadcast.

Finally, there is a large body of work sharing with ours the aim of relating different
static approaches to program analysis and type systems for the same language. Most
notably, previous work has focused on control-flow analysis and type systems for higher-
order functional languages (see e.g. [33, 18, 32, 34]) or on data-flow analysis and type
systems for imperative languages [20]. To the best of our knowledge, our work is the first
considering a language with concurrency, distribution and process mobility.
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