
Basic Observables for a Calculus for Global Computing

Rocco De Nicola1 Daniele Gorla2 Rosario Pugliese1

1Dipartimento di Sistemi e Informatica, Università di Firenze
2Dipartimento di Informatica, Università di Roma “La Sapienza”

In Proc. of ICALP’05, LNCS 3580, pages 1226–1238. c© Springer.

Abstract. We introduce a foundational language for modelling applications over
global computers whose interconnection structure can be explicitly manipulated.
Together with process distribution, mobility, remote operations and asynchronous
communication through distributed data spaces, the language provides constructs
for explicitly modelling inter-node connections and for dynamically establishing
and removing them. For the proposed language, we define natural notions of ex-
tensional observations and study their closure under operational reductions and/or
language contexts to obtain barbed congruence and may testing equivalence. For
such equivalences, we provide alternative characterizations in terms of a labelled
bisimulation and a trace equivalence that can be used for actual proofs.

1 Introduction

In the last decade, we have witnessed the birth of many calculi and kernel languages
intended to support programming of global systems and to provide formal tools for rea-
soning over them. These formalisms in general provide constructs and mechanisms, at
different abstraction levels, for modelling the execution contexts of the network where
applications roam and run, for coordinating and monitoring the use of resources, for
expressing process communication and mobility, and for specifying and enforcing se-
curity policies. However, much research effort has been devoted to studying the impact
of different communication and mobility paradigms, but little attention has been devoted
to the modelling of the actual network underlying global computers as such. Usually,
the model of the network implicitly originates from other linguistic choices concern-
ing, e.g., the mobility paradigm. All foundational languages proposed in the literature
either model the network as an evolving graph of fully connected nodes [17, 9, 26, 1]
or model it as an evolving forest of trees [7, 14, 24, 8]. In our view, both approaches do
not convincingly model global computers (the Internet is neither a clique nor a forest
of trees) and lack of flexibility (‘sharing of resources’ is difficult to control and requires
complex modelling).

Here, we want to develop the semantic theory of a new model that takes its ori-
gin from two formalisms with opposite objectives, namely the programming language
X-K [2] and the π-calculus [23]. The former one is a full fledged programming
language based on K [9], while the latter one is the generally recognized mini-
mal common denominator of calculi for mobility. The resulting model has been called
K (topological K); it retains the main features of K (distribution, remote

N: N ::= 0
∣∣∣ l :: C

∣∣∣ {l1 ↔ l2}
∣∣∣ (νl)N

∣∣∣ N1‖N2

C: P:
C ::= 〈l〉

∣∣∣ P
∣∣∣ C1|C2 P ::= nil

∣∣∣ a.P
∣∣∣ P1|P2

∣∣∣ X
∣∣∣ rec X.P

A:
a ::= in(!x)@u

∣∣∣ in(u2)@u1

∣∣∣ out(u2)@u1

∣∣∣ eval(P)@u
∣∣∣ new(l)

∣∣∣ conn(u)
∣∣∣ disc(u)

Table 1. K Syntax

operations, process mobility and asynchronous communication through distributed data
spaces), but extends it with new constructs to flexibly model the interconnection struc-
ture underlying a net. K permits explicit creation of inter-node connections and
their destruction. Connections are essential to perform remote operations: these are pos-
sible only if the node where they are initiated and the target one are directly connected.

For the proposed formalism, we introduce two abstract semantics, barbed congru-
ence and may testing, that are obtained as the closure under operational reductions
and/or language contexts of the extensional equivalences induced by what we consider
basic observables for global computers. For deciding the observables to use, we have
been struggling with the following ones:

i. a specific site is up and running (i.e., it provides a datum of any kind)
ii. a specific information is available in (at least) a site,

iii. a specific information is present at a specific site.

Other calculi for global computers make use of (barbed) congruences induced by similar
observables: for example, Ambient uses barbs that are somehow related to i. ; the barbs
in Dπ-calculus instead, are strongly related to iii. . Within our framework, it can be
proved that, by closing observations under any K context, the three observables
all yield the same congruence. This is already an indication of the robustness of the
resulting semantic theories. Moreover, the observables are powerful enough to yield
interesting theories also when considering lower-level features, such as failures [11].

Of course, the step that comes next after defining equivalence as context closure is
determining some alternative characterizations that would permit to better appreciate
their discriminating power and to devise proof techniques that avoid universal quantifi-
cation over contexts (that would render equivalence checking very hard).

In this paper, we concentrate on the barbed and may equivalences induced by the
first basic observable (a site is up and running) and establish their correspondence with
a bisimulation-based and a trace-based equivalence. To this aim, we introduce a labelled
transition system for K (with labels indicating the performed action) and, on top
of it, we define alternative characterizations of barbed congruence and may testing in
terms of (non-standard) labelled bisimilarity and trace equivalence, resp. . The actual
development of the alternative characterizations, although performed along the lines
of similar results for CCS [20, 4] and π-calculus [23] had to face problems raised by
process distribution and mobility, by the explicit use of connections and by asynchrony.

2 The Process Language K

The syntax of K is reported in Table 1. We assume the existence of two countable
and disjoint sets: names, ranged over by l, l′, . . . , u, . . . , x, y, . . ., and process variables,

ranged over by X, Y, Names provide the abstract counterpart of the set of communi-
cable objects and can be used as localities or variables; notationally, we prefer letters
l, l′, . . . when we want to stress the use of a name as a locality, and x, y, . . . when we
want to stress the use of a name as a variable. We will use u for variables and localities.

Nets, ranged over by N,M, . . ., are finite collections of nodes and inter-node con-
nections. A node is a pair l :: C, where locality l is the address of the node and C is the
(parallel) component located at l. Components, ranged over by C,D, . . ., can be either
processes or data, denoted by 〈l〉. Connections are pairs of node addresses {l1 ↔ l2}
stating that the nodes at address l1 and l2 are directly and bidirectionally connected.
In (νl)N, name l is private to N; the intended effect is that, if one considers the term
M ‖ (νl)N, then locality l of N cannot be referred from within M.

Processes, ranged over by P,Q,R, . . ., are the K active computational units
and may be executed concurrently either at the same locality or at different localities.
They are built from the inert process nil and from the basic actions by using prefix-
ing, parallel composition and recursion. Actions permit removing/adding data from/to
node repositories (actions in and out), activating new threads of execution (action eval),
creating new nodes (action new), and establishing and removing connections (actions
conn and disc). Notice that in(l)@l′ differs from in(!x)@l′ in that the former evolves
only if datum 〈l〉 is present at l′, while the latter accepts any datum. Indeed, in(l)@l′ is
a form of name matching operator reminiscent of L’s [16] pattern-matching.

Names occurring in K processes and nets can be bound. More precisely, prefix
in(!x)@u.P binds x in P; prefix new(l).P binds l in P, and, similarly, net restriction
(νl)N binds l in N; finally, rec X.P binds X in P. A name that is not bound is called free.
The sets fn(·) and bn(·) of free and bound names of a term, respectively, are defined
accordingly. The set n(·) of names of a term is the union of its free and bound names.
As usual, we say that two terms are alpha-equivalent if one can be obtained from the
other by renaming bound names. We shall say that a name u is fresh for if u < n(). In
the sequel, we shall work with terms whose bound names are all distinct and different
from the free ones.
K operational semantics relies on a structural congruence and a reduction rela-

tion. The structural congruence, ≡, is formally defined in [10] and identifies nets which
intuitively represent the same net. It is inspired to π-calculus’s structural congruence
(see, e.g., [23]): it states that ‘‖’ and ‘|’ are monoidal operators with 0 and nil as iden-
tity elements, it equates alpha-equivalent nets, it regulates commutativity of restrictions,
and it allows to freely fold/unfold recursive processes. Moreover, the following laws are
crucial in our setting:

(C) (S) (BD)
l :: C1|C2 ≡ l :: C1 ‖ l :: C2 l :: nil ≡ {l↔ l} {l1 ↔ l2} ≡ {l2 ↔ l1}

(RN) (E)
(νl)N ≡ (νl)(N ‖ l :: nil) N ‖ (νl)M ≡ (νl)(N ‖ M) if l < fn(N)

(C) turns the parallel composition of co-located components into a parallel between
nodes; (S) states that nodes are self-connected; (BD) states that connections are
bidirectional; (E) is the standard π-calculus rule for scope extension. Finally, (RN)
states that any restricted name can be used as the address of a node; indeed, we con-
sider restricted names as private network addresses, whose corresponding nodes can be

(R-O)
l1 :: out(l)@l2.P ‖ {l1 ↔ l2} 7−→ l1 :: P ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉

(R-E)
l1 :: eval(P2)@l2.P1 ‖ {l1 ↔ l2} 7−→ l1 :: P1 ‖ {l1 ↔ l2} ‖ l2 :: P2

(R-I)
l1 :: in(!x)@l2.P ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉 7−→ l1 :: P[l/x] ‖ {l1 ↔ l2}

(R-M)
l1 :: in(l)@l2.P ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉 7−→ l1 :: P ‖ {l1 ↔ l2}

(R-N)
l :: new(l′).P 7−→ (νl′)(l :: P ‖ l′ :: nil)

(R-C)
l1 :: conn(l2).P ‖ l2 :: nil 7−→ l1 :: P ‖ {l1 ↔ l2}

(R-D)
l1 :: disc(l2).P ‖ {l1 ↔ l2} 7−→ l1 :: P ‖ l2 :: nil

(R-P)

N1 7−→ N′1

N1 ‖ N2 7−→ N′1 ‖ N2

(R-R)

N 7−→ N′

(νl)N 7−→ (νl)N′

(R-S)

N ≡ M 7−→ M′ ≡ N′

N 7−→ N′

Table 2. K Operational Semantics

activated and deactivated on demand. In the sequel, we shall assume that each restricted
name does correspond to an actual node. This assumption is justified by law (RN).

The reduction relation is given in Table 2. In (R-O) and (R-E), the existence
of a connection between the nodes source and target of the action is necessary to place
the spawned component. Notice that existence of the connection can only be checked at
run-time: an approach like [17] does not fit well in a global computing setting because it
relies on a typing mechanism that would require to statically know the whole net. (R-I)
and (R-M) additionally require the existence of a matching datum in the target
node. (R-M) states that action in(l)@l2 consumes exactly the datum 〈l〉 at l2, while
(R-I) states that action in(! x)@l2 can consume any 〈l〉 at l2; l will then replace the
free occurrences of x in the continuation of the process performing the action. (R-N)
states that execution of action new(l′) adds a restriction over l′ to the net, while creating
a node with address l′. Finally, (R-C) and (R-D) deal with activation/deactivation
of connections. In the first case, we need to ensure that the connected nodes do exist; in
the second case, we need to check existence of the connection to be removed.
K adopts a L-like [16] communication mechanism: communication is

asynchronous and data are anonymous. Indeed, no synchronization takes place between
(sending and receiving) processes, because their interactions are mediated by nodes,
that act as data repositories. For the sake of simplicity, we only consider monadic data,
but the semantic theories we develop could be smoothly extended to deal with tuples of
data and with a full-blown L-like pattern matching mechanism.

3 Observables, Closures and Equivalences

In this section we present both a linear time and a branching time equivalence that yield
sensible semantic theories for K. The approach we follow relies on the definition
of an observation (also called barb) that intuitively formalises the possible interactions

of a process. We use observables to define equivalence relations that identify those nets
that cannot be taken apart by any basic observation along reductions in any execution
context. As usual, |=⇒ denotes the reflexive and transitive closure of 7−→ and l̃ denotes
a possibly empty set of names.

Definition 1 (Barbs and Contexts). Predicate N ↓ l holds true if and only if N ≡
(ν̃l)(N′ ‖ l :: 〈l′〉) for some l̃, N′ and l′ such that l < l̃. Predicate N ⇓ l holds true if and
only if N |=⇒ N′ for some N′ such that N′ ↓ l. A context C[·] is a K net with an
occurrence of a hole [·] to be filled in with any net. Formally,

C[·] ::= [·]
∣∣∣ N ‖ C[·]

∣∣∣ (νl)C[·]

We have chosen the basic observables by taking inspiration from those used for the
asynchronous π-calculus [23]. One may wonder if our choice is “correct” and argue that
there are other alternative notions of basic observables that seem quite natural, as we
have discussed in the Introduction. In the full paper [10], we prove that the congruences
induced by these alternative observables do coincide. This means that our results are
quite independent from the observable chosen and vindicates our choice. Now, we say
that a binary relation < between nets is

- barb preserving, if N<M and N ⇓ l imply M ⇓ l;

- reduction closed, if N<M and N 7−→ N ′ imply M |=⇒ M′ and N′<M′, for some M′;

- context closed, if N < M implies C[N]< C[M], for every context C[·].

Our touchstone equivalences should at the very least relate nets with the same observ-
able behaviour; thus, they must be barb preserving. However, an equivalence defined
only in terms of this property would be too weak: indeed, the set of barbs of a net
may change during computations or when interacting with an external environment.
Moreover, for the sake of compositionality, our touchstone equivalences should also be
congruences. These requirements lead us to the following definitions.

Definition 2 (May testing). ' is the largest symmetric, barb preserving and context
closed relation between nets.

Definition 3 (Barbed congruence). � is the largest symmetric, barb preserving, re-
duction and context closed relation between nets.

We want to remark that the above definition of barbed congruence is the standard one,
see [18, 23]. May testing is, instead, usually defined in terms of observers, experiments
and success of an experiment [13]. In [10], we prove that, if we let '′ denote the equiv-
alence on K nets defined a lá [13], the two definitions do coincide. Moreover, the
inclusions between our touchstone equivalences reflect the inclusions that hold in the
π-calculus, since also in our setting may testing, differently from barbed congruence,
ignores the branching structure of a process. A pair of nets proving that � ⊂ ' can
be obtained from the CCS terms a1.(a2 + a3) and a1.a2 + a1.a3, that are may test-
ing equivalent but not barbed congruent, by implementing the non-deterministic choice
(‘+’) through parallel composition.

The problem with the definitions of barbed congruence and may testing is that con-
text closure makes it hard to prove equivalences due to the universal quantification over
contexts. In the following section, we shall provide two alternative characterisations of
� and ' , as a bisimulation-based and as a trace-based equivalence, respectively.

4 Alternative Characterisations

4.1 A Labelled Transition System

In order to provide more tractable characterisations of our touchstone equivalences, we
introduce a labelled transition system (LTS) to make apparent the action a net is willing

to perform in order to evolve. The labelled transition relation,
α
−→ , is defined as the

least relation over nets induced by the inference rules in Table 3. Labels take the form

α ::= τ
∣∣∣ l1 y l2

∣∣∣ (ν̃l) 〈l〉@ l1 : l2
∣∣∣ l1 : . l2

∣∣∣ l1 : (ν̃l)l / l2
∣∣∣ l1 : l2

∣∣∣ l1 : ¬ l2

We let bn(α) be l̃ if α = (ν̃l) 〈l〉@ l1 : l2 or α = l1 : (ν̃l)l / l2 , and be ∅ otherwise;
fn(α) and n(α) are defined accordingly.

Let us now explain the intuition behind the labels of the LTS and some key rules.

Label α in N
α
−→ N′ can be

τ : this means that N may perform a reduction step to become N ′ (see Proposition 1).
l1 y l2 : this means that in N there is a direct connection between nodes l1 and l2 (see

(LTS-L)).
(ν̃l) 〈l〉@ l1 : l2 : this means that in N there is a datum 〈l〉 located at l1 and a connec-

tion {l1 ↔ l2}; the datum is available for processes located at l2 (see (LTS-D),
(LTS-O) and (LTS-L)). Moreover, according to whether l̃ = {l} or l̃ = ∅, we
also know if N restricts l or not (see (LTS-O)).

l1 : . l2 : this means that in N there is a process located at l1 willing to send a compo-
nent at l2 (see (LTS-O) and (LTS-E)1). For the sending to take place, a direct
connection between such nodes is needed (see (LTS-S)).

l1 : (ν̃l)l / l2 : this means that in N there is a process located at l1 willing to retrieve
a (possibly fresh) datum 〈l〉 at l2 (see (LTS-I), (LTS-M) and (LTS-BI)). For
the actual retrieval, a direct connection between such nodes and a proper datum at
l2 are needed (see (LTS-C)).

l1 : l2 : this means that in N there is a process located at l1 willing to activate a con-
nection with l2 (see (LTS-C)). For the actual activation, the net must contain a
node with address l2, as pointed out by label l2 y l2 (see (LTS-E) and (S)).

l1 : ¬ l2 : this means that in N there is a process located at l1 willing to deactivate
a connection with l2 (see (LTS-D)). For the actual deactivation, the net must
contain the connection {l1 ↔ l2} (see (LTS-R)).

The last four kinds of labels describe ‘intentions’ of a process running in the net. Thus,
(LTS-O) should be read as: “process out(l)@l2.P running at l1 is willing to send a
component at l2; whenever the execution context provides the connection needed, l1

will host process P for execution and will run in a net where the connection {l1 ↔

l2} does exist and the datum 〈l〉 is placed at l2”. (LTS-E), (LTS-I), (LTS-M),
(LTS-C) and (LTS-D) should be interpreted similarly.

1 It should not be surprising that actions out and eval yield the same label. Of course, the two
actions should be taken apart for security reasons because accepting processes for execution
is more dangerous than accepting data. However, in our setting, an external observer has not
enough power to notice any difference: in both cases, it can just observe that a packet is sent.

(LTS-O)
l1 :: out(l)@l2.P

l1: . l2
−−−−−→ l1 :: P ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉

(LTS-E)
l1 :: eval(P2)@l2.P1

l1: . l2
−−−−−→ l1 :: P1 ‖ {l1 ↔ l2} ‖ l2 :: P2

(LTS-I)
l1 :: in(! x)@l2.P

l1: l / l2
−−−−−−→ l1 :: P[l/x] ‖ {l1 ↔ l2}

(LTS-M)
l1 :: in(l)@l2.P

l1: l / l2
−−−−−−→ l1 :: P ‖ {l1 ↔ l2}

(LTS-N)
l :: new(l′).P

τ
−→ (νl′)(l :: P ‖ l′ :: nil)

(LTS-C)
l1 :: conn(l2).P

l1 : l2
−−−−→ l1 :: P ‖ {l1 ↔ l2}

(LTS-D)
l1 :: disc(l2).P

l1 : ¬ l2
−−−−−−→ l1 :: P ‖ l2 :: nil

(LTS-L) {l1 ↔ l2}
l1y l2
−−−−→ 0

(LTS-D) l1 :: 〈l〉
〈l〉 @ l1 : l1
−−−−−−−−−→ 0

(LTS-O)

N1
〈l〉 @ l2 : l2
−−−−−−−−−→ N′1 N2

l1y l2
−−−−→ N′2

N1 ‖ N2
〈l〉 @ l2 : l1
−−−−−−−−−→ N′1 ‖ N′2

(LTS-BI)

N
l1: l / l2
−−−−−−→ N′ l < fn(N)

N
l1:(νl) l / l2
−−−−−−−−→ N′ ‖ l :: nil

(LTS-P)

N1
α
−→ N2 bn(α) ∩ fn(N) = ∅

N1 ‖ N
α
−→ N2 ‖ N

(LTS-S)

N1
l1: . l2
−−−−−→ N′1 N2

l1y l2
−−−−→ N′2

N1 ‖ N2
τ
−→ N′1 ‖ N′2

(LTS-C)

N1
l1: l / l2
−−−−−−→ N′1 N2

〈l〉 @ l2 : l1
−−−−−−−−−→ N′2

N1 ‖ N2
τ
−→ N′1 ‖ N′2

(LTS-E)

N1
l1 : l2
−−−−→ N′1 N2

l2y l2
−−−−→ N′2

N1 ‖ N2
τ
−→ N′1 ‖ N′2

(LTS-R)

N1
l1 : ¬ l2
−−−−−−→ N′1 N2

l1y l2
−−−−→ N′2

N1 ‖ N2
τ
−→ N′1 ‖ N′2

(LTS-R)

N
α
−→ N′ l < n(α)

(νl)N
α
−→ (νl)N′

(LTS-O)

N
〈l〉 @ l2 : l1
−−−−−−−−−→ N′ l < {l1, l2}

(νl)N
(νl) 〈l〉 @ l2 : l1
−−−−−−−−−−−→ N′

(LTS-S)

N ≡ N1 N1
α
−→ N2 N2 ≡ N′

N
α
−→ N′

Table 3. A Labelled Transition System

(LTS-O) signals extrusion of bound names; as in some presentation of the π-
calculus, this rule is used to investigate the capability of processes to export bound
names, rather than to actually extend the scope of bound names.

Notice that the LTS of Table 3 may appear unnecessarily complicated as a tool to
define the operational semantics of K: consider, e.g., the right hand side of the
rules for out/in/eval, or rule (LTS-BI) (used to signal that a received name is fresh for
the receiving net). Nevertheless, it is adequate as a tool to establish alternative, more
tractable, characterisations of the touchstone equivalences we are interested in. Indeed,
the complications in the operational rules of Table 3 resemble those arisen in [25] when

defining an ‘equivalent’ LTS depending on the reduction semantics of a calculus. How-
ever, in [25] only simple calculi are considered and it would be interesting to investigate
if the approach can be satisfactory extended to K. Finally, the LTS is ‘correct’ w.r.t.
the actual operational semantics of K, 7−→, as stated by the following Proposition.

Proposition 1. N 7−→ M if and only if N
τ
−→ M.

4.2 Bisimulation Equivalence

We now characterize barbed congruence by using the labels of the LTS instead of the
universal quantification over contexts; in this way, we obtain an alternative characteri-
zation of � in terms of a labelled bisimilarity. As a matter of notation, we let

χ ::= τ
∣∣∣ l1 y l2

∣∣∣ (ν̃l) 〈l〉@ l1 : l2

Moreover, =⇒ stands for
τ
−→∗,

α
=⇒ stands for =⇒

α
−→ =⇒ , and

α̂
=⇒ stands for =⇒ , if

α = τ, and for
α
=⇒ , otherwise.

Definition 4 (Bisimilarity). A symmetric relation< between K nets is a (weak)
bisimulation if, for each N < M, it holds that:

1. N
χ
−→ N′ implies that M

χ̂
=⇒ M′ and N′ < M′, for some M′;

2. N
l1: . l2
−−−−−→ N′ implies that M ‖ {l1 ↔ l2} =⇒ M′ and N′ < M′, for some M′;

3. N
l1: l / l2
−−−−−→ N′ implies that M ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉 =⇒ M′ and N′<M′, for some M′;

4. N
l1 : l2
−−−−→ N′ implies that M ‖ l2 :: nil =⇒ M′ and N′ < M′, for some M′;

5. N
l1 : ¬ l2
−−−−−−→ N′ implies that M ‖ {l1 ↔ l2} =⇒ M′ and N′ < M′, for some M′.

Bisimilarity, ≈, is the largest bisimulation.

Bisimilarity requires that labels of the form (ν̃l) 〈l〉 @ l1 : l2 or l1 y l2 must be
replied to with the same label (possibly with some additional τ-step). This is necessary
since such labels describe the structure of the net (its data and connections) and, to be
equivalent, two nets must have at least the same structure. Labels different from χ only
express intentions and are handled differently. For example, the intention of sending a

component, say N
l1: . l2
−−−−−→ N′, can be simulated by a net M (in a context where l1 and l2

are connected) through the execution of some τ-steps that lead to some M′ equivalent to
N′. Indeed, since we want our bisimulation to be a congruence, a context that provides
a connection between the source and the target nodes of the sending action must not tell
apart N and M. Similar considerations also hold for the last three items of Definition 4.

Notice that labels of the form l1 : (νl)l / l2 are not necessary for the definition of
bisimulation. Indeed, they exactly work like labels l1 : l / l2 with the extra information
that l is fresh for the receiving net; for the bisimulation game this information is useless,
while it will be of fundamental importance when considering trace-based equivalence.

Remarkably, though in K processes can occur as arguments in process actions
(eval), the LTS and the bisimulation we developed do not use labels containing pro-
cesses. Thus, the bisimulation relies only on a standard quantification over names (in
the input case) and we strongly conjecture that it is decidable, under proper assump-
tions: techniques similar to those in [21] could be used here. Moreover, the presence

of rule (LTS-S) in the LTS does not compromise the tractability of ≈; obviously,
(LTS-S) can be dropped, if one is prepared to have more rules in the LTS.

We can now present our first main result, whose proof is in the full paper [10].

Theorem 1 (Alternative Characterization of Barbed Congruence). ≈ = � .

4.3 Trace Equivalence

In this section, we develop an alternative characterization of may testing. For some
well-known process calculi, may testing coincides with trace equivalence [13, 3, 5]; in
this section, we show how a similar result is obtained also in the setting of K.

The idea behind trace equivalence is that N and M are related if and only if the
sets of their traces coincide. Put in another form, if N exhibits a sequence of visible
actions σ, then M must exhibit σ as well, and vice versa. In an asynchronous setting
[5], this requirement must be properly weakened, since the discriminating power of
asynchronous contexts is weaker: in the asynchronous π-calculus, for example, contexts
cannot observe input actions.

To carry out proofs, we found it convenient to introduce a complementation function
· over visible labels (i.e. labels different from τ), ranged over by φ, such that

l1 y l2
a

= l1 : . l2 l1 : . l2
a

= l1 y l2 l1 : (ν̃l) l / l2
a

= (ν̃l) 〈l〉@ l2 : l1

l1 : l2
a

= l2 y l2 l1 : ¬ l2
a

= l1 y l2 (ν̃l) 〈l〉@ l2 : l1
a

= l1 : (ν̃l) l / l2

Because of the interplay between free and bound names (bound names are always asso-
ciated to nodes, see rule (RN)), we need to distinguish reception of a free name from
reception of a bound name (that must be fresh for the receiving net). Similarly to the
π-calculus [3, 5], this can be done by exploiting bound input labels, l1 : (νl)l / l2 , gen-
erated by rule (LTS-BI) (that also adds a node with address l because of law (RN)).
Finally, we let σ to range over (possibly empty) sequences of visible actions, i.e.

σ ::= ε
∣∣∣ φ · σ

where ε denotes the empty sequence of actions and ‘·’ represents concatenation. As

usual, N
ε
=⇒ denotes N =⇒ and N

φ·σ
===⇒ denotes N

φ
=⇒

σ
=⇒ .

The naive formulation of trace equivalence such as “N
σ
=⇒ if and only if M

σ
=⇒ ”

is too strong in an asynchronous setting: for example, it would distinguish l ::
in(!x)@l1.in(!y)@l2 and l :: in(!y)@l2.in(!x)@l1, which are indeed may testing equiv-
alent. Like in [5], a weaker trace-based equivalence can be defined as follows.

Definition 5 (Trace Equivalence). � is the largest symmetric relation between K

nets such that, whenever N � M, it holds that N
σ
=⇒ implies M

σ′

==⇒ , for some σ′ � σ.

The crux is to identify a proper ordering on the traces such that may testing is exactly
captured by �. The ordering � is the least reflexive and transitive relation induced by
the laws in Table 4. The first three laws have been inspired by [5], while the last five

(L1) σ · (ν̃l)σ′ � σ · (ν̃l)(β · σ′) if (ν̃l)σ′ , UNDEF

(L2) σ · (ν̃l)(φ · γ · σ′) � σ · (ν̃l)(γ · φ · σ′) if (ν̃l)(φ · γ · σ′) , UNDEF

(L3) σ · (ν̃l)σ′ � σ · (ν̃l)(γ · γ · σ′) if (ν̃l)σ′ , UNDEF

(L4) σ · l : . l · φ · σ′ � σ · φ · σ′ if l ∈ Υ(φ)

(L5) σ · l : . l · φ · σ′ � σ · φ · l : . l · σ′ if l < bn(φ)

(L6) σ · φ′ · σ′ � σ · φ · σ′ if (φ, φ′) ∈ Ψ

(L7) σ · l1 : (ν̃l) l / l1 · σ
′ � σ · l2 : (ν̃l) l / l1 · σ

′

(L8) σ · l2 : (ν̃l) l / l1 · σ
′ � σ · l1 : (ν̃l) l / l1 · l1 : . l2 · σ

′

In law (L1), β stands for either l1 : . l2 or l1 : l / l2 or l1 : l2 or l1 : ¬ l2 .
In laws (L2) and (L3), γ stands for either l1 : . l2 or l1 : l / l2 .
In law (L4), function Υ(·) is defined as follows: Υ(l1 : (ν̃l)l / l2) = Υ(l1 : l2) = {l1, l2} and
Υ(l1 y l2) = {l1} and Υ(l1 : . l2) = Υ((ν̃l) 〈l〉@ l1 : l2) = {l2}.

In law (L6), relation Ψ is { (l1 : ¬ l2 , l1 : . l2) , (l1 : . l2 , l1 : ¬ l2) , (l2 : . l2 , l1 : l2) }.

Table 4. The Ordering Relation on Traces

ones are strictly related to inter-node connections. The intuition behind σ′ � σ is that,
if a context can interact with a net that exhibits σ, then the context can interact with any
net that exhibits σ′ as well. The ordering � relies on the function (ν̃l)σ, that is used in
laws (L1), (L2) and (L3) when moving/removing a label of the form l1 : (νl) l / l2 . In
this case, the information that l is a fresh received value must be kept in the remaining
trace. The formal definition is

(ν̃l)σ
a

= σ if l̃ ∩ fn(σ) = ∅

(νl)(φ · σ)
a

=

l1 : (νl) l / l2 · σ
φ · (νl)σ
UNDEF

if φ = l1 : l / l2 and l < {l1, l2}
if l < n(φ) and (νl)σ , UNDEF
otherwise

Further explanations can be found in the full paper [10].
The rules in Table 4 can be explained as follows. (L1) states that labels representing

intentions cannot be directly observed; at most, their effect can be somehow observed.
(L2) states that the execution of an input/output/migration can be delayed along com-
putations without being noticed by any observer. (L3) states that two adjacent ‘com-
plementary’ actions can be deleted. (L4) states that an action involving l as source or
target node always enables sending actions from l to l; because, in all these cases, a
node at address l exists. Function Υ(·) is needed to restrict applicability of (L4) only to
the cases needed to prove Theorem 2. (L5) states that, if a sending action from l to l
is enabled after an action φ, then the action can take place before φ, since the node at
l was already present; clearly, this is possible only if l is not bound by φ. (L6) states
that some intentions are interchangeable; indeed, since the complementation function
is not injective, the same observer may enable different kinds of process actions. (L7)
states that, if a process located at l2 can retrieve a datum from l1, then processes located
at l1 can retrieve such datum as well. Finally, (L8) states that, if a process located at l1

can retrieve a datum 〈l〉 locally and then migrate at l2, then processes located at l2 can
retrieve 〈l〉 remotely.

Remarkably, may testing in the (synchronous/asynchronous) π-calculus [3, 5] can-
not distinguish bound names from free ones; thus, a bound name can be replaced with
any name in a trace. This is not the case here: indeed, bound names can always be con-
sidered as addresses of nodes, while free names cannot. This makes a difference for an
external observer; thus, a law like

σ · 〈l′〉@ l1 : l2 · (σ′[l
′
/l]) � σ · (νl) 〈l〉@ l1 : l2 · σ

′

(that, mutatis mutandis, holds for the π-calculus [3, 5]) does not hold for K.
We can now state our second major result; detailed proofs are in [10].

Theorem 2 (Alternative Characterization of May Testing). � = ' .

5 Conclusions and Related Work

We have introduced K, a foundational language that provides constructs to explic-
itly model and dynamically establish/remove inter-node connections, and some associ-
ated semantic theories. In a companion paper [11], we have applied the theory to a few
examples that illustrate usability.

We believe that, although K can be somehow encoded in the π-calculus, the in-
troduction of the former is justified by at least two reasons. First, K clearly enlight-
ens the key features we want to model such as distribution and mobility of processes,
and inter-node connections; an encoding of such features in the π-calculus would hide
them within complex process structures. Second, a convincing encoding should enjoy
‘reasonable’ properties, like those pointed out in [22]. We believe this is not the case.
For example, in [12] we developed an intuitive encoding of a K’s sub-calculus into
the asynchronous π-calculus that does not preserve convergence. We are now working
on proving that this is not incidental and is due to the check of existence of the target of
a communication that is performed in K and not in the π-calculus. We conjecture
that a divergence free encoding does not exist.
Related Work. To our knowledge, no alternative characterization of may testing in terms
of a trace-based equivalence has ever been given for a distributed language with process
mobility. Bisimulation-based equivalences for calculi relying on a flat net topology are
developed in [1, 17]; such equivalences are mainly derived from bisimulation equiva-
lences for the π-calculus and its variants. Bisimulation-based equivalences for calculi
relying on a hierarchical net topology are developed in [19, 6, 8]. Although these bisim-
ulations are inspired by Sangiorgi’s context bisimulation [23] and, thus, exploit univer-
sal quantification over processes, they yield proof techniques that are usable in practice.

Finally, the most closely related work is [15]; there, a distributed version of the π-
calculus is presented where nodes are connected through links that can fail during the
computation. A bisimulation-based proof technique is used to establish properties of
systems. However, differently from our approach, the authors only consider links that
can fail and do not model dynamic connections establishment.

Acknowledgements. We thank the anonymous referees for their useful comments.

References

1. R. M. Amadio. On modelling mobility. Theor. Comp. Sci., 240(1):147–176, 2000.
2. L. Bettini, R. De Nicola, G. Ferrari, and R. Pugliese. Interactive Mobile Agents in X-K.

In Proc. of the 7th WETICE, pages 110–115. IEEE, 1998.
3. M. Boreale and R. De Nicola. Testing equivalences for mobile processes. Information and

Computation, 120:279–303, 1995.
4. M. Boreale, R. De Nicola, and R. Pugliese. Basic observables for processes. Information

and Computation, 149(1):77–98, 1999.
5. M. Boreale, R. De Nicola, and R. Pugliese. Trace and testing equivalence on asynchronous

processes. Information and Computation, 172:139–164, 2002.
6. M. Bugliesi, S. Crafa, M. Merro, and V. Sassone. Communication and Mobility Control in

Boxed Ambients. To appear in Information and Computation.
7. L. Cardelli and A. D. Gordon. Mobile ambients. TCS, 240(1):177–213, 2000.
8. G. Castagna and F. Zappa Nardelli. The Seal Calculus Revisited: contextual equivalence and

bisimilarity. In Proc. of FSTTCS’02, volume 2556 of LNCS, pages 85–96.
9. R. De Nicola, G. Ferrari, and R. Pugliese. K: a Kernel Language for Agents Interaction

and Mobility. IEEE Transactions on Software Engineering, 24(5):315–330, 1998.
10. R. De Nicola, D. Gorla, and R. Pugliese. Basic observables for a calculus for global com-

puting. Tech. Rep. 07/2004, Dip. Informatica, Università di Roma “La Sapienza”, 2004.
11. R. De Nicola, D. Gorla, and R. Pugliese. Global Computing in a Dynamic Network of Tuple

Spaces. In Proc. of COORDINATION’05, volume 3454 of LNCS, pages 157–172.
12. R. De Nicola, D. Gorla, and R. Pugliese. On the Expressive Power of K-based Calculi.

Proc. of EXPRESS’04, ENTCS 128(2):117–130.
13. R. De Nicola and M. Hennessy. Testing equivalence for processes. TCS, 34:83–133, 1984.
14. C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of mobile agents.

In Proc. of CONCUR ’96, volume 1119 of LNCS, pages 406–421. Springer, 1996.
15. A. Francalanza and M. Hennessy. A Theory of System Behaviour in the Presence of Node

and Link Failures. Tech. Rep. cs01:2005, Univ. of Sussex.
16. D. Gelernter. Generative communication in linda. TOPLAS, 7(1):80–112. ACM, 1985.
17. M. Hennessy, M. Merro, and J. Rathke. Towards a behavioural theory of access and mobility

control in distributed systems. In FoSSaCS ’03, volume 2620 of LNCS, pages 282–299.
18. K. Honda and N. Yoshida. On reduction-based process semantics. TCS, 152(2), 1995.
19. M. Merro and F. Zappa Nardelli. Bisimulation proof methods for mobile ambients. In Proc.

of ICALP’03, volume 2719 of LNCS, pages 584–598. Springer, 2003.
20. R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. of ICALP ’92, volume 623 of

LNCS, pages 685–695. Springer, 1992.
21. U. Montanari and M. Pistore. Finite state verification for the asynchronous pi-calculus. In

Proc. of TACAS’99, volume 1579 of LNCS, pages 255–269. Springer, 1999.
22. C. Palamidessi. Comparing the Expressive Power of the Synchronous and the Asynchronous
π-calculi. Mathematical Structures in Computer Science, 13(5):685–719, 2003.

23. D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge
University Press, 2001.

24. A. Schmitt and J.-B. Stefani. The m-calculus: a higher-order distributed process calculus.
SIGPLAN Not., 38(1):50–61, 2003.

25. P. Sewell. From Rewrite Rules to Bisimulation Congruences. In Proc. of CONCUR’98,
volume 1466 of LNCS, pages 269–284. Springer, 1998.

26. P. Sewell, P. Wojciechowski, and B. Pierce. Location independence for mobile agents. In
Proc. of ICCL, volume 1686 of LNCS. Springer, 1999.

