
Science of Computer Programming, 64(2):187–204. c© Elsevier, 2007.

Global Computing in a Dynamic Network
of Tuple Spaces?

Rocco De Nicola a Daniele Gorla b Rosario Pugliese a

aDipartimento di Sistemi e Informatica, Università di Firenze
bDipartimento di Informatica, Università di Roma “La Sapienza”

Abstract

We present K (Topological K), a process description language that retains the
main features of K (process distribution and mobility, remote and asynchronous com-
munication through distributed data spaces), but extends it with new constructs to flexibly
model the interconnection structure underlying a network and its evolution in time. We
show how K can be used to model a number of interesting distributed applications
and how systems correctness can be guaranteed, also in the presence of failures, by exploit-
ing observational equivalences to study the relationships between descriptions of systems
at different levels of abstraction.

Key words: Global Computing, Formal Methods, Observational Equivalence, Distributed
Algorithms, Program Verification

1 Introduction

In the last decade, programming computational infrastructures available globally
for offering uniform services has become an important topic in Computer Science.
The challenges come from the necessity of dealing at once with issues like commu-
nication, co-operation, mobility, resource usage, security, privacy, failures, etc., in a
setting where demands and guarantees can be very different for the many different
components. This has stimulated research on abstractions, models and calculi that
could provide the basis for the design and the analysis of network aware programs,

? This work has been partially supported by EU within the FP6-2004-IST-FET Proactive
project SENSORIA proposal contract number 016004.

Email addresses: denicola@dsi.unifi.it (Rocco De Nicola),
gorla@di.uniroma1.it (Daniele Gorla),
pugliese@dsi.unifi.it (Rosario Pugliese).

1

where physical and logical mobility of systems plays a crucial role. The research
area that considers all the above issues is now called Global Computing.

Both the linguistic abstractions and the foundational aspects of Global Comput-
ing have been investigated. On the linguistic side, the search is for languages with
primitives that support network awareness (locations are explicitly referenceable),
disconnected operations (moved code executes also in the presence of intermit-
tent connections), flexible communication mechanisms (like distributed repositories
storing content addressable data) and remote operations (like asynchronous remote
communications). On the foundational side, the demand is instead on the devel-
opment of tools and techniques to build safe and trustworthy global systems, to
analyse their behaviour, and to demonstrate their conformance to given specifica-
tions. Clearly, such theories should capture the above listed distinctive features of
global systems.

K (Kernel Language for Agents Interaction and Mobility), that we introduced
in [12], can be placed along this research line. It is a formalism specifically designed
to describe distributed systems made up of several mobile interacting components.
K primitives, inspired by the L coordination model [21], allow program-
mers to distribute processes at different localities of a net, where data can be placed
and retrieved. Localities are first-class citizens that can be dynamically created and
communicated. In more recent papers, we have evolved K to a full-fledged
programming language (X-K [4]) to be used for distributed mobile program-
ming but have also distilled it into a number of simpler process languages [13].
Building on these languages, here we introduce K (Topological K), a for-
malism that relies on inter-node connections to allow or deny remote operations.
Connections are programmable, in that they can be explicitly and dynamically ac-
tivated and deactivated by processes, and remote operations can take place only if
the involved nodes are directly connected.

Many process algebraic languages for modelling and programming global com-
putational infrastructures have been proposed in the literature [18,8,28,19]; also a
number of languages and systems for distributed computing relying on and extend-
ing the powerful L [21] paradigm have been put forward both from Academia
and from industries [3,27,17,24]. Notably, in all these formalisms, little attention
has been devoted to explicitly modelling the network topology: it usually origi-
nates from the linguistic choices concerning the mobility paradigm. Thus, when
migration consists in the movement of bare processes, the network is usually seen
as a fully connected graph of computing sites where new sites can be dynamically
added (see, e.g., Dπ-calculus [22], K [12] or N P [28]). Instead, when
migration consists in the movement of entities with executable content (such as en-
tire sites), the network is usually seen as a forest of trees that evolves with the
addition/pruning/displacement of subtrees (see, e.g., Ambient [8] and its variants,
or DJoin [18]). However, global computers (e.g. the Internet) are generic graphs,
i.e. their nodes are neither organised in tree-like structures nor are fully (directly)

2

connected. Connections can unpredictably break down rendering nodes (at least
temporarily) unreachable. To meet the demands arising from modelling the net-
work topology of global computers and its evolution in time we have extended
K with supports for connections and failures, thus obtaining K.

Another major contribution of this paper, is the development of a framework for
specifying and proving properties of global computing applications. On one hand,
we show how K can be used to model a number of interesting distributed
applications. On the other hand, we show how system correctness can be guar-
anteed by exploiting behavioural equivalences to study the relationships between
system descriptions at different levels of abstraction. To state and prove properties
of systems, we follow the approach presented in [1]. According to this approach, in
correspondence to the detailed description in K of a given system (as close as
possible to the actual implementation), another, more abstract and intuitive, specifi-
cation has to be provided that clearly manifests the wanted (or unwanted) behaviour
of the system under consideration. The theory of may testing [15] can then be used
to establish the relationship between the abstract and the concrete specification and
thus to check whether the expected (or unexpected) behaviour is possible.

To gently introduce the reader to our approach, in Section 2 we present a very ba-
sic formalism where inter-node connections are explicitly fixed at the outset. This
scenario is very close to Local Area Networks, where physical connections are usu-
ally reliable and immutable (or change very rarely). Section 3 shows how the basic
model can be used to program communication between machines that are indi-
rectly connected: we present a routing messenger process and prove that it behaves
correctly. In the following sections we present two variants of the basic model. In
Section 4, we enrich the language with different forms of failures. We first consider
a scenario where only nodes and node components (i.e., data or processes) can fail
and, under these assumptions, we establish soundness of a distributed fault-tolerant
protocol for the ‘k-set agreement’ problem [10]; then, we discuss failures of con-
nections. Dynamic connections, explicitly modifiable by processes, are considered
in Section 5; there, we model a more sophisticated routing scenario and establish
its soundness. We conclude in Section 6 with a discussion on future and related
work.

2 The Basic Language

In this section, we report syntax, operational and may-testing semantics of a basic
variant of K with only static connections.

3

N: C:

N ::= 0 | l :: C | {l1 ↔ l2} | N1‖N2 | (νl)N C ::= 〈t〉 | P | C1|C2

P: T:

P ::= nil | a.P | P1|P2 | A(ẽ , ˜̀) t ::= e | ` | t1, t2

A:

a ::= in(T)@` | read(T)@` | out(t)@` | eval(P)@` | new(l)

T: E:

T ::= e | !x | ` | !u | T1,T2 e ::= V | x | . . .

Table 1
Syntax of K

2.1 Syntax

The syntax of K, given in Table 1, is parameterised with respect to the follow-
ing syntactic sets, which we assume to be countable and pairwise disjoint:

– V, the set of basic values (integers, strings, booleans,...), is ranged over by V;
– L, the set of localities, is ranged over by l;
– X, the set of basic variables, is ranged over by x;
– U, the set of locality variables, is ranged over by u;
– A, the set of process identifiers, is ranged over by A.

Finally, ` is used to denote localities and locality variables.

Nets, ranged over by N,M,K, . . ., are finite collections of nodes and inter-node con-
nections. A node is a pair l :: C, where locality l is the address (i.e., the network
reference) of the node and C is the (parallel) component located at l. Components,
ranged over by C,D, . . ., can be either processes or tuples of data, denoted by 〈t〉.
Connections are pairs of node addresses {l1 ↔ l2} stating that the nodes with ad-
dress l1 and l2 are directly (and bidirectionally 1) connected. In (νl)N, name l is
private to N; the intended effect is that, if one considers the term M ‖ (νl)N, then
locality l of N cannot be referred from within M.

Processes, ranged over by P,Q,R, . . ., are the K active computational units
and may be executed concurrently either at the same locality or at different local-
ities. They are built up from the terminated process nil and from the basic actions

1 For the sake of simplicity, we assume bidirectional connections; nevertheless, all the
theory and the examples we develop here could be tailored to the framework where con-
nections are directed.

4

by using prefixing, parallel composition and process invocation. Actions permit re-
moving/accessing/adding tuples from/to tuple spaces (actions in/read/out, resp.),
activating new threads of execution (action eval) and creating new nodes (action
new). Action new is not indexed with an address because it always acts locally; all
the other actions explicitly indicate the (possibly remote) locality where they will
take effect.

The exact syntax of expressions, e, is deliberately omitted; we only assume that
expressions contain, at least, basic values and variables. Tuples, t, are sequences
of expressions, localities or variables. Templates, T , are used to select tuples: in
particular, !x and !u, that we call formal fields, are used to bind variables to values.

Names (i.e. localities and variables) occurring in K processes and nets can
be bound. More precisely, prefixes in(T)@`.P and read(T)@`.P bind T ’s formal
fields in P; prefix new(l).P binds l in P, and, similarly, net restriction (νl)N binds l
in N. A name that is not bound is called free. The sets fn(·) and bn(·) (respectively,
of free and bound names of a term) are defined accordingly. The set n(·) of names
of a term is the union of its sets of free and bound names. We say that two terms are
alpha-equivalent, written =α, if one can be obtained from the other by renaming
bound names. In the sequel, we shall work with terms whose bound names are all
distinct and different from the free ones. Moreover, as usual, we shall only consider
closed terms, i.e. processes and nets without free variables.

Notation ·̃ denotes a (possibly empty) sequence of objects; e.g., l̃ is a sequence
of localities. Thus, A(ẽ , ˜̀) stands for the invocation of the process identified by A
with actual parameters ẽ, ˜̀. It is assumed that each process identifier A has a single
defining equation A(x̃ , ũ)

def
= P where the free variables of P are contained in x̃, ũ.

Moreover, to guarantee uniqueness of solution of recursive process definitions, it is
assumed that all the identifiers occurring in P are guarded, i.e. they occur within
the scope of a blocking in/read prefix.

We write Z , W to mean that Z is of the form W; this notation is used to assign
a symbolic name Z to the term W. We shall sometimes write in()@l, out()@l and
〈〉 to mean that the argument of the actions or the tuple are irrelevant. We will use
the standard notation P[e/x] to indicate the capture avoiding substitution of the ex-
pression e for the free occurrences of the variable x in P; P[̃e/̃x] will denote the
simultaneous substitution of each free occurrence of x ∈ x̃ with the corresponding

e ∈ ẽ in P. P[l/u] and P[̃l/̃u] have a similar meaning. We shall omit trailing occur-
rences of process nil and write Π j∈J Wj for the parallel composition (both ‘|’ and
‘‖’) of terms (components or nets, resp.) Wj. Finally, when in a process definition

A(x̃ , ũ)
def
= P both x̃ and ũ are empty, we shall simply write A instead of A() to

invoke it.

5

(A) (PZ)
N ≡ N′ if N =α N′ N ‖ 0 ≡ N

(PC) (PA)
N1 ‖ N2 ≡ N2 ‖ N1 (N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)

(RC) (E)
(νl1)(νl2)N ≡ (νl2)(νl1)N N1 ‖ (νl)N2 ≡ (νl)(N1 ‖ N2) if l < fn(N1)

(G) (C)
(νl)0 ≡ 0 l :: A(ẽ , ˜̀) ≡ l :: P[̃e/̃x, ˜̀/̃u] if A(x̃ , ũ)

def
= P

(C) (A)
l :: C1|C2 ≡ l :: C1 ‖ l :: C2 l :: C ≡ l :: C |nil

(S) (BD)
l :: nil ≡ l :: nil ‖ {l↔ l} {l1 ↔ l2} ≡ {l2 ↔ l1}

(CN)
{l1 ↔ l2} ≡ {l1 ↔ l2} ‖ l1 :: nil

Table 2
Structural Congruence

2.2 Operational Semantics

K operational semantics is given by means of a reduction relation relying on
a structural congruence. The structural congruence, ≡, identifies those nets which
intuitively represent the same net and is inspired to the π-calculus’ one (see, e.g.,
[26]). Formally, it is defined as the smallest congruence satisfying the laws in Ta-
ble 2. Law (A) equates alpha-equivalent nets; laws (PZ), (PC) and (PA)
state that ‘‖’ is a monoidal operator with 0 as identity element. Laws (RC),
(G) and (E) handle restrictions: the first one regulates their commutativity;
the second one collects unused (garbage) restricted names; the third one is the stan-
dard π-calculus’ rule for scope extension and states that the scope of a bound name
can be extended, provided that this does not cause any name capture. Law (C)
permits to freely fold/unfold process invocations; law (C) turns a parallel be-
tween co-located components into a parallel between nodes; law (A) states that
nil is the identity for ‘|’ (by using law (C), it is easy to see that also ‘|’ is a
monoidal operator). Finally, law (S) states that nodes are self-connected; law
(BD) states that connections are bidirectional; law (CN) states that a con-
nection can be placed only between existing nodes.

The reduction relation is given in Table 3 and relies on two auxiliary functions:

6

(R-N) l :: new(l′).P 7−→ (νl′)(l :: P ‖ {l↔ l′})

(R-E) l :: eval(Q)@l′.P ‖ {l↔ l′} 7−→ l :: P ‖ {l↔ l′} ‖ l′ :: Q

(R-I)
match(E[[T]]; t) = σ

l :: in(T)@l′.P ‖ {l↔ l′} ‖ l′ :: 〈t〉 7−→ l :: Pσ ‖ {l↔ l′}

(R-R)
match(E[[T]]; t) = σ

l :: read(T)@l′.P ‖ {l↔ l′} ‖ l′ :: 〈t〉 7−→ l :: Pσ ‖ {l↔ l′} ‖ l′ :: 〈t〉

(R-O)
E[[t]] = t′

l :: out(t)@l′.P ‖ {l↔ l′} 7−→ l :: P ‖ {l↔ l′} ‖ l′ :: 〈t′〉

(R-P)
N1 7−→ N′1

N1 ‖ N2 7−→ N′1 ‖ N2

(R-R)
N 7−→ N′

(νl)N 7−→ (νl)N′

(R-S)
N ≡ M M 7−→ M′ M′ ≡ N′

N 7−→ N′

Table 3
K Reduction Relation

E[[]] and match(;). The tuple/template evaluation function, E[[]], evaluates
componentwise the expressions occurring within the tuple/template ; its precise
definition depends on the exact syntax of expressions and, thus, is omitted. The
pattern matching function, match(;), verifies the compliance of a tuple w.r.t. a
template and associates values to variables bound in the template. Intuitively, a
tuple matches a template if they have the same number of fields and corresponding
fields do match. Formally, function match returns a substitution defined as follows:

match(V; V) = ε match(!x; V) = [V/x]

match(l; l) = ε match(!u; l) = [l/u]

match(T1; t1) = σ1 match(T2; t2) = σ2

match(T1, T2; t1, t2) = σ1 ◦ σ2

where we let ‘ε’ be the empty substitution and ‘◦’ denote substitutions composition.

The operational rules of K can be briefly explained as follows. Rule (R-N)
says that execution of action new(l′) creates a new node at the restricted address l′

and a connection with the creating node l. Rule (R-E) states that a process can

7

be spawned at l′ by a process running at l only if l and l′ are directly connected.
Rule (R-O) evaluates the expressions within the argument tuple and sends the
resulting tuple to the target node. Again, this is possible only if the source and the
target nodes are directly connected. Rules (R-R) and (R-I) require existence of
a matching tuple in the target node and of a connection between the source and the
target node. The tuple is then used to replace the variables bound by the template in
the continuation of the process performing the actions. With action in the matched
tuple is consumed while with action read it is not. Rules (R-P), (R-R) and
(R-S) are standard.

K adopts a L-like [21] communication mechanism: data are anonymous
and associatively accessed via pattern matching; communication is asynchronous.
Indeed, although there exist prefixes for placing data to (possibly remote) nodes,
no synchronisation takes place between processes, because their interactions are
mediated by nodes, that act as data repositories.

To conclude the presentation of K’s operational semantics, we want to stress
that interactions between nodes that are not directly connected is forbidden. This
could be remedied in two ways. The first way is to change the presented operational
semantics by adding the structural law

{l1 ↔ l2} ‖ {l2 ↔ l3} ≡ {l1 ↔ l2} ‖ {l2 ↔ l3} ‖ {l1 ↔ l3}

that states a sort of ‘transitivity’ property for direct connections. In this way,
“single-hop” connections are placed also between not directly connected nodes. Al-
ternatively, one could explicitly program remote interactions through “multi-hop”
connections. Thus, if there exists a path of connections from l to l′, then a process
P running at l willing to interact with l′ can do so by means of a mobile process
spawned from l ‘towards’ l′.

Adopting one way or the other only depends on the chosen abstraction level. We
prefer the second alternative because we consider it more basic and because it fits
better in more dynamic scenarios; thus, in Section 3, we shall present a possible
implementation of multi-hop communication and a proof of its correctness.

2.3 Observational Semantics

To state and prove properties of K nets, we follow the approach put forward
in [15] and use the may testing preorder and the associated equivalence. Intuitively,
two nets are may testing equivalent if they cannot be distinguished by any external
observer taking note of the data offered by the observed nets. More precisely, ob-
servers, ranged over by O, O′, O1, . . . , are nets that can use an additional distinct
locality name test < L as a node address. Computations from N ‖ O are (pos-
sibly infinite) sequences of reductions N ‖ O (, (νl̃0)(N0 ‖ O0)) 7−→ (νl̃1)(N1 ‖

8

O1) 7−→ · · · ; we call such a computation successful if there is some i ≥ 0 such
that Oi ≡ O′ ‖ test :: 〈〉 and test < l̃i. We write N O whenever there exists
a successful computation from N ‖ O; moreover, we shall sometimes say that N
satisfies O. Finally, N O stands for the negation of N O.

Definition 1 (May Testing Preorder) May testing preorder, v, is the least pre-
order on K nets such that, for every N v M, it holds that N O implies
M O, for each observer O.

When N v M, we sometimes write M w N (i.e. relation w is the ‘inverse’ of v).
May testing equivalence, ', is defined as the intersection of v and w . Given a set
of observers O, we will write vO (resp. 'O) to denote that v (resp. ') holds when
considering only observers from O.

To relate nets under both v and ', it is necessary to describe the possible interac-
tions between an observer and the observed net; thus, we need a fully compositional
operational semantics for K. To this aim, we reformulate the semantics of our
language as a labelled transition system (LTS) to make apparent the action a net
is willing to perform in order to evolve. The labelled transition relation,

α
−→ , is

defined as the least relation over nets induced by the rules in Table 4. Labels take
the form

α ::= τ | l1 y l2 | (ν̃l) 〈t〉@ l1 : l2 | l1 : . l2 | l1 : t / l2

We let bn(α) be l̃ if α = (ν̃l) 〈t〉@ l1 : l2 and be ∅ otherwise; fn(α) and n(α) are
defined accordingly.

Let us now explain the intuition behind the labels of the LTS and some key rules.
Label α in N

α
−→ N′ can be

τ : this means that N may perform a reduction step to become N ′ (see Proposi-
tion 1).

l1 y l2 : this means that in N there is a direct connection between nodes l1 and l2

(see (LTS-L)).
(ν̃l) 〈t〉@ l1 : l2 : this means that in N there is a tuple 〈t〉 located at l1 and a

connection {l1 ↔ l2}; the tuple is available for processes located at l2 (see
(LTS-T), (LTS-O) and (LTS-L)). Moreover, names l̃ occur restricted
in N (see (LTS-O)).

l1 : . l2 : this means that in N there is a process located at l1 willing to send a
component at l2 (see (LTS-O) and (LTS-E)). For the sending to take place,
a direct connection between such nodes is needed (see (LTS-S)).

l1 : t / l2 : this means that in N there is a process located at l1 willing to retrieve a
tuple 〈t〉 from l2 (see (LTS-I) and (LTS-R)). For the actual retrieval, a direct
connection between such nodes and tuple 〈t〉 at l2 are needed (see (LTS-C)).

9

(LTS-N) (LTS-L)

l :: new(l′).P
τ
−→ (νl′)(l :: P ‖ {l↔ l′}) {l1 ↔ l2}

l1y l2
−−−−→ l1 :: nil ‖ l2 :: nil

(LTS-E) (LTS-T)

l1 :: eval(Q)@l2.P
l1: . l2
−−−−−→ l1 :: P ‖ {l1 ↔ l2} ‖ l2 :: Q l1 :: 〈t〉

〈t〉 @ l1 : l1
−−−−−−−−−→ l1 :: nil

(LTS-I) (LTS-O)

match(E[[T]]; t) = σ

l1 :: in(T)@l2.P
l1: t / l2
−−−−−−→ l1 :: Pσ ‖ {l1 ↔ l2}

N1
〈t〉 @ l2 : l2
−−−−−−−−−→ N′1 N2

l2y l1
−−−−→ N′2

N1 ‖ N2
〈t〉 @ l2 : l1
−−−−−−−−−→ N′1 ‖ N′2

(LTS-R) (LTS-R)
match(E[[T]]; t) = σ

l1 :: read(T)@l2.P
l1: t / l2
−−−−−−→ l1 :: Pσ ‖ {l1 ↔ l2} ‖ l2 :: 〈t〉

N
α
−→ N′ l < n(α)

(νl)N
α
−→ (νl)N′

(LTS-O) (LTS-S)

t′ = E[[t]]

l1 :: out(t)@l2.P
l1: . l2
−−−−−→ l1 :: P ‖ {l1 ↔ l2} ‖ l2 :: 〈t′〉

N1
l1: . l2
−−−−−→ N′1 N2

l1y l2
−−−−→ N′2

N1 ‖ N2
τ
−→ N′1 ‖ N′2

(LTS-O) (LTS-P)

N
(ν̃l) 〈t〉 @ l2 : l1
−−−−−−−−−−−→ N′ l ∈ fn(t) − {̃l, l1, l2}

(νl)N
(νl,̃l) 〈t〉 @ l2 : l1
−−−−−−−−−−−−→ N′

N1
α
−→ N2 bn(α) ∩ fn(N) = ∅

N1 ‖ N
α
−→ N2 ‖ N

(LTS-C) (LTS-S)

N1
l1: t / l2
−−−−−−→ N′1 N2

〈t〉 @ l2 : l1
−−−−−−−−−→ N′2

N1 ‖ N2
τ
−→ N′1 ‖ N′2

N ≡ N1 N1
α
−→ N2 N2 ≡ N′

N
α
−→ N′

Table 4
A Labelled Transition System

Labels l1 : . l2 and l1 : t / l2 describe ‘intentions’ of processes running in
the net. E.g., (LTS-O) should be read as: “process out(t)@l2.P running at l1 is
willing to send a component at l2; when such an intention is concretised, l1 will
be left with process P, l2 will receive the tuple resulting from the evaluation of t,
and the execution context will provide the needed connection ”. Rules (LTS-E),
(LTS-I) and (LTS-R) should be interpreted similarly.

(LTS-O) signals extrusion of bound names and is used to investigate the capabil-
ity of processes to export bound names, rather than to actually extend the scope of
bound names which is instead achieved through the structural law (E). Indeed, in

10

(LTS-C) labels do not carry any restriction on names, whose scope must have
been previously extended. (LTS-R), (LTS-P) and (LTS-S) are standard.

It should not be surprising that actions out and eval yield the same label. Of course,
the two actions should be kept distinct for security reasons, because accepting pro-
cesses for execution is more dangerous than accepting data. However, in our setting,
an external observer has not enough power to notice any difference: in both cases,
it can just observe that a packet is sent. Similar considerations also hold for actions
in and read.

The following Proposition states that the LTS is ‘correct’ w.r.t. the actual opera-
tional semantics of K, 7−→.

Proposition 1 N 7−→ M if and only if N
τ
−→ M.

Proof: Both directions can be proved by an easy induction on the shortest inference
for the judgement in the premise. �

We are now ready to give the key Proposition that describes the possible interac-
tions a net N can engage with another net K, when some names l̃ are restricted.

Proposition 2 (ν̃l)(N ‖ K)
α
−→ N̄ if and only if one of the following conditions holds,

possibly exchanging K and N:

(1) (ν̃l)N
α
−→ (νl̃′)N′ and N̄ ≡ (νl̃′)(N′ ‖ K)

(2) N
l1y l2
−−−−→ N′, K

(νl̃′) 〈t〉 @ l1 : l1
−−−−−−−−−−−→ K′ and N̄ ≡ (νl̃′′)(N′ ‖ K′), for l̃′′ = l̃ − fn((νl̃′)t)

(3) N
l1: . l2
−−−−→ N′, K

l1y l2
−−−−→ K′, N̄ ≡ (ν̃l)(N′ ‖ K′) and α = τ

(4) N
l2: t / l1
−−−−−−→ N′, K

(νl̃′) 〈t〉 @ l1 : l2
−−−−−−−−−−−→ K′, N̄ ≡ (ν̃l, l̃′)(N′ ‖ K′) and α = τ

(5) N
l1y l2
−−−−→

l2: t / l1
−−−−−−→ N′, K

(νl̃′) 〈t〉 @ l1 : l1
−−−−−−−−−−−→ K′, N̄ ≡ (ν̃l, l̃′)(N′ ‖ K′) and α = τ

(6) N
(νl̃′) 〈t〉 @ l1 : l1
−−−−−−−−−−−→

l2: t / l1
−−−−−−→ N′, K

l1y l2
−−−−→ K′, N̄ ≡ (ν̃l, l̃′)(N′ ‖ K′) and α = τ

Proof: The “only if” part holds by definition of the LTS; the “if” part follows by
induction over the shortest inference for (ν̃l)(N ‖ K)

α
−→ N̄. �

To conclude, we present a few equational laws that will simplify the proofs of
the case-studies considered in this paper. The first three laws state a ‘confluence’
property for actions out, eval and new; the last law states that a restricted node
hosting no processes is useless even if it is connected to a non-restricted node. We
shall fully prove the first equivalence only; the other ones, like all the equivalences
that will be found in the sequel, can be proved similarly.

Proposition 3
(1) l :: out(t)@l′.P ‖ {l↔ l′} ' l :: P ‖ {l↔ l′} ‖ l′ :: 〈t′〉 where t′ = E[[t]]

11

(2) l :: eval(Q)@l′.P ‖ {l↔ l′} ' l :: P ‖ {l↔ l′} ‖ l′ :: Q
(3) l :: new(l′).P ' (νl′)(l :: P ‖ {l↔ l′})
(4) (νl)(l :: C ‖ {l↔ l′}) ' l′ :: nil whenever C is a tuple, the stuck process nil

or the parallel composition of such components.

Proof: Let Nlhs and Nrhs denote the left hand side and the right hand side of the first
equality; we have to prove that, for every O, Nlhs O if and only if Nrhs O.
The ‘if’ part is trivial, since Nlhs can reduce to Nrhs in one step. For the converse,
we know that Nlhs O, i.e. Nlhs ‖ O , (νl̃0)(N0 ‖ O0) 7−→ · · · 7−→ (ν̃li)(Ni ‖ Oi),
where Oi is the first observer in {O0,O1, · · · } that reports success. The proof is by
induction on i. The base step is trivial. For the inductive step, let us consider the
possible interactions among N0 and O0 that yielded the first reduction; according
to Proposition 2, we have six possibilities (the first two ones correspond to Propo-
sition 2(1) and its symmetric; the third one corresponds to Proposition 2(3); the
last two ones correspond to the symmetric of Proposition 2(3)). In all the cases,
l̃0 = l̃1 = ∅.

(1) N0
τ
−→ N1 and O1 ≡ O0: in this case, the only possible τ-action of N0 leads it to

Nrhs; thus, N1 ≡ Nrhs and Nrhs ‖ O 7−→ · · · 7−→ (ν̃li)(Ni ‖ Oi), i.e. Nrhs O.
(2) O0

τ
−→ O1 and N1 ≡ N0: this case is simple since, by induction, Nlhs O1

implies that Nrhs O1; hence, Nrhs O.

(3) N0
l: . l′
−−−−→ N1 and O0

ly l′
−−−→ O1: by definition of the LTS, it must be that l ::

out(t)@l′.P
l: . l′
−−−−→ Nrhs, N1 ≡ Nrhs ‖ {l ↔ l′} and O0 ≡ O1 ‖ {l ↔ l′}; thus,

N1 ‖ O1 ≡ Nrhs ‖ O and we easily conclude like in case (1).

(4) O0
l: . l′
−−−−→ O1 and N0

ly l′
−−−→ N1: similarly to case (3), O1 ≡ O′1 ‖ {l ↔ l′} and

N0 ≡ N1 ‖ {l ↔ l′}; thus, N1 ‖ O1 ≡ Nlhs ‖ O′1 that, by induction, yields
Nrhs O′1. The thesis follows by noting that Nrhs O 7−→ Nrhs O′1.

(5) O0
l′′: . l′′
−−−−−→ O1 and N0

l′′y l′′
−−−−→ N1, for l′′ ∈ {l, l′}: by definition of the LTS, l′′ is

a node address in O; thus, by law (S), O0 7−→ O1 and we can conclude like
in case (2). �

3 Implementing Distant Communications: A Routing Messenger

As we have already mentioned in Section 2.2, in our setting a process at l can
perform action out(t)@l′ only if l and l′ are directly connected. We can however
define a protocol to deliver t from l to l′ under the assumption that there exists a
path of links from l to l′ in the connection graph. Remote access/retrieval of tuples
and spawning of processes can be dealt with similarly.

To determine a path connecting any pair of nodes, we exploit routing tables. These
sort of distributed data structures store information on routing paths; they are usu-
ally built at the outset by routing algorithms that, during net evolution, take care

12

of maintaining consistency of stored information. In our basic setting links never
change during the computation, thus routing tables do not change over time. To
implement single entries of routing tables, we use tuples of the form 〈“route”, l, l′〉.
More precisely, we assume that, for each pair of (possibly indirectly) connected lo-
calities l1 and l2, there is a (permanent) tuple 〈“route”, l2, l3〉 at l1 storing the directly
connected node l3 to visit next for reaching l2.

For the sake of readability, we shall use a conditional statement to select one of two
processes for execution. In K, it is defined as follows:

if l1 = l2 then P else Q , new(l).out(l1 = l2)@l.(in(tt)@l.P | in(ff)@l.Q)

where tt and ff stand for the boolean values true and false, and ‘=’ stands for the
equality test for locality names. It is easy to prove that P can evolve if and only if
l1 = l2, and Q can evolve if and only if l1 , l2.

Proposition 4

(1) l′ :: if l = l then P else Q ' l′ :: P
(2) l′ :: if l1 = l2 then P else Q ' l′ :: Q, whenever l1 , l2.

Proof: We just examine the first claim; the second one is very similar. By Propo-
sition 3(3) and 3(1), we have that l′ :: if l = l then P else Q is may testing
equivalent to (νl′′)(l′ :: in(tt)@l′′.P | in(ff)@l′′.Q ‖ {l′ ↔ l′′} ‖ l′′ :: 〈tt〉) , as
E[[l = l]] , tt. It is now easy to prove that the latter net satisfies exactly the same
observers as l′ :: P: indeed, the former can only reduce to l′ :: P and, before doing
this, it can only offer label l′ y l′ in any interaction with an observer. �

We are now ready to describe the mobile process delivering tuple t from l to l′ as
Delivert(l, l′), where

Delivert(u, v)
def
= read(“route”, v, !w)@u.

if w = v then out(t)@v else eval(Delivert(w, v))@w

The process gets the address of the next node to visit for reaching v and binds it to
w; if the obtained address is v itself, then the current node u is directly connected to
v and action out(t)@v is performed; otherwise, the process migrates to node w and
iterates its behaviour.

To prove that execution of process Delivert(l, l′) does indeed place the result of
evaluating tuple t at l′, we only consider observers that do not interfere with in-
formation stored in routing tables. Thus, let Ort be the set of observers that do
not provide/emit/remove tuples of the form 〈“route”, ·, ·〉. Now, correctness of
Delivert(l, l′) can be formalised as follows.

13

Let l and l′ be addresses of nodes in N, f be a fresh name (i.e., a name occurring
nowhere else) and t′ = E[[t]]. If l is connected to l′ in N, then

N ‖ l :: Delivert(l, l
′) 'Ort N ‖ l′ :: 〈t′〉 (1)

N ‖ l :: Deliverf(l, l
′) 6'Ort N (2)

N ‖ l :: Deliverf(l, l
′) 6'Ort N ‖ l′ :: 〈t′′〉 for t′′ , f (3)

otherwise
N ‖ l :: Delivert(l, l

′) 'Ort N (4)

N ‖ l :: Deliverf(l, l
′) 6'Ort N ‖ l′ :: 〈f〉 (5)

The first three Equations state that, if the target node is reachable from the source
one, process Deliver properly forwards the tuple to its destination. Indeed, Equa-
tion (1) states that Deliver may emit t′ at l′; Equation (2) states that Deliver cannot
avoid emitting a tuple at l′; and Equation (3) states that the emitted tuple must be
the tuple carried by Deliver. If source and target nodes are not (indirectly) con-
nected, Equation (4) states that the activity of Deliver is essentially the same as
doing nothing, while Equation (5) states that Deliver cannot emit the carried tuple
at l′. Notice that, in Equations (2)/(3)/(5), freshness of f ensures that N cannot pro-
duce it; hence, the presence/absence of a tuple 〈f〉 faithfully mirrors the activity of
Deliver.

Validity of negative requirements can be easily established by providing a proper
observer that distinguishes the two nets. For Equations (2), (3) and (5) we consider

O
def
= {test ↔ l′} ‖ test :: in(f)@l′.out()@test

In Equations (2) and (3), it holds that N ‖ l :: Deliverf(l, l′) O while, because
of freshness of f, we have N O and N ‖ l′ :: 〈t′′〉 O. Similarly, in
Equation (5), we have that N ‖ l′ :: 〈f〉 O but N ‖ l :: Deliverf(l, l′) O.

To prove validity of Equations (1) and (4), we first give a Proposition that regulates
the handling of routing information stored in the net of our example.

Proposition 5

(1) l :: read(“route”, l′, !u)@l.P 'Ort l :: nil
(2) l :: 〈“route”, l′, l′′〉 | read(“route”, l′, !u)@l.P 'Ort l :: 〈“route”, l′, l′′〉 | P[l

′′
/u]

Proof: The proof proceeds like the proof of Proposition 3(1). The only
thing to notice is that, by interacting with the observers of the set Ort, l ::
read(“route”, l′, !x)@l.P can only exhibit labels of the form l y l; similarly,
l :: 〈“route”, l′, l′′〉 | read(“route”, l′, !u)@l.P can either exhibit labels of the form
l y l or perform a τ-step to become l :: 〈“route”, l′, l′′〉 | P[l′′/u]. �

Now, let us consider Equation (1); we know that, if l and l′ are connected, there is
a path l , l0 → l1 → . . . → ln , l′ (for n ≥ 0) in the connection graph underlying

14

N, that is faithfully reflected by the routing tables within N. We work by induction
on n.

Base case (n = 0): In this case, l = l′ and hence

N ‖ l :: Delivert(l, l)

'Ort N ‖ l :: if l = l then out(t)@l else eval(Delivert(l, l))@l

' N ‖ l :: 〈t′〉

The first equality is proved by using Proposition 5(2), as in the routing table at
l there is the entry 〈“route”, l, l〉; the second equality relies on Propositions 4(1)
and 3(1).

Inductive case (n > 0): Let l , l0 → l1 → . . .→ ln , l′. Thus

N ‖ l :: Delivert(l, l′)

' N ‖ l :: if l1 = l′ then out(t)@l′ else eval(Delivert(l1, l′))@l1

'

N ‖ l :: 〈t〉 if l1 = l′

N ‖ l1 :: Delivert(l1, l′) otherwise

' N ‖ l :: 〈t′〉

The first and the second equalities when l1 = l′ are proved like in the base case.
The second equality when l1 , l′ is proved by using Propositions 4(2) and 3(2).
The third equality follows by a straightforward induction and by reflexivity of '.

We are left with Equation (4). The fact that l and l′ are not connected means that in
the routing table of l there is no tuple of the form 〈“route”, l′, ·〉 and, of course, such
a tuple will never appear. Thus, Equation (4) follows by virtue of Proposition 5(1).

4 Modelling Failures

We now enrich the basic framework with a mechanism for modelling different
forms of failures. We start by modelling failure of nodes and node components,
and use the new setting to prove some properties of a distributed fault-tolerant pro-
tocol. Then, we take into account failures of connections too.

4.1 Failure of Nodes and Node Components

Failures of nodes and components can be modelled by adding to the reduction
relation of Table 3 the rule

(R-FN) l :: C 7−→ 0

15

This rule models loss of tuples if C , 〈t1〉| . . . |〈tn〉, node fail-silent failure if l :: C
collects all the clones of l, and abnormal termination of some processes running at
l otherwise. Modelling failures as disappearance of a resource (a tuple, a process or
a whole node) is a simple, but realistic, way of representing failures. Indeed, while
the presence of tuples/nodes can be ascertained, their absence cannot because there
is no practical upper bound to communication delays. This is true in distributed
environments [16], but it is especially true in global computing scenarios [7], where
failures cannot be distinguished from long delays and should be modelled as totally
asynchronous and undetectable events.

Having modified the operational semantics as we have just discussed, the theory
of may testing can be straightforwardly adapted; to avoid ambiguities, we shall
denote with v f and ' f the may testing preorder and equivalence arising in this
new framework. Moreover, also the LTS of Section 2.3 can be easily adapted to this
framework; indeed, it suffices to add rule

(LTS-FN) l :: C
τ
−→ 0

to those in Table 4.

A Distributed Fault-tolerant Protocol: k–set Agreement [10] Let us consider a
totally-connected distributed system with n principals relying on an asynchronous
message-passing communication paradigm. The communication medium is reli-
able, i.e. all sent messages are received, but, due to asynchrony, the reception order
is unpredictable. Each principal has an input value (taken from a totally ordered
set) and must produce an ‘agreed’ output value. Principals can fail according to a
fail-silent model of failures.

The original agreement problem requires to find a protocol that satisfies three prop-
erties: agreement (i.e. the non-faulty principals produce the same output value),
validity (i.e. the output value is one of the input values) and termination (i.e. the
non-faulty principals eventually produce an output). It is well-known [16] that a
solution for this problem does not exist even in the presence of a single failure.

The k–set agreement problem relaxes the agreement property to guarantee existence
of a solution. Indeed, for each k ∈ {1, ..., n}, it requires that, assuming at most k − 1
faulty principals, the non-failed principals successfully complete their execution
and produce a set of outputs whose size is at most k. Notice that for k = 1, the
problem reduces to the agreement problem without failures.

A possible solution for the k–set agreement problem is given in [10] by letting each
principal execute the following protocol:

(i) send your input value to all principals (including yourself)
(ii) wait to receive n − k + 1 values

(iii) output the minimum value received

16

In this way, if we call IN the set of the input values, the set of output values OUT
is formed by the k smallest values in IN.

In our K implementation of this protocol, we use integers as input/output val-
ues, while principals are represented as distinct nodes, whose addresses form the
set l̃ , { l1, . . . , ln}; l is a distinct locality used to collect output values. Moreover,
we use di ∈ IN to denote the input value of the principal associated to the node
whose address is li. Given k, the process at li is

Pk
i

def
= out(di)@l1.out(di)@ln.

in(!zi
1)@li.in(!zi

n−k+1)@li.out(mi)@l where mi , min{zi
1, . . . , z

i
n−k+1}

The net implementing the whole protocol is

Nk
n , (ν̃l)(n

Π
i=1

li :: Pk
i ‖ Nc) where Nc,

1...n
Π
i, j
{li ↔ l j} ‖

n
Π
i=1
{li ↔ l}

We restricted the localities associated to the principals because no external context
is allowed to interfere with the execution of the protocol.

Validity and k–set agreement This two properties can be proved at once by estab-
lishing the following equality:

Nk
n ' f Mk

n (6)

There, we exploit the auxiliary net

Mk
n , (ν̃l)(n

Π
i=1

li :: Qk
i ‖ Nc)

where

Qk
i

def
= out(di)@l1. · · · .out(di)@ln.in(!zi

1)@li. · · · .in(!zi
n−k+1)@li.

if mi ∈ OUT then out(mi)@l else nil

Here, we have generalised the if-then-else statement presented in Section 3 to check
whether a value V belongs to a given set of values S . Indeed, if S is {V1, . . . ,Vk},
this check can be implemented as follows:

if V ∈ S then P else Q ,

new(l).out(V = V1 ∨ · · · ∨ V = Vk)@l.(in(tt)@l.P | in(ff)@l.Q)

Intuitively, Qk
i performs the final output only if the value produced by the principal i

is in OUT . The net Mk
n obviously satisfies the wanted properties, since its principals

output only values in OUT . The fact that |OUT | = k implies the k–set agreement
property, while the fact that OUT ⊆ IN implies the validity property. By following

17

the intuition behind Equation (3) in Section 3, we can also easily express the fact
that Nk

n can only produce data of OUT at l: it is enough to replace OUT with
IN − OUT in Qk

i and prove that the resulting net is not equivalent to Nk
n .

By Proposition 3(1), that also holds in the framework with failures, we have that
Nk

n ' f H and Mk
n ' f K, where

H , (ν̃l)(n
Π
i=1

li :: in(!zi
1)@li. · · · .in(!zi

n−k+1)@li.out(mi)@l | 〈d1〉 | . . . | 〈dn〉 ‖ Nc)

K , (ν̃l)(n
Π
i=1

li :: in(!zi
1)@li. · · · .in(!zi

n−k+1)@li.

if mi ∈ OUT then out(mi)@l else nil | 〈d1〉 | . . . | 〈dn〉 ‖ Nc)

We now prove that H ' f K. Since K is obtained from H by adding the test
mi ∈ OUT before the last action, it holds that K v f H. To prove the converse,
observe that the only actions of H that in principle K could not be able to exhibit

are 〈m′i〉@ l : l , where m′i denotes mi[d̃/̃z], with d̃ , {di1 , . . . , din−k+1} ⊆ {d1, . . . , dn}

and z̃ , {z1, . . . , zn−k+1}. However, as we now prove, K can perform exactly the same
actions 〈m′i〉@ l : l as H. Suppose that H offers to an observer O the datum 〈m′i〉
at l; then, principal i in H has collected n − k + 1 values from {d1, . . . , dn} and has
output the minimum among them. Since |OUT | = k, we have that m′i ∈ OUT ; thus,
by letting K select the same tuples, we have that also principal i in K can output m′i
at l. This suffices to conclude H v f K and proves Equation (6).

Termination In order to prove the termination property, it suffices to prove that

l ::
n−k+1
Π
j=1
〈〉 v f N̂k

n (7)

N̂k
n 6v f l ::

n−k
Π
j=1
〈〉 (8)

where N̂k
n , (ν̃l)(n

Π
i=1

li :: P̂k
i ‖ Nc) and process P̂k

i is defined like Pk
i but with action

out()@l in place of out(mi)@l. Clearly, if we only consider termination, Nk
n and N̂k

n

are ‘equivalent’, in the sense that a non-faulty principal produces an output value
in the first net if and only if its counterpart produces an output in the second net.
Thus, Equations (7) and (8) imply termination of the protocol, since they require
that at least n − k + 1 tuples are produced at l; by definition of the protocol, this is
possible only if at least n − k + 1 principals terminate successfully.

To prove equation (8), one can use the observer

n−k+1

O
def
= {test ↔ l} ‖ test ::

︷ ︸︸ ︷
in()@l. · · · .in()@l .out()@test

18

To prove Equation (7), we need two new laws, collected in the following Proposi-
tion. By the way, notice that the same laws would also hold for v and ' .

Proposition 6

(1) If n ≤ m, then l :: 〈t1〉| . . . |〈tn〉 v f l :: 〈t1〉| . . . |〈tm〉.
(2) If x < fn(P), then, for every n > 0 and i ∈ {1, . . . , n}, it holds that

(νl)(l :: in(!x)@l.P | 〈V1〉 | . . . | 〈Vn〉 ‖ Π
k
{l↔ lk})

' f (νl)(l :: P |
1..n
Π
j,i
〈V j〉 ‖ Π

k
{l↔ lk})

Now,

N̂k
n ' f (ν̃l)(n

Π
i=1

li :: in(!zi
1)@li.in(!zi

n−k+1)@li.out()@l | 〈d1〉 | . . . | 〈dn〉 ‖ Nc)

' f (ν̃l)(n
Π
i=1

li :: out()@l | 〈di1〉 | . . . | 〈dik−1〉 ‖ Nc)

' f l ::
n
Π
j=1
〈〉

w f l ::
n−k+1
Π
j=1
〈〉

The first two steps are derived by using Propositions 3(1) and 6(2); the third step
is derived by using Propositions 3(1) and 3(4) (notice that also the latter one still
holds in the framework with failures); the fourth step derives from Proposition 6(1).

4.2 Failure of Inter-Node Connections

Our model of failures can be easily tailored to also deal with failures of connections.
To this aim, we add the reduction rule

(R-FC) {l1 ↔ l2} 7−→ 0

to those of Table 3. The new rule models the (asynchronous and undetectable)
failure of the connection between nodes l1 and l2. Correspondingly, we add rule

(LTS-FC) {l1 ↔ l2}
τ
−→ 0

to those of Table 4. We still let v f denote the may testing preorder in this new
framework.

Discovering Neighbours In the example of Section 3 we assumed unchangeable
connections; however, when the (multi)set of connections in a net can change dur-
ing computations, routing tables must be dynamically updated, because the original

19

topology can change at runtime. This task is usually carried out by so-called adap-
tive (or dynamic) routing algorithms. Several proposals have been presented in the
literature and different standards adopt different solutions. However, all adaptive
routing algorithms are executed at regular time intervals and consist of two main
phases: first, each node discovers its neighbours; then, it calculates its routing table
by sharing local information with its neighbours. We present here a simple imple-
mentation of the first phase; the (more challenging) implementation of the second
phase is left for future work.

Existence of connection {l ↔ l′} can be tested by l through execution of action
eval(nil)@l′ which corresponds to sending a sort of ‘ping’ message to l′. If the
action succeeds, then a connection between l and l′ does exist; otherwise, nothing
can be said (e.g., the message could get lost or the connection could be congested
and this caused a delay to the message).

Soundness of the solution outlined above follows by proving that

l :: eval(nil)@l′.out(“conn”, l, l′)@l v f {l↔ l′} ‖ l :: 〈“conn”, l, l′〉 (9)

Indeed, if the left hand side of (9) successfully passes the test of an observer looking
for a tuple 〈“conn”, l, l′〉 at l, the connection {l↔ l′} must exist. By working like in
Proposition 3(2), we can prove that l :: eval(nil)@l′.out(“conn”, l, l′)@l v f {l ↔
l′} ‖ l :: out(“conn”, l, l′)@l that, by Proposition 3(1), implies (9).

5 Modelling Dynamic Connections

Finally, we present ‘full’ K, i.e. we extend the basic language of Section 2
with dynamically modifiable connections. To this aim, we add specific actions for
asking activation, for acceptance and for deactivation of a connection. Formally, we
modify the BNF rules for actions of Table 1 as follows:

a ::= . . . | conn(`) | acpt(`) | acpt(!u) | disc(`)

Intuitively, when executed at l, action conn(l′) asks for activation of a connection
between l and l′. When executed at l′, action acpt(l) authorises the activation of
a connection between l′ and l, while action acpt(!u) authorises the activation of
a connection between l′ and any network node asking for such an activation. Fi-
nally, action disc(l′), when executed at node l, deactivates a connection between l
and l′, if such a connection exists. Thus, activation of a connection requires mu-
tual agreement; this resembles the handshake of capabilities and co-capabilities in
Safe Ambients [23] needed to authorise movements. On the contrary, connection
deactivations can be asynchronously decided by any of the involved nodes.

These intuitions are formalised by the following operational rules, that are added

20

to those in Table 3:

(R-C1) l :: conn(l′).P ‖ l′ :: acpt(l).Q 7−→ l :: P ‖ {l↔ l′} ‖ l′ :: Q

(R-C2) l :: conn(l′).P ‖ l′ :: acpt(!u).Q 7−→ l :: P ‖ {l↔ l′} ‖ l′ :: Q[l/u]

(R-D) l :: disc(l′).P ‖ {l↔ l′} 7−→ l :: P ‖ l′ :: nil

Notice that action acpt(!u) is a binder for u in the continuation. We believe that both
forms of acpt are useful in practice. On one hand, acpt(!u) can be exploited by a
server willing to accept connection requests from any, initially unknown, client. On
the other hand, acpt(l) should be used if a process is ready to activate connections
only with a specific partner. Indeed, accepting connection requests from any pro-
cess through acpt(!x) and then, after checking the partner identity, disconnecting
the unwanted partners through disc, could expose a node to security risks because
the sequence of actions is not guaranteed to be performed atomically. It is worth
noticing that the form of client-server interaction enabled by acpt(!u) could not be
flexibly implemented by resorting to a shared tuple space storing connection re-
quests, because a connection between the node hosting the tuple space and that of
a potential client should be already in place for the client be able to put its request.

The fact that acpt(l) cannot be simulated via an acpt(!x) and a possible disc(x) is
also stressed by the following disequality:

l :: acpt(l′) 6'd l :: A with A
def
= acpt(!x).if x = l′ then nil else disc(x).A

where 'd denotes the may testing equivalence in the language with dynamic con-
nections. One observer that can be used to distinguish l :: acpt(l′) and l :: A is

O
def
= test :: conn(l).out()@test

Indeed, l :: A O, while l :: acpt(l′) O.

To properly adapt the LTS of Section 2.3 to the framework with modifiable connec-
tions, we add three new labels, corresponding to the new primitives of the language:

α ::= . . . | l1 : ?l2 | l1 : !l2 | l1 : ¬ l2

These new labels are exploited by the following rules, that are added to those in

21

Table 4:

(LTS-C) (LTS-A1)

l1 :: conn(l2).P
l1 : ?l2
−−−−−→ l1 :: P ‖ {l1 ↔ l2} l1 :: acpt(!x).P

l1 : !l2
−−−−−→ l1 :: P[l2/x]

(LTS-A2) (LTS-D)

l1 :: acpt(l2).P
l1 : !l2
−−−−−→ l1 :: P l1 :: disc(l2).P

l1 : ¬ l2
−−−−−→ l1 :: P

(LTS-E)

N1
l1 : ?l2
−−−−−→ N′1 N2

l2 : !l1
−−−−−→ N′2

N1 ‖ N2
τ
−→ N′1 ‖ N′2

(LTS-R)

N1
l1 : ¬ l2
−−−−−→ N′1 N2

l1y l2
−−−−→ N′2

N1 ‖ N2
τ
−→ N′1 ‖ N′2

Let us now explain the intuition behind the new labels and rules. Suppose that
N
α
−→ N′. If α = l1 : ?l2 , then this means that in N there is a process located at

l1 willing to activate a connection with l2 (see (LTS-C)); for the actual activa-
tion, the net must also contain a node with address l2 accepting such a request (see
(LTS-E)). Vice versa, if α = l1 : !l2 , then this means that in N there is a process
located at l1 willing to accept a request of connection with l2 (see (LTS-A1) and
(LTS-A2)); for the actual activation, the net must contain a node with address l1

that requires such a connection (see (LTS-E)). Finally, if α = l1 : ¬ l2 , then
this means that in N there is a process located at l1 willing to deactivate a connec-
tion with l2 (see (LTS-D)); for the actual deactivation, the net must contain the
connection {l1 ↔ l2} (see (LTS-R)).

In this new framework with modifiable connections, Proposition 2 must be adapted
to also include the following two possibilities:

(7) N
l1 : ¬ l2
−−−−−→ N′, K

l1y l2
−−−−→ K′, N̄ ≡ (ν̃l)(N′ ‖ K′) and α = τ

(8) N
l1 : ?l2
−−−−−→ N′, K

l2 : !l1
−−−−−→ K′, N̄ ≡ (ν̃l)(N′ ‖ K′) and α = τ

Message Delivery in a Dynamic Net We illustrate now an application of our
theory to a simplified scenario inspired by the handover protocol, proposed by the
European Telecommunication Standards Institute for the GSM Public Land Mobile
Network (PLMN). A formalisation of the protocol and its service specification can
be found in [25].

The PLMN is a cellular system which consists of Mobile Stations (MSs), Base
Stations (BSs) and Mobile Switching Centres (MSCs). MSs are mobile devices
that provide services to end users. BSs manage the interface between the MSs and
a stationary net; they control the communications within a geographical area (a
cell). Any MSC handles a set of BSs; it communicates with them and with other

22

MSCs using a stationary net.

A new user can enter the system by connecting its MS with a MSC that, in turn,
will decide the proper BS responsible for such a MS. Then, messages sent from the
user are routed to their destinations by the BS, passing through the MSC handling
the BS. It may happen that the BS responsible for a MS must be changed during the
computation (e.g., because the MS left the area associated to the BS and entered the
area associated to a different BS); this process is called ‘handover’. In this case, the
MSC should carry out the rearrangements needed to cope with the new situation,
without affecting the end-to-end communication.

We model the key features of a PLMN in K; however, for the sake of simplic-
ity, several aspects will be omitted, such as the criterion used to choose a proper BS
for a given MS or the event leading to a handover. Both MSs, BSs and MSCs are
modelled as nodes. For the sake of simplicity, we consider a very simple PLMN,
with one MSC (whose address is M) and two BSs (whose addresses are B1 and B2).
Moreover, we use a private repository at address Table used by M to store tempo-
rary information.

The process that handles the connection requests at M is

Enter
def
= acpt(!u).(Enter |

read(!v)@Table.eval(conn(u))@v.disc(u).out(u, v)@Table)

When a new user wants to join the PLMN, it has to perform a conn(M) from its
MS, with address, say, l1. In actual situations, this address, together with other
information (like the geographical area of the user or its credentials), are used by
the MSC to choose a proper BS; in our simplified scenario, however, we let M pick
out a BS’s address from Table. Then, the MSC activates a new connection from the
chosen BS to the MS and deactivates the connection from itself to the MS. Finally,
it records in Table the fact that the MS is under the control of the chosen BS.

Having entered the PLMN, the new user can send some message m to (the MS of)
a remote user with address, say, l2; this is achieved by letting the MS with address
l1 perform an action of the form out(‘send’, l2,m)@l1. Then, the BSs controlling
the MSs at l1 and l2 take care of delivering the message. In particular, let Bi be (the
address of) the BS associated to l1 and B j be (the address of) the BS associated to
l2 (for i, j ∈ {1, 2}). Then, the message is forwarded from Bi to B j by the process

Fwdi
def
= read(!u, Bi)@Table.(Fwdi |

in(‘send’, !v, !x)@u.in(v, !v′)@Table.out(v, x)@v′)

which is located at Bi. This process first retrieves the address l1 of the MS associated
to Bi; then, it collects the message at l1 and forwards it to B j, i.e. the BS associated

23

to the receiver MS at l2. Notice that, in doing this, Fwdi ‘locks’ the connection
between l2 and B j (by withdrawing tuple 〈l2, B j〉 from Table) until the message
can be delivered to l2; this is necessary to avoid a handover interfering with the
delivery of the message. The message is collected by B j and delivered to l2 through
the process

Clt j
def
= in(!v, !x)@B j.(Clt j | out(x)@v.out(v, B j)@Table)

which is located at B j. This process retrieves the message sent by Bi and passes it
to the receiver MS; then, it releases the ‘lock’ acquired by Bi on the connection
{B j ↔ l2} by putting back in Table the tuple 〈l2, B j〉. Of course, there are also
processes Fwd j and Clti running at B j and Bi respectively, but they do not play any
rôle in the delivery of message m from l1 to l2.

The handover is handled by the MSC through the following process:

Hndvr
def
= in(!u, !v)@Table.(Hndvr | read(!v′)@Table.

eval(disc(u))@v.eval(conn(u))@v′.out(u, v′)@Table)

This process first selects a MS-to-BS association to be changed (as we said before,
we do not model the reason why this is needed); then, it chooses a new BS, properly
changes the connections between the MS and the BSs, and updates the repository
at Table.

Therefore, the overall system is

S YS , (νTable, B1, B2)(M :: Enter | Hndvr ‖ Table :: 〈B1〉 | 〈B2〉

‖ B1 :: Fwd1 | Clt1 ‖ B2 :: Fwd2 | Clt2

‖ {M↔ Table} ‖ {M↔ B1} ‖ {M↔ B2}

‖ {Table ↔ B2} ‖ {Table ↔ B1} ‖ {B1 ↔ B2})

Its soundness can be formulated as:

(νl1, l2)(S YS ‖ l1 :: conn(M).out(‘send’, l2, ‘HI’)@l1

‖ l2 :: conn(M).in(‘HI’)@l2.out()@rcvd ‖ {l2 ↔ rcvd})

'd S YS ‖ rcvd :: 〈〉

(10)

This law states that the message from l1 to l2 is dispatched by the PLMN in any
execution context. We want to remark that l1 and l2 have been restricted only to
simplify proofs: the soundness of the protocol is not affected by the fact that the
MSs are not public. By following the intuition behind Equation (2) in Section 3, we
can also express the fact that the system must produce a datum at rcvd; we leave
this task to the reader.

24

To prove Equation (10), notice that the only visible actions that both sides of Equa-
tion (10) can perform are: M y M, rcvd y rcvd, 〈〉@ rcvd : rcvd and M : !l ,
for l < {Table, B1, B2, l1, l2}. Moreover, only the third one can be executed at most
once; the remaining ones can be executed an unbounded number of times. By re-
lying on inductive arguments and on the modified version of Proposition 2, this
suffices to conclude the proof.

6 Conclusions and Related Work

We have experimented with K, a process description language obtained by
enriching K with explicit inter-node connections. We have first presented a ba-
sic setting where connections are reliable and immutable; then, we have enriched
the basic framework with failures of nodes and connections, and with dynamic ac-
tivation/deactivation of connections. In each setting, we have used our formalisms
to specify and verify some non-trivial global computing applications. We have used
the may-testing preorder and equivalence to carry out proofs. Given the direct cor-
respondence of K with X-K, we believe that the study at the level of the
process description language can be faithfully transposed to guarantee correctness
of programs running on actual global computational infrastructures.

The equivalence we have introduced has allowed us to establish interesting proper-
ties of the systems taken into account. However, as a future work, we plan to define
finer equivalences (e.g. bisimulation-based equivalences), that could guarantee a
more stringent correspondence between specifications and implementations. We
also plan to enrich connections with weights that would permit establishing quan-
titative properties of global computing programs along the lines of [11] and [14].

The use of behavioural equivalences to prove soundness of protocols is well-
established in the field of process calculi; some notable examples are [1,25,29].
In particular, the handover protocol of the PLMN example has been first specified
in the π-calculus, then verified algebraically [25] and finally verified by means of
an automatic tool for proving π-calculus’ equivalences [29]. It is worth noting that,
however, our specification is radically simpler than that in [25,29]. Indeed, K
and π-calculus can be seen as formalisms standing at two different levels of ab-
straction: K is network aware and allows users to directly exploit knowledge
of the topology of the net; the π-calculus is at network level and permits to directly
refer network sockets (that can be represented as communication channels). We
can say that K clearly enlightens the key features of WANs, such as process
distribution, process mobility and inter-node connections. An encoding of such fea-
tures in the π-calculus (or in any simpler language) would hide such features within
complex process structures.

The problem of formalising and proving correctness of solutions to distributed con-

25

sensus problems in the presence of failures has been tackled with process algebraic
techniques also in [20]. In loc.cit., a new process algebra with failure detectors [9]
is introduced and properties of its operational semantics are exploited to carry out
the correctness proofs. The approach followed by the authors is somewhat ‘ad hoc’
and heavier than ours, that instead exploits a (simpler) equational setting. More-
over, it has to be said that failure detectors are difficult to implement in a global
computing scenario.

We conclude by comparing K with other recently proposed formalisms for
distributed computing from the linguistic point of view. The process language most
closely related to K is DπF [19]. This is a distributed version of the π-calculus
with an explicit representation of the state of the underlying network on which pro-
cesses execute. The state of each node and link is affected by the failures that can
occur during net evolution; processes can detect and react to such failures. Differ-
ently from K, in DπF failures are programmable (via two specific primitives,
kill and break) and detectable (via the primitive ping); we do not consider these
assumptions realistic in a global computing framework. Another notable difference
is that in K a deactivated connection can be re-established later on, via the
primitives conn/acpt, while this is not possible in DπF . Thus we have that in DπF

link failures are permanent, while in K they can also be transient. We may
say that K’s dynamic connections are more similar to software connections
rather than to physical links; physical links are better modelled by K’s static
connections (as presented in Sections 2 and 3) and by DπF’s links.

N P [28] is a distributed and agent-based core language inspired by the π-
calculus that relies on a net with flat topology where named agents can roam. Com-
munication between agents can take place only if they are co-located. However,
the language also provides a (high-level) primitive for remote communication, that
transparently delivers a message to an agent not co-located with the sender. This
primitive is then encoded by only using the local communication primitives via a
central forwarding server. The assumption that only co-located agents can commu-
nicate is, in our opinion, not natural in a global computing scenario; moreover, it is
not clear to us how the theory can be adapted to consider failures.

In DJoin [18], located mobile processes are hierarchically structured and form a
tree-like structure evolving during the computation. Entire subtrees, not just single
processes, can move and fail. Like in DπF , failures are programmable and can be
detected by processes. In our view, these choices make DJoin not a suitable model
of global computers; it is a more natural candidate for modelling the logical organi-
sation of a distributed system. Similar considerations hold for the Ambient calculus
[8], an elegant notation to model hierarchically structured distributed applications.
Moreover, no explicit notion of failures, close to actual global computing require-
ments, has been developed for Ambient so far.

26

Acknowledgements We would like to thank the anonymous referees for their sug-
gestions that helped in improving the paper.

References

[1] M. Abadi and A. Gordon. Reasoning about cryptographic protocols in the Spi calculus.
In Proc. of CONCUR ’97, volume 1243 of LNCS, pages 59–73. Springer, 1997.

[2] R. M. Amadio, I. Castellani and D. Sangiorgi. On bisimulations for the asynchronous
π-calculus. Theoretical Computer Science, 195(2):291–324, 1998.

[3] K. Arnold, E. Freeman, and S. Hupfer. JavaSpaces Principles, Patterns and Practice.
Addison-Wesley, 1999.

[4] L. Bettini and R. De Nicola. Interactive Mobile Agents in X-K. In SFM-05:Moby,
volume 3465 of LNCS, pages 29–68. Spinger, 2005.

[5] M. Boreale, R. De Nicola and R. Pugliese. Trace and testing equivalence on
asynchronous processes. Information and Computation, 172:139–164, 2002.

[6] M. Boreale, R. De Nicola and R. Pugliese. Basic observables for processes.
Information and Computation, 149(1):77–98, 1999.

[7] L. Cardelli. Abstractions for mobile computation. In Secure Internet Programming,
number 1603 in LNCS, pages 51–94. Springer, 1999.

[8] L. Cardelli and A. Gordon. Mobile ambients. Theoretical Computer Science,
240(1):177–213, 2000.

[9] T. Chandra and S. Toueg. Unreliable Failure Detectors for Reliable Distributed
Systems. Journal of the ACM, 43(2):225–267, 1996.

[10] S. Chaudhuri. More Choices Allow More Faults: Set Consensus Problems in Totally
Asynchronous Systems. Information and Computation, 105(1):132–158, 1993.

[11] R. De Nicola, G. Ferrari, U. Montanari, R. Pugliese, and E. Tuosto. A Process Calculus
for QoS-Aware Applications. In Proc. of COORDINATION’05, volume 3454 of LNCS,
pages 33–48. Springer, 2005.

[12] R. De Nicola, G. Ferrari and R. Pugliese. K: a Kernel Language for Agents
Interaction and Mobility. IEEE Trans. on Software Engineering, 24(5):315–330, 1998.

[13] R. De Nicola, D. Gorla, and R. Pugliese. On the expressive power of K-based
calculi. In Proc. of EXPRESS’04, ENTCS 128(2):117–130. Extended version to
appear in Theoretical Computer Science.

[14] R. De Nicola, D. Latella, and M. Massink. Formal modeling and quantitative analysis
of K-based mobile systems. In Proc. of SAC’05, pages 428–435. ACM, 2005.

[15] R. De Nicola and M. Hennessy. Testing equivalence for processes. Theoretical
Computer Science, 34:83–133, 1984.

27

[16] M. J. Fischer, N. A. Lynch and M. Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374–382, 1985.

[17] D. Ford, T. Lehman, S. McLaughry, and P. Wyckoff. T Spaces. IBM Systems Journal,
pages 454–474, August 1998.

[18] C.Fournet, G.Gonthier, J.Lévy, L.Maranget and D.Rémy. A calculus of mobile agents.
In Proc. of CONCUR’96, volume 1119 of LNCS, pages 406–421. Springer, 1996.

[19] A. Francalanza and M. Hennessy. A theory of system behaviour in the presence of
node and link failures. In CONCUR’05, volume 3653 of LNCS, pages 368–382.

[20] R. Fuzzati, M. Merro and U. Nestmann. Modelling Consensus in a Process Calculus.
In Proc. of CONCUR’03, volume 2761 of LNCS. Springer, 2003.

[21] D. Gelernter. Generative communication in Linda. ACM Transactions on
Programming Languages and Systems, 7(1):80–112, 1985.

[22] M. Hennessy and J. Riely. Resource Access Control in Systems of Mobile Agents.
Information and Computation, 173:82–120, 2002.

[23] F. Levi and D. Sangiorgi. Controlling interference in ambients. In Proceedings of
POPL ’00, pages 352–364. ACM, Jan. 2000.

[24] A. Omicini and F. Zambonelli. Coordination of mobile information agents in TuCSoN.
Internet Research, 8(5):400–413, 1998.

[25] F. Orava and J. Parrow. An algebraic verification of a mobile network. Formal Aspects
of Computing, 4:497–543, 1992.

[26] J. Parrow. An introduction to the pi-calculus. In Handbook of Process Algebra, pages
479–543. Elsevier Science, 2001.

[27] G. Picco, A. Murphy and G.-C. Roman. L: Linda Meets Mobility. In Proc. of the
21st Int. Conference on Software Engineering, pages 368–377. ACM, 1999.

[28] A. Unyapoth and P. Sewell. Nomadic Pict: Correct communication infrastructures for
mobile computation. In Proc. of POPL ’01, pages 116–127. ACM, 2001.

[29] B. Victor and F. Moller. The Mobility Workbench – a tool for the π-calculus. In Proc.
of CAV ’94, volume 818 of LNCS, pages 428–440. Springer, 1994.

28

