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Abstract

We develop the semantic theory of a foundational language for modelling applications over
global computers whose interconnection structure can be explicitly manipulated. Together with
process distribution, process mobility and remote asynchronous communication through dis-
tributed data repositories, the language provides constructs for explicitly modelling inter-node
connections and for dynamically activating and deactivating them. For the proposed language,
we define natural notions of extensional observations and study their closure under operational
reductions and/or language contexts to obtain barbed congruence and may testing equivalence.
For such equivalences, we provide alternative characterizations in terms of a labelled bisimu-
lation and a trace equivalence that can be used for actual proofs. We discuss how the language
and its theory can be extended to include more sophisticated features that enable a finer control
on the activation of connections. To asses practical usability of the semantic theory, we model a
scenario for communications between mobile devices and use the introduced proof techniques
to analyze it and verify some relevant properties.

∗This paper is an extended and revised version of [15] and was mainly written when the second author was a PhD
student in Florence.
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1 Introduction

Programming global computational infrastructures for offering uniform services over wide area
networks has become one of the main issues in Computer Science. Innovative theories, computa-
tional paradigms, linguistic mechanisms and implementation techniques have been proposed that
have to face the challenges posed by issues like communication, cooperation, mobility, resource
usage, security, failure handling, etc. . We have thus witnessed the birth of many calculi and ker-
nel languages intended to support programming of global systems and to provide formal tools for
reasoning over them. These formalisms in general provide constructs and mechanisms, at different
abstraction levels, for modelling the execution contexts of the network where applications roam and
run, for coordinating and monitoring the use of resources, for expressing process communication
and mobility, and for specifying and enforcing security policies.

Much research effort has been devoted to study the impact of different communication and
mobility paradigms, but little attention has been devoted to the modelling of the actual network
underlying global computers as such. Usually, the model of the network implicitly originates from
the linguistic choices concerning the mobility paradigm. All foundational languages proposed in
the literature intend migration as the movement either of processes or of some other entities having
executable content (such as nodes themselves). Thus, the former languages model the network as
an evolving graph of fully connected nodes (see e.g., Dπ-calculus [23], KLAIM [13], Nomadic Pict
[40], π1`-calculus [1]) whereas the latter ones model the network as an evolving forest of trees (see
e.g., Ambient [9] and its variants, DJoin [18], Homer [24], M-calculus [38], Seal [10]). In our view,
both approaches do not convincingly model global computers (the Internet is neither a clique nor a
forest of trees) and lack of flexibility (e.g. ‘sharing of resources’ is difficult to control and requires
complex modelling).

In [16] we introduce a new modelling language that takes its origin from two formalisms with
opposite objectives, namely the programming language X-KLAIM [3] and the π-calculus [29]. The
former one is a full fledged programming language based on KLAIM [13], whereas the latter one
is the generally recognized minimal common denominator of calculi for mobility. The resulting
model has been called TKLAIM (Topological KLAIM); it retains the main features of KLAIM (distri-
bution, remote operations, process mobility and asynchronous communication through distributed
data spaces), but extends it with new constructs to flexibly model the interconnection structure un-
derlying a network. TKLAIM provides two specific process primitives (inspired by those presented
in [4]) to activate and deactivate inter-node connections. Connections become essential to perform
remote operations: these are possible only if the node where they are initiated and the target one are
directly connected.

Here, we develop the semantic theory of TKLAIM. We introduce two abstract semantics, barbed
congruence and may testing, that are obtained as the closure under operational reductions and/or
language contexts of the extensional equivalences induced by what we consider basic observables
for global computers. For deciding the observables to use, we have been struggling with the fol-
lowing ones:

i. a specific node is up and running (i.e., it provides a datum of any kind)

ii. a specific information is available in (at least) a node,

iii. a specific information is present at a specific node.

Other calculi for global computers make use of (barbed) congruences induced by similar observ-
ables: for example, Ambient uses barbs that are somewhat related to i. ; the barbs in Dπ-calculus
instead, are strongly related to iii. . Within our framework, we prove that, by closing observations
under any TKLAIM context, the three basic observables all yield the same congruence. This is
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already an indication of the robustness of the resulting semantic theories. Moreover, the observ-
ables are powerful enough to yield interesting semantic theories also when considering lower-level
features, such as failures [16].

Of course, the step that comes next after defining equivalences as context closure is determining
some alternative characterizations that would permit to better appreciate their discriminating power
and to devise proof techniques that avoid universal quantification over contexts (that would render
equivalence checking very hard).

In this paper, we focus on the barbed and may equivalences induced by the first basic observ-
able (a node is up and running) and define alternative characterizations in terms of labelled weak
bisimilarity and trace equivalence, resp. . Trace equivalence often suffices to express properties of
interest for programs (e.g., those properties that can be expressed in terms of reachability of a par-
ticular state), whereas weak bisimilarity usually enjoys more effective proof techniques (and can be
itself considered as a sound proof technique for the former). For these reasons we will study both
equivalences and experiment with them on an example application.

To develop the alternative characterisations of the two abstract semantics of interest, we intro-
duce and exploit a labelled transition system (LTS). A distinctive feature of our LTS is that labels
indicate the resources a term offers or requires to the execution context for combined evolution,
whereas usually they indicate the actions performed by the term. We define weak bisimilarity on
top of this LTS and define trace equivalence on a slightly modified LTS. For both the equivalences
we present soundness and completeness results with respect to barbed equivalence and may testing,
respectively. The actual development of the alternative characterizations, although performed along
the lines of similar results for CCS [30, 7] and π-calculus [36, 2], had to face problems raised by
process distribution and mobility, by the explicit modelling of connections and by asynchrony.

We then focus on a smooth variant of TKLAIM where a handshake between the nodes involved
is necessary to activate a connection. This mechanism is implemented by introducing a new pro-
cess primitive that, by synchronizing with a connection request, authorises the activation of a new
connection (this is similar to the so-called co-capabilities of Safe Ambients [27]). Instead, discon-
nections are still modeled as unilateral (and, then, asynchronous) events. Also in this finer scenario,
we develop an alternative characterization of barbed equivalence in terms of weak bisimilarity and
discuss on a trace-based proof-technique for may testing.

The rest of the paper is organized as follows. In Section 2 we present TKLAIM’s syntax and
reduction-based semantics. In Section 3 we define barbed congruence and may testing, while in
Sections 4 and 5 we develop their alternative characterizations. In Section 6, we present an ex-
tension of the language and its theory to model a finer scenario where a handshaking between the
involved nodes is needed to activate connections. In Section 7 we illustrate an example of the use of
TKLAIM and of its semantic theories to state and prove properties of global computing applications.
Finally, in Section 8 we conclude by also touching upon related work.

W.r.t. the extended abstract [15], here we give full details of proofs, we simplify the LTS (by
reducing the number of labels), we present the variant where connections must be authorised and
we give a sample application of both bisimulation and trace equivalence to a simplified real-life
scenario.

2 The Process Language TKLAIM

In this section, we present the syntax of TKLAIM and its operational semantics based on a structural
congruence and a reduction relation.
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Nets: N ::= 0
∣∣∣ l :: C

∣∣∣ {l1 ↔ l2}
∣∣∣ N1 ‖ N2

∣∣∣ (νl)N

Components: C ::= 〈l〉
∣∣∣ P

∣∣∣ C1 | C2

Processes: P ::= nil
∣∣∣ a.P

∣∣∣ P1 | P2

∣∣∣ ∗P
Actions: a ::= in(!x)@u

∣∣∣ in(u2)@u1

∣∣∣ out(u2)@u1

∣∣∣ eval(P)@u
∣∣∣ new(l)

∣∣∣ conn(u)
∣∣∣ disc(u)

Table 1: TKLAIM Syntax

2.1 Syntax

The syntax of TKLAIM is reported in Table 1, where we assume the existence of a countable set
of names, ranged over by l, l′, . . . , u, . . . , x, y, . . .. Names provide the abstract counterpart of the set
of communicable objects and can be used as localities or variables; notationally, we prefer letters
l, l′, . . . when we want to stress the use of a name as a locality, and x, y, . . . when we want to stress
the use of a name as a variable. We will use u for variables and localities.

Nets, ranged over by N,M,H,K, . . ., are finite collections of nodes and inter-node connections.
A node is a pair l :: C, where locality l is the address of the node and C is the (parallel) component
located at l. Components, ranged over by C,D, . . ., can be either processes or data, denoted by
〈l〉. Connections are pairs of node addresses {l1 ↔ l2} stating that the nodes at address l1 and l2
are directly (and bidirectionally1 ) connected. In (νl)N, name l is private to N; the intended effect
is that, if one considers the term M ‖ (νl)N, then locality l of N cannot be referred from within
M. We consider restricted names as private network addresses and we shall arrange to work with
nets where restricted names correspond to actual nodes. Therefore, in the sequel, we assume this
condition holds for nodes created at the outset; for nodes created dynamically this follows from the
operational semantics, see rule (R-NEW) in Table 4.

Processes, ranged over by P,Q,R, . . ., are the TKLAIM active computational units and may be
executed concurrently either at the same locality or at different localities. They are built from the
inert process nil and from the basic actions by using prefixing, parallel composition and replication.
Actions permit removing/adding data from/to node repositories (actions in and out), activating new
threads of execution (action eval), creating new nodes (action new), and activating and deactivating
connections (actions conn and disc). Notice that in(l)@l′ differs from in(!x)@l′ in that the former
evolves only if datum 〈l〉 is present at l′, whereas the latter accepts any datum. Indeed, in(l)@l′ is a
form of name matching operator reminiscent of LINDA’s [21] pattern-matching.

Names occurring in TKLAIM processes and nets can be bound. More precisely, prefix
in(!x)@u.P binds x in P; prefix new(l).P binds l in P, and, similarly, net restriction (νl)N binds
l in N. A name that is not bound is called free. The sets fn(·) and bn(·) of free and bound names of
a term, respectively, are defined accordingly (their definitions are shown in Table 2). The set n(·)
of names of a term is the union of its free and bound names. As usual, we say that two terms are
alpha-equivalent, written ≡α, if one can be obtained from the other by renaming bound names. We
shall say that a name u is fresh for if u < n( ). In the sequel, we shall work with terms whose
bound names are all distinct and different from the free ones.

Notation 2.1 We write A
�

W to mean that A is of the form W; this notation is used to assign a

1For the sake of simplicity, we assumed bidirectional connections; nevertheless, all the developed theory could be
tailored to the framework where connections are directed.
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a fn( ) bn( )

in(!x)@u {u} {x}
in(u2)@u1 {u1, u2} ∅

out(u2)@u1 {u1, u2} ∅

eval(P)@u fn(P) ∪ {u} bn(P)
new(l) ∅ {l}

conn(u) {u} ∅

disc(u) {u} ∅

C fn( ) bn( )

〈l〉 {l} ∅

C1 | C2 fn(C1) ∪ fn(C2) bn(C1) ∪ bn(C2)
nil ∅ ∅

a.P (fn(P) − bn(a)) ∪ fn(a) bn(P) ∪ bn(a)
∗P fn(P) bn(P)

N fn( ) bn( )

0 ∅ ∅

l :: C {l} ∪ fn(C) bn(C)
{l1 ↔ l2} {l1, l2} ∅

N1 ‖ N2 fn(N1) ∪ fn(N2) bn(N1) ∪ bn(N2)
(νl)N fn(N) − {l} bn(N) ∪ {l}

Table 2: Free and bound names

symbolic name A to the term W . We shall use notation ·̃ to denote a possibly empty set of objects
(e.g. l̃ is a set of names). If x̃ = {x1, . . . , xn} and ỹ = {y1, . . . , ym}, then (x̃, ỹ) will denote the set of
pairwise distinct elements {x1, . . . , xn, y1, . . . , ym}. We shall sometimes write in()@l, out()@l and
〈〉 to mean that the argument of the actions or the datum are irrelevant. Finally, we omit tailing

occurrences of process nil and write
n
Π
j=1

Wj for the parallel composition of homologous terms (i.e.,

components or nets) Wj.

2.2 Operational Semantics

TKLAIM operational semantics relies on a structural congruence and a reduction relation. The
structural congruence, ≡, identifies nets which intuitively represent the same net. It is defined
as the least congruence relation over nets that satisfies the laws in Table 3. The first eight laws
are taken from the π-calculus (see, e.g., [35]). In the sequel, by exploiting Notation 2.1 and law
(RCOM), we shall write (ν̃l)N to denote a net with a (possible empty) set l̃ of restricted localities.
Additionally, law (ABS) is the equivalent of law (PZERO) for ‘|’ and law (CLONE) transforms
a parallel between co-located components into a parallel between nodes; hence, monoidality of
‘|’ can be obtained by relying on (PCOM) and (PASS). Laws (SELF), (BIDIR) and (CONNODE)
are used to handle connections: the first one states that nodes are self-connected, the second one
states that connections are bidirectional and the third one states that connections can be placed only
between existing nodes.

The reduction relation is given in Table 4. In (R-OUT) and (R-EVAL), the existence of a connec-
tion between the nodes source and target of the action is necessary to place the spawned component.
Notice that existence of the connection can only be checked at run-time: an approach like [23] does
not fit well in a global computing setting because it relies on a typing mechanism that would require
to statically know the whole net. (R-IN) and (R-MATCH) additionally require the existence of a
matching datum in the target node. (R-MATCH) states that action in(l)@l2 consumes exactly the
datum 〈l〉 at l2, whereas (R-IN) states that action in(! x)@l2 can consume any 〈l〉 at l2; l will then
replace the free occurrences of x in the continuation of the process performing the action. (R-NEW)
states that execution of action new(l′) creates a new node at the restricted address l′ and a connec-
tion with the creating node l. Finally, (R-CONN) and (R-DISC) deal with activation/deactivation
of connections. In the first case, existence of the connected nodes is checked; in the second case,
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(ALPHA) N ≡ N′ if N ≡α N′

(PZERO) N ‖ 0 ≡ N

(PCOM) N1 ‖ N2 ≡ N2 ‖ N1

(PASS) (N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)

(RCOM) (νl1)(νl2)N ≡ (νl2)(νl1)N

(EXT) N1 ‖ (νl)N2 ≡ (νl)(N1 ‖ N2) if l < fn(N1)

(GARB) (νl)0 ≡ 0

(REPL) l :: ∗P ≡ l :: P | ∗P

(ABS) l :: C ≡ l :: (C|nil)

(CLONE) l :: C1|C2 ≡ l :: C1 ‖ l :: C2

(SELF) l :: nil ≡ l :: nil ‖ {l↔ l}

(BIDIR) {l1 ↔ l2} ≡ {l2 ↔ l1}

(CONNODE) {l1 ↔ l2} ≡ l1 :: nil ‖ {l1 ↔ l2}

Table 3: Structural Congruence

existence of the connection to be deactivated is checked.
TKLAIM adopts a LINDA-like [21] communication mechanism: communication is asyn-

chronous and data are anonymous. Indeed, no synchronization takes place between (sending and
receiving) processes, because their interactions are mediated by nodes, that act as data repositories.
For the sake of simplicity, we only consider monadic data, but the semantic theories we develop
could be smoothly extended to deal with tuples of data and with a full-blown LINDA-like pattern
matching mechanism (these extensions, for example, will be exploited in Section 7).

If N 7−→ N′, we shall say that N can perform a reduction step and that N ′ is a reduct of N. We
shall use |=⇒ to denote the reflexive and transitive closure of 7−→.

3 Observables, Closures and Equivalences

In this section we present both a linear time and a branching time equivalence that yield sensible
semantic theories for TKLAIM. The approach we follow relies on the definition of an observable
(also called barb), namely a predicate that highlights the interaction capabilities of a term.

Definition 3.1 (Observables or barbs) Predicate N ↓ l holds true if N ≡ (ν l̃)(N′ ‖ l :: 〈l′〉), for
some l̃, N′ and l′ such that l < l̃. Predicate N ⇓ l holds true if N |=⇒ N ′ for some N′ such that N′ ↓ l.

We have chosen the basic observables by taking inspiration from those used for the asynchronous
π-calculus [2]. One may wonder if our choice is “correct” and argue that there are other alternative
notions of basic observables that seem quite natural. We have already proposed a few alternative
observables in the Introduction; later on, we shall prove that the congruences induced by such
observables do coincide. This means that our results are quite independent from the observable
chosen and vindicates our choice. We want to remark that, by using other kinds of observables,
more equivalences could be captured. For example, in [7], some observables are introduced that
capture must testing and fair testing in the context of CCS.
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(R-OUT)
l1 :: out(l)@l2.P ‖ {l1 ↔ l2} 7−→ l1 :: P ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉

(R-EVAL)
l1 :: eval(P2)@l2.P1 ‖ {l1 ↔ l2} 7−→ l1 :: P1 ‖ {l1 ↔ l2} ‖ l2 :: P2

(R-IN)
l1 :: in(!x)@l2.P ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉 7−→ l1 :: P[l/x] ‖ {l1 ↔ l2}

(R-MATCH)
l1 :: in(l)@l2.P ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉 7−→ l1 :: P ‖ {l1 ↔ l2}

(R-NEW)
l :: new(l′).P 7−→ (νl′)(l :: P ‖ {l↔ l′})

(R-CONN)
l1 :: conn(l2).P ‖ l2 :: nil 7−→ l1 :: P ‖ {l1 ↔ l2}

(R-DISC)
l1 :: disc(l2).P ‖ {l1 ↔ l2} 7−→ l1 :: P ‖ l2 :: nil

(R-PAR)
N1 7−→ N′1

N1 ‖ N2 7−→ N′1 ‖ N2

(R-RES)

N 7−→ N′

(νl)N 7−→ (νl)N′

(R-STRUCT)
N ≡ M 7−→ M′ ≡ N′

N 7−→ N′

Table 4: TKLAIM Operational Semantics

We use observables to define equivalence relations that identify those nets that cannot be taken
apart by any basic observation in any execution context.

Definition 3.2 (Contexts) A context C[·] is a TKLAIM net with an occurrence of a hole [·] to be
filled in with any net. Formally,

C[·] ::= [·]
∣∣∣ N ‖ C[·]

∣∣∣ (νl)C[·]

By relying on laws (EXT) and (RCOM), every context can be put in a particular syntactic form, with
all the restrictions at top-level; thus, when convenient, we shall use (ν l̃)([·] ‖ K) – for any net K
without restriction – to identify all those contexts C[·] that are structurally equivalent to it.

Definition 3.3 A binary relation < between nets is

� barb preserving, if N<M and N ⇓ l imply M ⇓ l;

� reduction closed, if N < M and N 7−→ N ′ imply M |=⇒ M′ and N′ < M′, for some M′;

� context closed, if N < M implies C[N]< C[M], for every context C[·].

Our touchstone equivalences should at the very least relate nets with the same observable behaviour;
thus, they must be barb preserving. However, an equivalence defined only in terms of this property
would be too weak: indeed, the set of barbs of a net may change during computations or when in-
teracting with the external environment. Moreover, for the sake of compositionality, our touchstone
equivalences should also be congruences. These requirements lead us to the following definitions.

Definition 3.4 (May testing) ' is the largest symmetric, barb preserving and context closed rela-
tion between nets.
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Definition 3.5 (Barbed congruence) � is the largest symmetric, barb preserving, reduction and
context closed relation between nets.

The above definition of barbed congruence is the standard one, see [25, 35]. May testing is, instead,
usually defined in terms of observers, computations and success of a computation [17]. Intuitively,
two nets are may testing equivalent if they cannot be distinguished by any external observer taking
note of the data offered by the observed nets. Here we prove that such an alternative characterization
can be given for '.

Definition 3.6 (Observers) Observers, ranged over by O, O′, O1, . . . , are nets whose processes
and nodes can use the distinct and reserved locality name test as address of a node or as target of
operations.

Definition 3.7 (Computations) Computations from N ‖ O are (possibly infinite) sequences of re-
ductions of the form N ‖ O (≡ (νl̃0)(N0 ‖ O0)) 7−→ (νl̃1)(N1 ‖ O1) 7−→ · · · . Such a computation is
successful if there is some i ≥ 0 such that Oi ≡ O′ ‖ test :: 〈〉 and test < l̃i. We write N MAY O
whenever there exists a successful computation from N ‖ O.

Definition 3.8 N '′ M if, for every observer O, it holds that N MAY O if and only if M MAY O.

Proposition 3.9 � ⊂ ' = '′.

Proof: By definition, it trivially follows that � is contained in '. The inclusion is strict: a pair of
may-testing equivalent nets that are not barbed congruent is

� (νl)(l :: out( )@l′.out( )@l ‖ l1 :: in( )@l.out( )@l1 ‖ l2 :: in( )@l.out( )@l2)

� (νl)(l :: out( )@l ‖ l1 :: in( )@l.out( )@l′.out( )@l1 ‖ l2 :: in( )@l.out( )@l′.out( )@l2).

Such nets mimic the CCS processes (l̄′.l̄ | l.l̄1 | l.l̄2)\l and (l̄ | l.l̄′.l̄1 | l.l̄′.l̄2)\l that, written in terms of
the internal choice operator ‘⊕’, become l̄′.(l̄1 ⊕ l̄2) and l̄′.l̄1 ⊕ l̄′.l̄2. It is well-known [17] that such
processes are may testing equivalent but not barbed congruent.

We now prove that ' = '′ . We start with ' ⊆ '′ . Let N ' M and take an observer O such that
N MAY O. Then, by context closure, N ‖ O ' M ‖ O and, by barb preservation, N ‖ O ⇓ test
(that comes from N MAY O) implies that M ‖ O ⇓ test. Since test is a name occuring only in O
(by definition of observers), it must be M MAY O, as required.

Vice versa, to prove that '′ ⊆ ' , it suffices to prove that '′ is barb preserving and con-
text closed. Let N '′ M. For barb preservation, let N ⇓ l and consider O

�
test ::

in(!x)@l.out()@test ‖ {test ↔ l}. Then, N MAY O that, by hypothesis, implies M MAY O.
Now, because of freshness of test, this is possible only if M ⇓ l. For context closure, the proof is
by induction on the structure of the context C[·]. The base case is trivial. For the inductive case, we
have two possibilities:

� C[·]
�
D[·] ‖ H. By induction, we may assume that D[N] '′ D[M]. Let O be an observer

such that C[N] MAY O. We now consider the observer H ‖ O; by Definition 3.8, by induction
and by the fact that D[N] MAY H ‖ O, we have that D[M] MAY H ‖ O. By rule (PASS)
and because ≡ ⊆ '′, this implies C[M] MAY O.

� C[·]
�

(νl)D[·]. Since l is bound, we can assume, up-to alpha-equivalence, that l < n(O)
for any observer O. Now, C[N] MAY O if and only if D[N] MAY O (and similarly when
replacing N with M). By induction, D[N] '′ D[M]; this suffices to conclude.
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The problem with the definitions of barbed congruence and may testing is that context closure
makes it hard to prove equivalences due to the universal quantification over contexts. In the follow-
ing sections, we shall provide two alternative characterisations of � and ' , as a bisimulation-based
and as a trace-based equivalence, respectively.

Before doing this, we show that we can change the basic observables without changing the
congruences they induce; this proves the robustness of our touchstone equivalences and supports
our choice. Recalling from the Introduction, other two reasonable observables in our framework
are existence of a specific (visible) datum at some node of a net and existence of a specific datum
at a specific node of a net.

Definition 3.10 (Alternative Touchstone Equivalences) Let �1, �2 '1 and '2 be the barbed con-
gruences and the may testing equivalences obtained by replacing the observable of Definition 3.1,
respectively, with the following ones:

1. N ↓ 〈l〉 if N ≡ (ν̃l)(N′ ‖ l′ :: 〈l〉) for some N′, l′ and l̃ such that {l, l′} ∩ l̃ = ∅

2. N ↓l 〈l′〉 if N ≡ (ν̃l)(N′ ‖ l :: 〈l′〉) for some N′ and l̃ such that {l, l′} ∩ l̃ = ∅

We now prove that, thanks to context closure, �1 and �2 coincide with �, and that '1 and '2

coincide with '.

Proposition 3.11 �1 = �2 = � and '1 = '2 = '.

Proof: Notice that we only need to consider barb preservation. Indeed, context and reduction
closure (the latter one only in the case of barbed congurences) are ensured by definition. We ex-
plicitly present the case for barbed congruences; the proofs for may testing can then be rephrased
straightforwardly.

�2 ⊆ �1. Let N �2 M. Suppose that N ⇓ 〈l′〉. This implies that ∃ l : N ⇓l 〈l′〉. Hence, by
hypothesis, M ⇓l 〈l′〉 that, by definition, implies M ⇓ 〈l′〉.

�1 ⊆ �. Let N �1 M and N ⇓ l, i.e. N |=⇒ (ν̃l)(N′ ‖ l :: 〈l′〉). Then M ⇓ l, otherwise the context
[·] ‖ l′′ :: in(!x)@l.out(l′′)@l′′ ‖ {l↔ l′′}, for l′′ fresh, would break �1.

� ⊆ �2. Let N � M and N ⇓l 〈l′〉, i.e. N |=⇒ (ν̃l)(N′ ‖ l :: 〈l′〉). Then M ⇓l 〈l′〉, otherwise the
context [·] ‖ l′′ :: in(l′)@l.out(l′′)@l′′ ‖ {l↔ l′′}, for l′′ fresh, would break �.

4 Bisimulation Equivalence

We now provide a more tractable characterisation of barbed congruence by means of a labelled
bisimulation. To this aim, we start by presenting an alternative (but equivalent w.r.t. the reductions
of Table 4) semantics for TKLAIM by means of a labelled transition system. We then present the
bisimulation-based characterisation of barbed congruence and prove that the two equivalences do
coincide.

4.1 A Labelled Transition System for Labelled Bisimulation

The labelled transition system (LTS) makes apparent the possible contributions that a net can of-

fer/require in a computation. The labelled transition relation,
α
−→ , is defined as the least relation

over nets induced by the inference rules in Table 5. Labels take the form

β ::= l1
� l2

∣∣∣ 〈l〉@ l1 : l2 α ::= τ
∣∣∣ β

∣∣∣ ∃?β
∣∣∣ (νl) 〈l〉@ l1 : l2
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(LTS-LINK)

{l1 ↔ l2}
l1 � l2
−−−−→ l1 :: nil ‖ l2 :: nil

(LTS-DATUM)

l1 :: 〈l〉
〈l〉@ l1: l1
−−−−−−−−→ l1 :: nil

(LTS-CONN)
l1 :: conn(l2).P

∃?l2 � l2
−−−−−→ l1 :: P ‖ {l1 ↔ l2}

(LTS-DISC)
l1 :: disc(l2).P

∃?l1 � l2
−−−−−→ l1 :: P ‖ l2 :: nil

(LTS-EVAL)
l1 :: eval(P2)@l2.P1

∃?l1 � l2
−−−−−→ l1 :: P1 ‖ {l1 ↔ l2} ‖ l2 :: P2

(LTS-OUT)
l1 :: out(l)@l2.P

∃?l1 � l2
−−−−−→ l1 :: P ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉

(LTS-IN)
l1 :: in(! x)@l2.P

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ l1 :: P[l/x] ‖ {l1 ↔ l2}

(LTS-MATCH)
l1 :: in(l)@l2.P

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ l1 :: P ‖ {l1 ↔ l2}

(LTS-NEW)
l :: new(l′).P

τ
−→ (νl′)(l :: P ‖ {l↔ l′})

(LTS-OFFER)

N1
〈l〉@ l2: l2
−−−−−−−−→ N′1 N2

l1 � l2
−−−−→ N′2

N1 ‖ N2
〈l〉@ l2: l1
−−−−−−−−→ N′1 ‖ N′2

(LTS-OPEN)

N
〈l〉@ l2: l1
−−−−−−−−→ N′ l < {l1, l2}

(νl)N
(νl) 〈l〉@ l2: l1
−−−−−−−−−−→ N′

(LTS-COMPL)

N1
∃?β
−−→ N′1 N2

β
−→ N′2

N1 ‖ N2
τ
−→ N′1 ‖ N′2

(LTS-RES)

N
α
−→ N′ l < n(α)

(νl)N
α
−→ (νl)N′

(LTS-PAR)

N1
α
−→ N2 bn(α) ∩ fn(N) = ∅

N1 ‖ N
α
−→ N2 ‖ N

(LTS-STRUCT)

N ≡ N1 N1
α
−→ N2 N2 ≡ N′

N
α
−→ N′

Table 5: A Labelled Transition System

In the sequel, we shall write (ν̃l) 〈l〉@ l1 : l2 to denote label 〈l〉@ l1 : l2 , if l̃ = ∅, and label
(νl) 〈l〉@ l1 : l2 otherwise (i.e. if l̃ = {l}). Moreover, we let bn(α) be l̃ if α = (ν̃l) 〈l〉@ l1 : l2 and
be ∅ otherwise; fn(α) and n(α) are defined accordingly.

Let us now explain the intuition behind the labels of the LTS and some key rules. Label α in

N
α
−→ N′ can be

τ : this means that N may perform a reduction step to become N ′ (see Proposition 4.4).

l1
� l2 : this means that a direct connection between nodes l1 and l2 is offered (see (LTS-LINK)).

(ν̃l) 〈l〉@ l1 : l2 : this means that a datum 〈l〉 located at l1 is offered to a process located at l2 (see
(LTS-DATUM) and (LTS-OFFER)). Moreover, according to whether l̃ = {l} or l̃ = ∅, l is
restricted in N or not (see (LTS-OPEN)).

∃?l1
� l2: this means that there is a process located at l1 that needs existence of a connection with
l2 (see rules (LTS-DISC), (LTS-OUT) and (LTS-EVAL)). Moreover, if l1 = l2, it can also
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be that a process in the net requires the existence of node l2 (see rule (LTS-CONN) and the
structural rule (SELF)). In both cases, such requirement is satisfied by a ‘complementary’
label l1

� l2 (see rule (LTS-COMPL)).

∃? 〈l〉@ l2 : l1 : this means that there is a process located at l1 that needs to retrieve the datum 〈l〉
from l2 (see (LTS-IN) and (LTS-MATCH)). For the retrieval to succeed, a direct connection
between such nodes is also needed (see (LTS-COMPL)).

To sum up briefly, labels of kind l1
� l2 and (ν̃l) 〈l〉@ l1 : l2 point out the structure of a net, and

account for the resources (connections and data) the net can ‘offer’ to the execution context as a
contribution to combined evolution. On the other hand, labels of kind ∃?β describe the resources a
net ‘requires’ to the execution context for combined evolution. For example, (LTS-OUT) should be
read as: “process out(l)@l2.P running at l1 is willing to send a component at l2; when such intention
is concretised (i.e., when the execution context provides the connection needed), l1 will host process
P for execution and will run in a net where the connection {l1 ↔ l2} does exist and the datum 〈l〉 is
placed at l2”. Indeed, since label ∃?l1

� l2 requires the existence of the connection {l1 ↔ l2}, every
execution context satisfying this requirement allows the sending net to assume the existence of the
connection required; this enables the net to place the datum at the target node. Rules (LTS-EVAL),
(LTS-IN), (LTS-MATCH), (LTS-CONN) and (LTS-DISC) should be interpreted similarly.

Notably, pointing out what the context should provide for an action to be performed, rather than
the action itself, permits using the same label for all those actions with similar requirements (viz.
out, eval and disc), instead of having a different label for each possible action. This has a positive
impact on all those proofs that proceed by case analysis on the labels of the LTS.

Rule (LTS-OPEN) signals extrusion of bound names; as in some presentation of the π-calculus
(see, e.g., [35]), this rule is used to investigate the capability of processes to export bound names,
rather than to actually extend the scope of bound names. This is instead achieved through the struc-
tural law (EXT); in fact, in (LTS-COMPL) labels do not carry any restriction on names, whose scope
must have been previously extended. (LTS-RES), (LTS-PAR) and (LTS-STRUCT) are standard.

Notice that the LTS of Table 5 may appear unnecessarily complicated as a tool to define the
operational semantics of TKLAIM: consider, e.g., the right hand side of the axioms. Nevertheless,
it is adequate as a tool to establish the alternative, more tractable, characterisation of barbed bisim-
ulation (the only transitions having a counterpart in the reduction semantics are those labelled by
τ). Indeed, the complications in the operational rules of Table 5 resemble those arisen in [39] when
defining an ‘equivalent’ LTS depending on the reduction semantics of a calculus. However, in [39]
only simple calculi are considered and it would be challenging to investigate if the approach can be
satisfactory extended to TKLAIM.

Notation 4.1 We shall write N
α
−→ to mean that there exists a net N ′ such that N

α
−→ N′. Alternatively,

we say that N can perform a α-step. Moreover, we shall usually denote relation composition by

juxtaposition; thus, e.g., N
α
−→
α′

−→ M means that there exists a net N ′ such that N
α
−→ N′

α′

−→ M. Given

a relation R, notation 6Rmeans that R does not hold (e.g. N 6
α
−→ N′ means that N cannot reduce to N ′

by performing α). As usual, we let =⇒ stand for
τ
−→∗ and

α
=⇒ to stand for =⇒

α
−→ =⇒ ; finally,

α̂
=⇒

denotes =⇒ , if α = τ, and
α
=⇒ , otherwise.

We conclude the presentation of the LTS by highlighting some of its properties. First, we
connect transitions with the syntactical form of the net performing them. Then, we characterise
all the possible combined executions of a net N within a context (ν l̃)([·] ‖ K) in terms of the
evolutions of the net and of the context separately. Finally, we show that the LTS is ‘correct’ w.r.t.
the operational semantics of TKLAIM based on 7−→.
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Proposition 4.2 The following facts hold:

1. if N
l1 � l2
−−−−→ N′, then N ≡ N′ ‖ {l1 ↔ l2};

2. if N
〈l〉@ l1: l2
−−−−−−−−→ N′, then N ≡ N′ ‖ l1 :: 〈l〉 ‖ {l1 ↔ l2};

3. if N
(νl) 〈l〉@ l1: l2
−−−−−−−−−−→ N′, then N ≡ (νl)(N′ ‖ l1 :: 〈l〉 ‖ {l1 ↔ l2}) and l < {l1, l2}.

4. if N
∃?l1 � l2
−−−−−→ N′, one of the following possibilities must hold:

(a) if l1 = l2, then N ≡ (ν̃l)(N′′ ‖ l2 :: conn(l2).P), for l2 < l̃, and N′ ≡ (ν̃l)(N′′ ‖ l2 :: P);

(b) N ≡ (ν̃l)(N′′ ‖ l1 :: disc(l2).P), for {l1, l2} ∩ l̃ = ∅, and N′ ≡ (ν̃l)(N′′ ‖ l1 :: P ‖ l2 :: nil);

(c) N ≡ (ν̃l)(N′′ ‖ l1 :: eval(P2)@l2.P1), for {l1, l2} ∩ l̃ = ∅, and N′ ≡ (ν̃l)(N′′ ‖ l1 :: P1 ‖

{l1 ↔ l2} ‖ l2 :: P2);

(d) N ≡ (ν̃l)(N′′ ‖ l1 :: out(l)@l2.P), for {l1, l2} ∩ l̃ = ∅, and N′ ≡ (ν̃l)(N′′ ‖ l1 :: P ‖ {l1 ↔
l2} ‖ l2 :: 〈l〉).

5. if N
∃? 〈l〉@ l2: l1
−−−−−−−−−−→ N′, one of the following possibilities must hold:

(a) N ≡ (ν̃l)(N′′ ‖ l1 :: in(!x)@l2.P), for {l, l1, l2} ∩ l̃ = ∅, and N′ ≡ (ν̃l)(N′′ ‖ l1 :: P[l/x] ‖
{l1 ↔ l2});

(b) N ≡ (ν̃l)(N′′ ‖ l1 :: in(l)@l2.P), for {l, l1, l2} ∩ l̃ = ∅, and N′ ≡ (ν̃l)(N′′ ‖ l1 :: P ‖ {l1 ↔
l2}).

Proof: By definition of the LTS and a straightforward induction on the depth of the shortest
inference for the judgement in the hypothesis.

Proposition 4.3 (ν̃l)(N ‖ K)
α
−→ N̄ if and only if one of the following cases holds:

1. (ν̃l)N
α
−→ (νl̃′)N′ and N̄ ≡ (νl̃′)(N′ ‖ K)

2. N
(νl̃′) 〈l〉@ l1: l1
−−−−−−−−−−−→ N′, K

l1 � l2
−−−−→ K′ and N̄ ≡ (νl̃′′)(N′ ‖ K′), where α = (νl) 〈l〉@ l1 : l2 and

l̃′′ = l̃ − {l}, if l̃′ = ∅ and l ∈ l̃, while α = (νl̃′) 〈l〉@ l1 : l2 and l̃′′ = l̃, otherwise

3. N
∃?l1 � l2
−−−−−→ N′, K

l1 � l2
−−−−→ K′, N̄ ≡ (ν̃l)(N′ ‖ K′) and α = τ

4. N
∃? 〈l〉@ l2: l1
−−−−−−−−−−→ N′, K

(νl̃′) 〈l〉@ l2: l1
−−−−−−−−−−−→ K′, l̃′ ∩ fn(N) = ∅, N̄ ≡ (ν̃l, l̃′)(N′ ‖ K′) and α = τ

5. N
l2 � l1
−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ N′, K

(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→ K′, l̃′ ∩ fn(N) = ∅, N̄ ≡ (ν̃l, l̃′)(N′ ‖ K′) and α = τ

6. N
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ N′, K

l2 � l1
−−−−→ K′, l̃′ ∩ fn(K) = ∅, N̄ ≡ (ν̃l, l̃′)(N′ ‖ K′) and α = τ

7. one of the previous cases with K in place of N and vice versa.

Proof: The “if” part is trivial, by using the LTS of Table 5. We explicitly consider only three
significant cases.
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2. If l̃′ = ∅, then by applying rule (LTS-OFFER) we get that N ‖ K
〈l〉@ l1: l2
−−−−−−−−→ N′ ‖ K′.

Now, if l ∈ l̃, then the thesis follows by applying rule (LTS-OPEN); otherwise, the the-
sis follows by applying rule (LTS-RES). If l̃′ , ∅, i.e. l̃′ = {l}, then from the hypoth-

esis N
(νl̃′) 〈l〉@ l1: l1
−−−−−−−−−−−→ N′; by Proposition 4.2(3), we get that there exists a net N1 such that

N ≡ (νl)N1 and N1
〈l〉@ l1: l1
−−−−−−−−→ N′. By applying the structural rule (EXT), we get N ‖ K ≡

(νl)(N1 ‖ K). Now, by applying rule (LTS-OFFER) we get that N1 ‖ K
〈l〉@ l1: l2
−−−−−−−−→ N′ ‖ K′.

Then, the thesis easily follows by applying rules (LTS-OPEN) and (LTS-STRUCT).

4. By K
(νl) 〈l〉@ l2: l1
−−−−−−−−−−→ K′ and by Proposition 4.2(3), we get that there exists a net K ′′ such that

K ≡ (νl)K′′ and K′′
〈l〉@ l1: l1
−−−−−−−−→ K′. By applying the structural rule (EXT), we get N ‖ K ≡

(νl)(N ‖ K′′). Now, by applying rule (LTS-COMPL) we get that N ‖ K ′′
τ
−→ N′ ‖ K′ and the

thesis easily follows by applying rules (LTS-RES) and (LTS-STRUCT).

7. By structural congruence, we have that (ν̃l)(N ‖ K) ≡ (ν̃l)(K ‖ N); then we fall in one of the
first six cases.

The “only if” part would have been easily proved by induction on the shortest inference of
α
−→ , if

rule (LTS-STRUCT) was not present. To properly handle such a rule, we consider a slightly different
(but still equivalent) LTS where rule (LTS-STRUCT) is restricted in such a way that N ≡ N1 can
only be derived by using just a single axiom (or its symmetric version) from Table 3. Through the
rest of the proof, (LTS-STRUCT) will refer to this revised rule. Notice that transitivity of ≡ may
require repeated applications of (LTS-STRUCT), whereas closure under language contexts can be
mimicked by properly interleaving the application of (LTS-STRUCT), (LTS-RES) and (LTS-PAR).

Now, we can reason by induction on the depth of the shortest inference for
α
−→ . We have three

base cases (of depth 2); in all of them, l̃ = ∅ and the hypotheses are axioms from Table 5. We
analyse the last rule used in the inference:

� (LTS-PAR): we fall in case 1. of this Lemma.

� (LTS-OFFER): we fall in case 2. of this Lemma.

� (LTS-COMPL): we fall in case 3. or 4. of this Lemma.

For the inductive step, we reason by case analysis on the last rule applied in the inference. The
cases for (LTS-PAR), (LTS-OFFER) and (LTS-COMPL) are easily adapted from the base case (no
inductive hypothesis is needed).

(LTS-RES): let l̃ = (l, l̃′); then, (νl̃′)(N ‖ K)
α
−→ N̄′ and N̄

�
(νl)N̄′, for l < n(α). By induction on

(νl̃′)(N ‖ K)
α
−→ N̄′, that has a shorter inference, we fall in one of the cases of this Lemma. In

the same case falls also the inference for (ν̃l)(N ‖ K)
α
−→ N̄.

(LTS-OPEN): the situation is similar to the previous one, but N̄
�

N̄′ and l ∈ fn(α′); so, α , τ and
hence we can only fall in cases 1 or 2 (or their symmetric versions). In the same case falls
the inference from (ν̃l)(N ‖ K), with α = (νl)α′.

(LTS-STRUCT): we reason by case analysis on the axiom of Table 3 used by the rule. If reflexivity
of ≡ or axiom (ALPHA) is used, we rely on a trivial induction; otherwise, we have the
following possibilities:

(PZERO): l̃ = ∅ and we fall in case 1. of this Lemma.
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(PCOM): l̃ = ∅ and K ‖ N
α
−→ N̄′, for N̄′ ≡ N̄. By induction on K ‖ N

α
−→ N̄′, that has a shorter

inference, we fall in one of the cases of this Lemma. Now, if the induction yields one of
the first six cases, the original net N ‖ K evolves according to the symmetric case and
vice versa.

(PASS): again, l̃ = ∅; moreover, N
�

N1 ‖ N2 and N1 ‖ (N2 ‖ K)
α
−→ N̄′, for N̄′ ≡ N̄. We now

apply induction and reason on the case in which the latter transition falls:

1. N1
α
−→ N′1 and N̄′

�
N′1 ‖ (N2 ‖ K): we still easily fall in case 1.

2. N1
(νl̃′) 〈l〉@ l1: l1
−−−−−−−−−−−→ N′1, N2 ‖ K

l1 � l2
−−−−→ N̄′′ and N̄′

�
N′1 ‖ N̄′′: by induction, N2 ‖

K
l1 � l2
−−−−→ is only possible when either N2

l1 � l2
−−−−→ or K

l1 � l2
−−−−→ ; then, (N1 ‖ N2) ‖ K

evolves according to cases 1. or 2., respectively.

3., 5., 6.: similar to the previous case.

4. N1
∃? 〈l〉@ l1: l2
−−−−−−−−−−→ N′1, N2 ‖ K

(νl) 〈l〉@ l2: l1
−−−−−−−−−−→ N̄′′ and N̄′

�
(νl)(N′1 ‖ N̄′′): by induction,

N2 ‖ K
(νl) 〈l〉@ l2: l1
−−−−−−−−−−→ can be inferred in four ways:

� N2
(νl) 〈l〉@ l2: l1
−−−−−−−−−−→ : then, N ‖ K evolves according to case 1.

� K
(νl) 〈l〉@ l2: l1
−−−−−−−−−−→ : then, N ‖ K evolves according to case 4.

� N2
(νl) 〈l〉@ l2: l2
−−−−−−−−−−→ and K

l2 � l1
−−−−→ : then, N ‖ K evolves according to case 6.

� N2
l2 � l1
−−−−→ and K

(νl) 〈l〉@ l2: l2
−−−−−−−−−−→ : then, N ‖ K evolves according to case 5.

7. The symmetric of cases 2. and 3. are dealt with like cases 2. and 3. themselves;
the symmetric of case 4. proceeds like case 2. The remaining cases are as follows:

1. N2 ‖ K
α
−→ N̄′′ and N̄′

�
N1 ‖ N̄′′: we apply induction to N2 ‖ K

α
−→ N̄′′; the

case for (N1 ‖ N2) ‖ K is the same as that obtained in this latter inductive step.

5. N1
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→ N′1, N2 ‖ K

l2 � l1
−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ N̄′′ and N̄′

�
(νl̃′)(N′1 ‖ N̄′′):

by induction, N2 ‖ K
l2 � l1
−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ can be inferred in four ways:

� N2
l2 � l1
−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ : then, N ‖ K evolves according to case 1.

� K
l2 � l1
−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ : then, N ‖ K evolves according to the symmetric of

case 5.
� N2

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ and K

l2 � l1
−−−−→ : then, N ‖ K evolves according to case 6.

� N2
l2 � l1
−−−−→ and K

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ : then, N ‖ K evolves according to the sym-

metric of case 4.

6. N1
l2 � l1
−−−−→ N′1, N2 ‖ K

(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ N̄′′ and N̄′

�
(νl̃′)(N′1 ‖ N̄′′):

by induction, N2 ‖ K
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ can be inferred in four ways:

� N2
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ : then, N ‖ K evolves according to case 1.

� K
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ : then, N ‖ K evolves according to the symmet-

ric of case 6.
� N2

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ and K

(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→: then, N ‖K evolves according to case 5.

� N2
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→ and K

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ : then, N ‖ K evolves according to the

symmetric of case 4.
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symmetric version of (PASS): similar to the previous one, but now K
�

K1 ‖ K2 and (N ‖

K1) ‖ K2
α
−→ N̄′. We only illustrate here the more elaborated cases:

4. N ‖ K1
(νl) 〈l〉@ l2: l1
−−−−−−−−−−→ N̄′′, K2

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ K̄′2 and N̄′

�
(νl)(N̄′′ ‖ K′2): by induction,

N ‖ K1
(νl) 〈l〉@ l2: l1
−−−−−−−−−−→ can be inferred in four ways:

� N
(νl) 〈l〉@ l2: l1
−−−−−−−−−−→ : then, N ‖ K evolves according to the symmetric of case 4.

� K1
(νl) 〈l〉@ l2: l1
−−−−−−−−−−→ : then, N ‖ K evolves according to the symmetric of case 1.

� N
(νl) 〈l〉@ l2: l2
−−−−−−−−−−→ and K1

l2 � l1
−−−−→ : then, N ‖ K evolves according to the symmetric

of case 5.
� N

l2 � l1
−−−−→ and K1

(νl) 〈l〉@ l2: l2
−−−−−−−−−−→ : then, N ‖ K evolves according to the symmetric

of case 6.

5. N ‖ K1
l2 � l1
−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ N̄′′, K2

(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→ K′2 and N̄′

�
(νl̃′)(N̄′′ ‖ K′2): by

induction, N ‖ K1
l2 � l1
−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ can be inferred in four ways:

� N
l2 � l1
−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ : then, N ‖ K evolves according to case 5.

� K1
l2 � l1
−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−→: then, N ‖K evolves according to the symmetric of case 1.

� N
∃? 〈l〉@ l2: l1
−−−−−−−−−−→ and K1

l2 � l1
−−−−→ : then, N ‖ K evolves according to case 4.

� N
l2 � l1
−−−−→ and K1

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ : then, N ‖ K evolves according to the symmetric

of case 6.

6. N ‖ K1
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ N̄′′, K2

l2 � l1
−−−−→ K′2 and N̄′

�
(νl̃′)(N̄′′ ‖ K′2): by

induction, N ‖ K1
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ can be inferred in four ways:

� N
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ : then, N ‖ K evolves according to case 6.

� K2
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ : then, N ‖ K evolves according to the symmetric

of case 1.
� N

(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→ and K1

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ : then, N ‖ K evolves according to the

symmetric of case 5.

� N
∃? 〈l〉@ l2: l1
−−−−−−−−−−→ and K1

(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→ : then, N ‖ K evolves according to case 4.

(RCOM): l̃ = (l1, l2, l̃′) and (νl2)(νl1)(νl̃′)(N ‖ K)
α
−→ N̄′, for N̄′ ≡ N̄; then, by induction, we

can conclude that (νl1)(νl2)(νl̃′)(N ‖ K) evolves correspondingly.

(EXT): l̃ = ∅; moreover, K
�

(νl)K̄ and (νl)(N ‖ K̄)
α
−→ N̄′, for N̄′ ≡ N̄ and l < fn(N).

Now, we can apply induction to (νl)(N ‖ K̄)
α
−→ N̄′ and conclude that N ‖ K evolves

in the same way as (νl)(N ‖ K̄); just notice that, whenever K̄
〈l〉@ l2: l1
−−−−−−−−→ K′ arises upon

induction, we obtain K
(νl) 〈l〉@ l2: l1
−−−−−−−−−−→ K′.

symmetric version of (EXT): similar to the previous one. Notice that now l̃ = {l}; moreover,

every time (νl)K
(νl) 〈l〉@ l2: l1
−−−−−−−−−−→ K′ arises, it will be replaced by K

〈l〉@ l2: l1
−−−−−−−−→ K′.

symmetric versions of (REPL), (CLONE), (SELF) or (CONNODE): we can build a no
longer inference for N ‖ K

α
−→ N̄ where the symmetric versions of (REPL)/(CLONE)/

(SELF)/(CONNODE) are not used at all. Thus, we can easily conclude by relying on
one of the previous cases.
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Proposition 4.4 N 7−→ M if and only if N
τ
−→ M.

Proof: Both directions are proved by an easy induction on the shortest inference of the judgements.
The ‘only if’ part is simple: it has a base case for every axiom of Table 4 and, for the inductive step,
we can exploit the similarity between (R-PAR) and (LTS-PAR), between (R-RES) and (LTS-RES),
and between (R-STRUCT) and (LTS-STRUCT).

The ‘if’ part only considers judgements for τ-labelled transitions: for the base case, we need to
consider rules (LTS-NEW) and (LTS-COMPL). The first case is simple, because of the similarity
between (LTS-NEW) and (R-NEW). For the second case, we have that N

�
N1 ‖ N2 where

N1
∃?β
−−→ N′1, N2

β
−→ N′2 and M

�
N′1 ‖ N′2. If β is of the form ∃?l1

� l2, we conclude by exploiting
cases (1) and (4) of Proposition 4.2; If β is of the form ∃? 〈l〉@ l2 : l1 , we conclude by exploiting
cases (2) and (5) of the same Proposition. The inductive case is simple, since it only relies on rules
(LTS-PAR), (LTS-RES) and (LTS-STRUCT).

We can now introduce the alternative characterization of � in terms of a labelled bisimilarity.
To this aim, we first define the ‘minimal’ net enabling the evolution of a net performing a label of
kind ∃?β; formally,

NET(β)
�
{
{l1 ↔ l2} if β = l1

� l2
{l1 ↔ l2} ‖ l2 :: 〈l〉 if β = 〈l〉@ l2 : l1

Definition 4.5 (Bisimilarity) A symmetric relation< between TKLAIM nets is a (weak) bisimula-

tion if, for each N < M and N
α
−→ N′, it holds that:

1. if α ∈ {τ, l1
� l2, (ν̃l) 〈l〉@ l1 : l1 }, then M

α̂
=⇒ M′ and N′ < M′, for some M′;

2. if α = ∃?β, then M ‖ NET(β) =⇒ M′ and N′ < M′, for some M′.

Bisimilarity, ≈, is the largest bisimulation.

Bisimilarity requires that labels of kind l1
� l2 and (ν̃l) 〈l〉@ l1 : l1 must be replied to with the

same label (possibly with some additional τ-step). This is necessary since such labels describe the
structure of the net (its data and connections); to be equivalent, two nets must have at least the same
structure. In doing this, notice that labels of kind (ν l̃) 〈l〉@ l1 : l2 for l1 , l2 can be ignored, since
they result from the combination of labels {l1 ↔ l2} and (ν̃l) 〈l〉@ l1 : l1 , see rule (LTS-OFFER).

Labels of kind ∃?β are ‘requirements’ to the execution context; thus, they are handled differ-
ently. For example, requiring the existence of a connection (e.g., to send a component) expressed

by N
∃?l1 � l2
−−−−−→ N′ can be simulated by a net M in a context where l1 and l2 are connected through

the execution of some τ-steps that lead to some M ′ equivalent to N′. Indeed, since we want our
bisimulation to be a congruence, a context that provides a connection between the source and the
target nodes of the sending action must not tell N and M apart.

Notably, though in TKLAIM processes can occur as arguments in process actions (eval), the LTS
and the bisimulation we developed do not use labels containing processes. Thus, the bisimulation
relies only on a standard quantification over names (when considering labels of kind ∃? 〈l〉@ l2 :
l1) and we strongly conjecture that it is decidable, under proper assumptions: techniques similar
to those in [31] could be used here. The presence of rule (LTS-STRUCT) in the LTS does not
compromise the tractability of ≈; obviously, (LTS-STRUCT) can be dropped, if one is prepared to
have more rules in the LTS.
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4.2 Coincidence with Barbed Congruence

The first key result of this subsection is Lemma 4.7 that will easily allow us to conclude that bisim-
ilarity is a sound proof-technique for barbed congruence. To prove this result, we introduce the
notion of bisimulation up-to structural congruence: it is defined as a labelled bisimulation except
for the fact that the < in the consequents of Definition 4.5 is replaced by the (compound) relation
≡ < ≡. Lemma 4.6 shows that a bisimulation up-to ≡ can be used as a sound proof-technique for
labelled bisimulation.

Lemma 4.6 Let< be a bisimulation up-to ≡; then,< ⊆ ≈.

Proof: We first prove that ≡ < ≡ is a bisimulation. Let N ≡ < ≡ M; this means that there exist

N1 and M1 such that N ≡ N1<M1 ≡ M. Take N
α
−→ N′; since N ≡ N1, by (LTS-STRUCT), we also

have that N1
α
−→ N′. Now, we reason by case analysis on α. If α ∈ {τ, l1

� l2, (ν̃l) 〈l〉@ l1 : l1 }, then

we must show that there exists M′ such that M
α̂
=⇒ M′ and N′ ≡ < ≡ M′. Since, by hypothesis, <

is a bisimulation up-to ≡, we have that M1
α̂
=⇒ M′ and N′ ≡ < ≡ M′ for some M′. Since M1 ≡ M,

by (LTS-STRUCT), we have that M
α̂
=⇒ M′ and the thesis is proved. If α = ∃?β, we must show

that there exists M′ such that M ‖ NET(β) =⇒ M′ and N′ ≡ < ≡ M′. Since, by hypothesis, < is

a bisimulation up-to ≡, the fact that N1
∃?β
−−→ N′ and N1<M1 implies that M1 ‖ NET(β) =⇒ M′ and

N′ ≡ < ≡ M′. Since ≡ is a congruence, the thesis follows from the fact that M1 ≡ M and by

(LTS-STRUCT). The symmetric case (for M
α
−→ M′) is similar.

Now, if N<M, by reflexivity of ≡, we have that N ≡ < ≡ M; since ≡ < ≡ is a bisimulation,
we have that N ≈ M.

Lemma 4.7 ≈ is context closed.

Proof: By the previous lemma, it suffices to prove that

<
�
{ (C[N],C[M]) : N ≈ M }

is a bisimulation up-to ≡. First, notice that C[N] ≡ (ν l̃)(N ‖ K), for K restriction free and a

suitable (ν̃l). Then, by (LTS-STRUCT), any transition C[N]
α
−→ N̄ corresponds to a transition (ν̃l)(N ‖

K)
α
−→ N̄. We must show that this transition can be matched by a transition from C[M] ≡ (ν l̃)(M ‖

K). According to Proposition 4.3 we have to examine twelve cases. The details are omitted, as they
can be inferred from the proof of (the similar, but more complicated) Lemma 6.5.

Theorem 4.8 (Soundness of ≈ w.r.t. �) If N ≈ M then N � M.

Proof: By Lemma 4.7, we know that ≈ is context closed. Thus, we only need to prove that
≈ is barb preserving and reduction closed. To prove that ≈ is barb preserving, let N ⇓ l; by

Definition 3.1 and construction of the LTS, this means that N
(ν̃l) 〈l′〉@ l: l
==========⇒, for some l′ and l̃. By

hypothesis, we get that M
(ν̃l) 〈l′〉@ l: l
==========⇒ ; thus, by Proposition 4.2(1), M ⇓ l. To prove that ≈ is

reduction closed, let N 7−→ N ′; by Proposition 4.4, this implies that N
τ
−→ N′. By hypothesis, we

can find a M′ such that N′ ≈ M′ and M =⇒ M′; again by Proposition 4.4, M |=⇒ M′.
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We now want to prove the converse, namely that all barbed congruent nets are also bisimilar.
To this aim, we need some preliminary technicalities. First, we introduce the notation

GO l DO a THEN P

to denote a process that migrates at l to perform action a and then comes back to its starting location
to execute P. Formally, GO l DO a THEN P running at l′ is a shortcut for

conn(l).eval(a.eval(disc(l).P)@l′)@l

Then, we define the standard internal choice operator, to non-deterministically select for execution
exactly one between two processes, as follows:

P ⊕ Q
�

new(l).out()@l.( in()@l.P | in()@l.Q )

It is easy to prove that l′ :: P ⊕ Q can only reduce to either l′ :: P ‖ K or l′ :: Q ‖ K (or one of their
reducts), where K ≈ 0.

These kinds of processes are used to prove the following key Lemma. It states that we can throw
away a fresh locality hosting a restricted datum from two barbed congruent nets and the resulting
nets are bisimilar.

Lemma 4.9 Let (νl)(N ‖ l f :: 〈l〉) � (νl)(M ‖ l f :: 〈l〉) and l f be fresh for N, M and l; then,
N ≈ M.

Proof: By Lemma 4.6, it suffices to prove that

<
�
{ (N,M) : (νl)(N ‖ l f :: 〈l〉) � (νl)(M ‖ l f :: 〈l〉) ∧ l f < n(N,M, l) }

is a bisimulation up-to ≡. We omit the details of the proof because it proceeds as the (more compli-
cated) proof of Lemma 6.7.

Theorem 4.10 (Completeness of ≈ w.r.t. �) If N � M then N ≈ M.

Proof: By Lemma 4.6, it suffices to prove that � ∪ ≈ is a bisimulation up-to ≡. Take N � M and

a transition N
α
−→ N′; we then reason by case analysis on α.

α = τ. The thesis follows from reduction closure.

α = 〈l〉@ l1 : l1 . We consider the context

C[·]
�

(νl′)([·] ‖ {l f ↔ l1} ‖ l f :: in(l)@l1.disc(l1).(out(l′)@l f ⊕ nil))

for l f fresh, and the reduction C[N] |=⇒D[N ′]
�

N̄, where

D[·]
�

(νl′)([ · ] ‖ l f :: out(l′)@l f ⊕ nil)

By context and reduction closure, C[M] |=⇒ M̄ and N̄ � M̄. This fact implies that

M
〈l〉@ l1: l1
=========⇒M′, for some M′, otherwise M̄ would not be able to exhibit a barb at l f (whereas

N̄ can). Now consider the reduction N̄ |=⇒D′ [N′]
�

N̄′, with

D′ [·]
�

(νl′)([ · ] ‖ l f : 〈l′〉) ‖ (νl′′)({l f ↔ l′′} ‖ l f :: in()@l′′.nil),
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which is obtained by exploiting the definition of ⊕ and resolving the choice in favour of the
left hand side (l′′ is the locality created to implement ‘⊕’). By reduction closure, it must be
that M̄ |=⇒ M̄′ and N̄′ � M̄′; because of freshness of l f , this implies that M̄′ ≡ D′ [M′′], for
some M′′ such that M′ =⇒ M′′. Now, it is easy to prove that D′ [N′] ≈ (νl′)(N′ ‖ l f : 〈l′〉)
(and similarly for M′′). Moreover, by using Theorem 4.8, we can replace ≈ with �; thus,
(νl′)(N′ ‖ l f : 〈l′〉) � D′ [N′]

�
N̄′ � M̄′ ≡ D′[M′′] � (νl′)(M′′ ‖ l f : 〈l′〉). Since ≡ ⊆ �

and � is transitive, by Lemma 4.9, we get N ′ ≈ M′′; this suffices to conclude.

α = (νl) 〈l〉@ l1 : l1 . We consider the context

C[·]
�

[·] ‖ {l f ↔ l1} ‖ l f :: in(!x)@l1.disc(l1).(out(x)@l f ⊕ nil)

for l f fresh, and proceed as in the previous case. Notice that M must eventually exhibit
a restricted datum at l1. Indeed, the presence of any datum at l1 is ascertained by action
in(!x)@l1. Moreover, at least one restricted datum must be present at l1, otherwise l f would
exhibit only free data in any evolution of C[M], whereas l f exhibits a restricted datum in the
chosen evolution of C[N].2 Such a restricted datum can then be alpha-converted to l to obtain

that M
α
=⇒ M′′ and N′ ≈ M′′, for some M′′.

α = l1
� l2. Consider the context

C[·]
�

(νl)([·] ‖ l f :: GO l1 DO disc(l2) THEN (out(l)@l f ⊕ nil))

and proceed like before.

α = ∃?β. We consider the context C[·]
�

[·] ‖ NET(β) and the reduction C[N] 7−→ N ′. Then, by
context and reduction closure, C[M] |=⇒ M ′ and N′ � M′, for some M′. This suffices to
conclude (see Definition 4.5(2)).

From Theorems 4.8 and 4.10 we get the wanted result.

Corollary 4.11 (Alternative Characterization of Barbed Congruence) ≈ = � .

5 Trace Equivalence

In this section, we develop an alternative characterization of may testing. For some well-known
process calculi, may testing coincides with trace equivalence [17, 5, 6]; in this section, we show
how a similar result is obtained also in the setting of TKLAIM. To this aim, we first need to slightly
tune the LTS of Section 4.1 to better deal with may testing; we then present the trace-based charac-
terisation of ' and prove that the resulting equivalence is sound and complete w.r.t. '.

To carry out proofs in a simpler way, in all this section we assume that observers cannot perform
remote input actions. This does not reduce the observational power of an observer, since a remote
input, say at l1 from l2, can be implemented by first migrating to l2, by performing there a local
input and by finally coming back to l2. Formally, every observer O is translated in an observer

2To see that there must be an evolution of C[M] producing a restricted datum at l1 (and, therefore, at l f ), consider the
following context

[·] ‖ {l f ↔ l′f } ‖ Π
l′ ∈ fn(M)

l′f :: in(l′)@l f .out()@l′f

where l′f is a fresh locality. The choosen evolution of C[N] will never enable the production of a datum at l′f , since we
assumed that bound names are different from the free ones; thus, M cannot only produce free data at l1, otherwise it
would not be equivalent to N.
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(LTS-CONN) (LTS-EST)

l1 :: conn(l2).P
∃?l2
−−−→ l1 :: P ‖ {l1 ↔ l2} N1

∃?l
−−→ N′1 N2

l � l
−−→ N′2

N1 ‖ N2
τ
−→ N′1 ‖ N′2

(LTS-BIN)

N
∃? 〈l〉@ l2: l1
−−−−−−−−−−→ N′ l < fn(N)

N
∃?(νl) 〈l〉@ l2: l1
−−−−−−−−−−−−→ N′ ‖ l :: nil

(LTS-DATUMREQ)

N1
l1 � l2
−−−−→ N′1 N2

∃?(ν̃l) 〈l〉@ l2: l1
−−−−−−−−−−−−→ N′2

N1 ‖ N2
∃?(ν̃l) 〈l〉@ l2: l2
−−−−−−−−−−−−→ N′1 ‖ N′2

(LTS-CONNREQ)

N1
(ν̃l) 〈l〉@ l1: l1
−−−−−−−−−−→ N′1 N2

∃?(ν̃l) 〈l〉@ l1: l2
−−−−−−−−−−−−→ N′2

N1 ‖ N2
∃?l1 � l2
−−−−−→ (ν̃l)(N′1 ‖ N′2)

plus all rules from Table 5, but (LTS-CONN); moreover, rule (LTS-COMPL) now also includes
the side condition bn(β) = ∅

Table 6: An Enhanced LTS for Trace Equivalence

without remote inputs, 〈|O|〉, where 〈| · |〉 acts homomorphically over all net constructors, except for
l :: C that is translated to l :: 〈|C|〉l as follows:

〈|〈u〉|〉l
�
〈u〉 〈|C1|C2|〉l

�
〈|C1|〉l | 〈|C2|〉l

〈|nil|〉l
�

nil 〈| ∗P|〉l
�
∗ 〈|P|〉l

〈|a.P|〉l
�



GO l′ DO a THEN 〈|P|〉l if a = in(·)@l′

eval(〈|Q|〉l′ )@l′.〈|P|〉l if a = eval(Q)@l′

a.〈|P|〉l otherwise

The observers 〈|O|〉 and O behave “in the same way”, in the sense that they can observe the same
net behaviours, as stated by the following Proposition. Clearly, this implies that, if we adapt Def-
inition 3.8 by only considering this class of observers, we still obtain '′ that, by Proposition 3.9,
coincides with ' . Therefore, without loss of accuracy, we shall use these three definitions of
may-testing interchangeably.

Proposition 5.1 N MAY O if and only if N MAY 〈|O|〉.

Proof: We first notice that 〈| · |〉 is easily derived from the encoding of CKLAIM in LCKLAIM

presented in [14], where we prove that such an encoding enjoys semantical equivalence w.r.t. �. By
straightforwardingly adapting such a proof, we can prove that O � 〈|O|〉; thus, by context closure,
N ‖ O � N ‖ 〈|O|〉 that, by barb preservation, implies the claim of this Proposition.

5.1 A Labelled Transition System for Trace Equivalence

To properly handle may testing, we modify the LTS of Section 4.1, as reported in Table 6. First,
we introduce bound input labels of the form ∃?(νl) 〈l〉@ l1 : l2 to take note that the received name
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l is bound. Second, it is now convenient to let action conn(l) yield a new label ∃?l (see the new
version of rule (LTS-CONN)), that still synchronises with label l � l (see rule (LTS-EST)). Thus,
the syntax of labels can now be written as follows:

β ::= l1
� l2

∣∣∣ (ν̃l) 〈l〉@ l1 : l2 α ::= τ
∣∣∣ β

∣∣∣ ∃?β
∣∣∣ ∃?l

Of course, bn(α) is extended by letting bn(∃?(νl) 〈l〉@ l1 : l2) = {l}, whereas fn(α) and n(α) are
extended accordingly. In what follows, we shall write ∃? to refer labels of kind ∃?β and ∃?l .

Intuitively, rule (LTS-BIN) checks whether the name l received via an input does not occur free
in the receiving net. In that case, it can be (additionally) assumed that l has been extruded by a
sending net; hence, it is the address of a node and a bound input label is generated (similarly to the

π-calculus [5, 6]). However, to avoid that N1
(νl) 〈l〉@ l1: l2
−−−−−−−−−−→ N′1 and N2

∃?(νl) 〈l〉@ l1: l2
−−−−−−−−−−−−→ N′2 synchronise

by means of the previous formulation of (LTS-COMPL), that would lead to N ′1 ‖ N′2 instead of the
expected (νl)(N′1 ‖ N′2), a new side condition to rule (LTS-COMPL) is needed to still force structural
scope extension of bound names.

Rule (LTS-DATUMREQ) states that, if node l1 requires the existence of a (possibly restricted
datum) 〈l〉 at l2 and there exists a connection between l1 and l2 in the net, then it suffices to require
to the execution context to provide datum 〈l〉 at l2. Similarly, rule (LTS-CONNREQ) states that, if
node l2 requires the existence of a (possibly restricted datum) 〈l〉 at l1 and such a datum is already
in the net, then it suffices to require to the execution context to provide the connection between l1
and l2. To better understand the latter two rules, compare them with Proposition 4.3(5) and (6).

For the modified LTS, it is easy to prove that Propositions 4.4 and 4.2 still hold. Instead,
Proposition 4.3 has to be tuned as follows; the proof of the following result is very similar to the
proof of Proposition 4.3 and, thus, it is omitted.

Proposition 5.2 (ν̃l)(N ‖ K)
α
−→ N̄ if and only if one of the following cases holds:

1., 2., 3., 6.: like the corresponding cases of Proposition 4.3

4. N
∃?(νl̃′′) 〈l〉@ l2: l1
−−−−−−−−−−−−−→ N′, K

(νl̃′) 〈l〉@ l2: l1
−−−−−−−−−−−→ K′, l̃′ ∩ fn(N) = ∅, l̃′′ ⊆ l̃′, N̄ ≡ (ν̃l, l̃′)(N′ ‖ K′) and

α = τ

5. N
l2 � l1
−−−−→

∃?(νl̃′′) 〈l〉@ l2: l1
−−−−−−−−−−−−−→ N′, K

(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→ K′, l̃′ ∩ fn(N) = ∅, l̃′′ ⊆ l̃′, N̄ ≡ (ν̃l, l̃′)(N′ ‖ K′)

and α = τ

7. N
l1 � l2
−−−−→ N′, K

∃?(νl̃′) 〈l〉@ l2: l1
−−−−−−−−−−−−−→ K′, l̃′∩fn(N) = ∅, N̄ ≡ (ν̃l)(N′ ‖ K′) and α = ∃?(νl̃′)〈l〉@ l2 : l2

8. N
(νl̃′) 〈l〉@ l1: l1
−−−−−−−−−−−→ N′, K

∃?(νl̃′′) 〈l〉@ l2: l1
−−−−−−−−−−−−−→ K′, l̃′ ∩ fn(K) = ∅, l̃′′ ⊆ l̃′, N̄ ≡ (ν̃l, l̃′)(N′ ‖ K′) and

α = ∃?l2
� l1

9. N
∃?l
−−→ N′, K

l � l
−−→ K′, N̄ ≡ (ν̃l)(N′ ‖ K′) and α = τ

10. one of the previous cases with K in place of N and vice versa.

Notation 5.3 As a matter of notation, we shall use φ to range over visible labels (i.e. labels different

from τ) and σ to range over (possibly empty) sequences of visible labels. As usual, N
ε
=⇒ denotes

N =⇒ and N
φ·σ
===⇒ denotes N

φ
=⇒

σ
=⇒ .
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Traditionally, trace equivalence relates N and M if and only if the sets of their traces coincide;
put in another form, if N exhibits a sequence of visible actions σ, then M must exhibit σ as well,
and vice versa. In an asynchronous setting [6, 11], this requirement must be properly weakened,
since the discriminating power of asynchronous contexts is weaker: for example, the traditional
formulation of trace equivalence would distinguish in TKLAIM nets l :: in(!x)@l1.in(!y)@l2 and
l :: in(!y)@l2.in(!x)@l1, which are indeed may testing equivalent. Like in [6], a weaker trace-based
equivalence can be defined by relying on a pre-order � on traces (rather than using identity).

Definition 5.4 (Trace Equivalence) � is the largest symmetric relation between TKLAIM nets

such that, whenever N � M, it holds that N
σ
=⇒ implies M

σ′

==⇒ , for some σ′ � σ.

The crux is to identify a suitable pre-order � such that may testing is exactly captured by �.
The intuition behind σ′ � σ (sometimes written as σ � σ′) is that, if a context can interact
with a net that exhibits σ, then the context can interact with any net that exhibits σ′ as well, see
Proposition 5.7. For TKLAIM, � is obtained as the reflexive and transitive closure of the relation
�0 defined in Table 7. The first four laws have been inspired by [6], while the last five ones are
strictly related to inter-node connections. The relation �0 relies on the function (ν̃l)σ, that is used
in laws (L1), (L2) and (L3) when moving/removing a label of the form ∃?(νl) 〈l〉@ l1 : l2 . In this
case, the information that l is a fresh received name must be kept in the remaining trace. The formal
definition is

(ν̃l)σ
�
σ if l̃ ∩ fn(σ) = ∅

(νl)(φ · σ)
�



∃?(νl) 〈l〉@ l1 : l2 · σ
φ · (νl)σ
UNDEF

if φ = ∃? 〈l〉@ l2 : l1 and l < {l1, l2}
if l < n(φ) and (νl)σ , UNDEF
otherwise

To better understand the motivations underlying this definition, consider the following example that
justifies the side condition of law (L1) (similar arguments also hold for laws (L2) and (L3)). In the
trace ∃?(νl) 〈l〉@ l2 : l1 · 〈l〉@ l3 : l4 performed by a N, the input action cannot be erased. Indeed,
since l is fresh (see rule (LTS-BIN)), N cannot get knowledge of l without performing the input
and, consequently, cannot perform the action 〈l〉@ l3 : l4 . On the other hand, if N can receive l
via an additional communication between another pair of nodes, say l5 and l6 (thus, it can perform
action ∃? 〈l〉@ l6 : l5 just after ∃?(νl) 〈l〉@ l2 : l1), then the first input action can be erased and
∃?(νl) 〈l〉@ l6 : l5 · 〈l〉@ l3 : l4 �0 ∃?(νl) 〈l〉@ l2 : l1 · ∃? 〈l〉@ l6 : l5 · 〈l〉@ l3 : l4 .

We now briefly comment on the laws in Table 7. (L1) states that labels representing ‘require-
ments’ cannot be directly observed. (L2) states that the execution of a ‘requirement’ action can be
delayed along computations without being noticed by any observer. (L3) states that two adjacent
‘complementary’ actions can be deleted. (L4) states that, like in the π-calculus [5, 6], may testing is
unable to distinguish free addresses from bound ones. (L5) is used to guarantee existence of a node
at address l in a net resulting from the execution of an action φ, as described by function Υ(·); so,
actions requiring the connection {l ↔ l} are always enabled in such a net. (L6) states that, if a net
satisfies the requirement ∃?l � l after an action β, then it can also satisfy the requirement before β,
since the node at l was already present; clearly, this is possible only if l has not been introduced by
β, as described by function Υ(·). Law (L7) states that a label of kind (ν l̃) 〈l〉@ l1 : l2 , for l1 , l2,
is in practice a shortcut for label l1

� l2 followed by label (ν̃l) 〈l〉@ l1 : l1 . Finally, laws (L8) and
(L9) state that, if a process located at l1 can retrieve a datum 〈l〉 locally and then migrate at l2, then
a process located at l2 can retrieve 〈l〉 remotely, and vice versa.
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(L1) σ · (ν̃l)σ′ �0 σ · (ν̃l)(α · σ′) if α = ∃? and (ν̃l)σ′ , UNDEF

(L2) σ · (ν̃l)(φ · ∃?β · σ′) �0 σ · (ν̃l)(∃?β · φ · σ′) if (ν̃l)(φ · ∃?β · σ′) , UNDEF

(L3) σ · (ν̃l)σ′ �0 σ · (ν̃l)(∃?β · β · σ′) if (ν̃l)σ′ , UNDEF

(L4) σ · 〈l′〉@ l1 : l2 · (σ′[l
′
/l]) �0 σ · (νl) 〈l〉@ l1 : l2 · σ′

(L5) σ · φ · ∃?l · σ′ �0 σ · φ · σ
′ if l ∈ Υ(φ)

(L6) σ · ∃?l · β · σ′ �0 σ · β · ∃?l · σ′ if l < Υ(β)

(L7) σ · l1
� l2 · (ν̃l) 〈l〉@ l1 : l1 · σ′ �0 σ · (ν̃l) 〈l〉@ l1 : l2 · σ′

if l1 , l2

(L8) σ · ∃?(ν̃l) 〈l〉@ l1 : l2 · σ′ �0 σ · ∃?(ν̃l) 〈l〉@ l1 : l1 · ∃?l1
� l2 · σ′

(L9) σ · ∃?(ν̃l) 〈l〉@ l1 : l1 · ∃?l1
� l2 · σ′ �0 σ · ∃?(ν̃l) 〈l〉@ l1 : l2 · σ′

where, in laws (L5) and (L6), function Υ(·) is defined as follows:

Υ(∃?l2) = {l2} Υ(l2
� l1) = Υ(∃?l1

� l2) = {l1, l2}

Υ((ν̃l) 〈l〉@ l1 : l2) = Υ(∃?(ν̃l) 〈l〉@ l1 : l2) = l̃ ∪ {l1, l2}

Table 7: Axioms for the Pre-order Relation on Traces

5.2 Soundness w.r.t. May Testing

To prove that trace equivalence exactly captures may testing, we exploit Definition 3.8; ths, we
use OK to denote label 〈〉@ test : test , i.e., the action that must be exhibited in any successful
computation.

To carry out proofs, we found it convenient to introduce a complementation function · over
visible labels defined as follows:

(ν̃l) 〈l〉@ l1 : l2
�
∃?(ν̃l) 〈l〉@ l1 : l2 ∃?(ν̃l) 〈l〉@ l1 : l2

�
(ν̃l) 〈l〉@ l1 : l2

∃?l
�

l � l ∃?l1
� l2

�
l1

� l2

l1
� l2

�
{
∃?l1

� l2 if l1 , l2
∃?l1 otherwise

The complementation function is then extended to traces as expected, i.e. ε
�
ε and φ · σ′

�
φ ·σ′.

The usefulness of the complementation function becomes apparent in the following Lemma, that
describes a sufficient and a necessary condition for a computation to succeed.

Lemma 5.5 Let N be a net and O be an observer. Then

1. N
σ
=⇒ and O

σ ·OK
====⇒ imply that N ‖ O

OK

==⇒ ;

2. N ‖ O
OK

==⇒ implies that there exists a σ such that N
σ
=⇒ and O

σ · OK
====⇒ .

Proof:
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1. The proof is by induction on the length of σ. The base step is trivial. For the inductive step,
we have that σ = φ · σ′ and we consider the possibilities for φ. All the cases are simple;
we explicitly present only the case for φ = ∃?(νl) 〈l〉@ l1 : l2 . By hypothesis, we have

that N =⇒ N′
∃?(νl) 〈l〉@ l2: l1
−−−−−−−−−−−−→ N′′

σ′

==⇒ , for l < fn(N′), and O =⇒ O′
(νl) 〈l〉@ l2: l1
−−−−−−−−−−→ O′′

σ′·OK
====⇒ ;

by Proposition 4.2(3), O′ ≡ (νl)(O′′ ‖ l2 :: 〈l〉 ‖ {l1 ↔ l2}). By rule (EXT), N ‖ O =⇒ N′ ‖

O′ ≡ (νl)(N′ ‖ O′′ ‖ l2 :: 〈l〉 ‖ {l1 ↔ l2})
τ
−→ (νl)(N′′ ‖ O′′). By induction, we have that

N′′ ‖ O′′
OK

==⇒ . Now observe that, by Definition 3.6, O cannot emit test in any datum.

Hence, l , test and (νl)(N ′′ ‖ O′′)
OK

==⇒; this suffices to conclude.

2. By definition, it must be that N ‖ O (
τ
−→ )nH

OK

−→ ; the proof is by induction on n. The
base step is simple: it suffices to take σ = ε. For the inductive step, we have that N ‖

O
τ
−→ H′(

τ
−→ )n−1H. According to Proposition 5.2, there are ten possibilities for the first τ-

step, namely cases 1, 3 – 6 and 9 of such a Proposition, plus the symmetric versions of cases
1, 3, 4 and 9 (that can be handled similarly); indeed, since observers cannot perform remote
input actions, the symmetic versions of cases 5 and 6 are meaningless.

Case 1. N
τ
−→ N′ and H′ ≡ N′ ‖ O: by induction, N′

σ′

==⇒ and O
σ′·OK
====⇒ , for some σ′. It

suffices to take σ = σ′.

Symmetric of case 1. O
τ
−→ O′ and H′ ≡ N ‖ O′: analogous.

Case 3. N
∃?l1 � l2
−−−−−→ N′, O

l1 � l2
−−−−→ O′ and H′ ≡ N′ ‖ O′: by induction, N′

σ′

==⇒ and O
σ′·OK
====⇒ ,

for some σ′. It suffices to take σ = ∃?l1
� l2 · σ′.

Symmetric of case 3. N
l1 � l2
−−−−→ N′, O

∃?l1 � l2
−−−−−→ O′ and H′ ≡ N′ ‖ O′: by induction, N′

σ′

==⇒

and O′
σ′·OK
====⇒ , for some σ′. If l1 , l2, it suffices to take σ = l1

� l2 ·σ′. Otherwise, by

a straightforward induction on the inference for O
∃?l1 � l1
−−−−−→ O′, it is easy to prove that l1

is the address of a node in O; thus, O
τ
−→ O′. Moreover, by Proposition 4.2(1), it holds

that N ≡ N′ ‖ {l1 ↔ l1}; thus, it suffices to take σ = σ′.

Case 4. N
∃?(ν̃l) 〈l〉@ l1: l2
−−−−−−−−−−−−→ N′, O

(ν̃l) 〈l〉@ l1: l2
−−−−−−−−−−→ O′ and H′ ≡ (ν̃l)(N′ ‖ O′): by definition of

observers, test < l̃; thus, H ≡ (ν̃l)H′′ and N′ ‖ O′ (
τ
−→ )n−1H′′

OK

−→ . By induction,

N′
σ′

==⇒ and O′
σ′·OK
====⇒ , for some σ′. Thus, it suffices to take σ = ∃?(ν̃l) 〈l〉@ l1 : l2 ·σ′.

Symmetric of case 4. N
(ν̃l) 〈l〉@ l1: l1
−−−−−−−−−−→ N′, O

∃?(ν̃l) 〈l〉@ l1: l1
−−−−−−−−−−−−→ O′ and H′ ≡ (ν̃l)(N′ ‖ O′): sim-

ilarly to the previous case, it suffices to take σ = (ν̃l) 〈l〉@ l1 : l1 · σ′, where σ′ is
the trace returned by the inductive hypothesis. Notice that in this case the more general
label ∃?(ν̃l) 〈l〉@ l1 : l2 (for l1 , l2) is not necessary, since observers can only perform
local inputs.

Case 5. N
l2 � l1
−−−−→

∃?(νl̃′) 〈l〉@ l2: l1
−−−−−−−−−−−−−→ N′, O

(ν̃l) 〈l〉@ l2: l2
−−−−−−−−−−→ O′ and H′ ≡ (ν̃l)(N′ ‖ O′): by induc-

tion, there exists a σ′ such that N′
σ′

==⇒ and O′
σ′·OK
====⇒ . Notice that l̃ ∩ fn(N) = ∅,

since we assumed that bound names are different from the free ones; hence, by rules

(LTS-BIN) and (LTS-DATUMREQ), it holds that N
∃?(ν̃l) 〈l〉@ l2: l2
−−−−−−−−−−−−→ N′. Now, take

σ = ∃?(ν̃l) 〈l〉@ l2 : l2 · σ′ and easily conclude.
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Case 6. N
(ν̃l) 〈l〉@ l2: l2
−−−−−−−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ N′, O

l2 � l1
−−−−→ O′ and H′ ≡ (ν̃l)(N′ ‖ O′): this case is

similar to the previous one, by exploiting rule (LTS-CONNREQ) and taking σ = ∃?l2
�

l1 · σ′.

Case 9. N
∃?l
−−→ N′, O

l � l
−−→ O′ and H′ ≡ N′ ‖ O′: this case simply follows by taking σ = l �

l · σ′, where σ′ is the trace from the induction hypothesis.

Symmetric of case 9. N
l � l
−−→ N′, O

∃?l
−−→ O′ and H′ ≡ N′ ‖ O′: like the previous case, with

σ = ∃?l · σ′.

The next Lemma states that, if an observer can observe a trace σ (i.e., can perform σ), then it
can also observe any trace σ′ � σ.

Lemma 5.6 If σ′ � σ and O
σ
=⇒ , then O

σ′

==⇒ .

Proof: By definition, σ′ � σ means σ′(�0)nσ for some n ≥ 0; we proceed by induction on n. The
base step is trivial, by reflexivity. For the inductive step, we let σ′(�0)n−1σ′′ �0 σ; it suffices to

prove that O
σ
=⇒ implies that O

σ′′

==⇒ . Indeed, by induction, the latter judgement implies that O
σ′

==⇒ ,
as required. We reason by case analysis on the law in Table 7 used to infer σ′′ �0 σ. Notably, since
observers cannot perform remote inputs, law (L7) cannot be used to infer σ′′ �0 σ; moreover, in
law (L3), only local inputs are allowed.

(L1).a: σ
�
σ1 · ∃?(ν̃l) 〈l〉@ l2 : l1 · σ2 and σ′′

�
σ1 · (ν̃l)σ2. By hypothesis, O

σ1
==⇒ O′

(ν̃l) 〈l〉@ l2: l1
−−−−−−−−−−→ O′′

σ2
==⇒ ; by Proposition 4.2(2/3), O′ ≡ (ν̃l)(O′′ ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉). Now, if

l̃ = ∅ or l̃ ∩ fn(σ2) = ∅, then O′
σ2
==⇒ and, hence, O

σ′′

==⇒ . Otherwise, it must be l̃ = {l} and

σ2

�
σ3 ·∃? 〈l〉@ l4 : l3 ·σ4, for l < fn(σ3, l3, l4); thus, O′′

σ3
==⇒O′′1

〈l〉@ l4: l3
−−−−−−−−→O′′2

σ4
==⇒ . Now,

O′
σ3
==⇒ (νl)(O′′2 ‖ {l3 ↔ l4} ‖ l4 :: 〈l〉 ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉). Hence, O

σ1·σ3·(νl) 〈l〉@ l4: l3 ·σ4
==================⇒ ,

i.e. O
σ′′

==⇒ .

(L1).b: σ
�
σ1 · ∃?l1

� l2 · σ2 and σ′′
�
σ1 · σ2. By hypothesis, O

σ1
==⇒ O′

l1 � l2
−−−−→ O′′

σ2
==⇒ ; by

Proposition 4.2(1), O′ ≡ O′′ ‖ {l1 ↔ l2} and hence O
σ1·σ2
====⇒ , as required.

(L1).c: σ
�
σ1 · ∃?l · σ2 and σ′′

�
σ1 · σ2. Similar to the previous sub-case.

(L2).a: σ
�
σ1 ·∃?(ν̃l) 〈l〉@ l2 : l1 ·φ·σ2 and σ′′

�
σ1 ·(ν̃l)(φ·∃? 〈l〉@ l2 : l1 ·σ2). By hypothesis,

O
σ1
==⇒ O′

(ν̃l) 〈l〉@ l2: l1
−−−−−−−−−−→ O′′

φ
=⇒ O′′′

σ2
==⇒ ; by Proposition 4.2(2/3), O′ ≡ (ν̃l)(O′′ ‖ {l1 ↔ l2} ‖

l2 :: 〈l〉). Now, if l̃ = ∅ or l̃ ∩ fn(φ) = ∅, then it must be that O′
φ·(ν̃l) 〈l〉@ l2: l1 ·σ2
===============⇒ and, hence,

O
σ′′

==⇒ . Otherwise, it must be φ = ∃? 〈l〉@ l4 : l3 for l < {l3, l4}; thus, O′′
〈l〉@ l4: l3
=========⇒ O′′′.

Now, O′
(νl) 〈l〉@ l4: l3
===========⇒ O′′′ ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉

〈l〉@ l2: l1
−−−−−−−−→ O′′′

σ2
==⇒ , and hence O

σ′′

==⇒ .

(L2).b: σ
�
σ1 · ∃?l1

� l2 · φ · σ2 and σ′′
�
σ1 · φ · ∃?l1

� l2 · σ2. By hypothesis,

O
σ1
==⇒ O′

l1 � l2
−−−−→ O′′

φ
=⇒ O′′′

σ2
==⇒ and, by Proposition 4.2(1), O′ ≡ O′′ ‖ {l1 ↔ l2}. This

implies that O
σ1·φ·l1 � l2··σ2
===========⇒ , as required.
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(L3).a: σ
�
σ1 · ∃?(ν̃l) 〈l〉@ l1 : l1 · 〈l〉@ l1 : l1 · σ2 and σ′′

�
σ1 · (ν̃l)σ2. By hypothesis,

O
σ1
==⇒ O′

(ν̃l) 〈l〉@ l1: l1
−−−−−−−−−−→ O′1 =⇒ O′2

∃? 〈l〉@ l1: l1
−−−−−−−−−−→ O′′

σ2
==⇒ ; moreover, by Proposition 4.2(2/3),

O′ ≡ (ν̃l)(O′1 ‖ l1 :: 〈l〉). Thus, O′ =⇒ (ν̃l)(O′2 ‖ l1 :: 〈l〉)
τ
−→ (ν̃l)O′′. Now, if l̃ = ∅ or

l̃ ∩ fn(σ2) = ∅, then (ν̃l)O′′
σ2
==⇒ and, hence, O

σ′′

==⇒ . Otherwise, we reason as in case (L1).a

to obtain that (ν̃l)O′′
(ν̃l)σ2
=====⇒ and, again, O

σ′′

==⇒ .

(L3).b: σ
�
σ1 · ∃?l1

� l2 · l1
� l2 · σ2 and σ′′

�
σ1 · σ2. By hypothesis,

O
σ1
==⇒ O′

l1 � l2
−−−−→ O′′

∃?l1 � l2
======⇒ O′′′

σ2
==⇒ ; moreover, by Proposition 4.2(1), O′ ≡ O′′ ‖ {l1 ↔ l2}.

By exploiting (LTS-COMPL), this implies that O′ =⇒ O′′′ and we can easily conclude.

(L4): trivial, since we are using an early-style LTS.

(L5): The cases for φ = ∃? are simple and can be dealt with by relying on Proposition 4.2. Let
us consider the case for φ = (νl) 〈l〉@ l1 : l1 , since the case for l1

� l2 is similar; thus,
σ

�
σ1 · (νl) 〈l〉@ l1 : l1 · σ2 and σ′′

�
σ1 · (νl) 〈l〉@ l1 : l1 · ∃?l′ � l′ · σ2, for l′ ∈ {l, l1}.

By hypothesis, O
σ1
==⇒O′

∃?(νl) 〈l〉@ l1: l1
−−−−−−−−−−−−→O′′

σ2
==⇒ ; now, by definition of the LTS, it is simple to

show that l′ is the address of a node in O′′ and hence O′′ ≡ O′′ ‖ l′ :: nil. Thus, by exploiting

rule (SELF), we have that O
σ1·∃?(νl) 〈l〉@ l1: l1
===============⇒ O′′ ‖ l′ :: nil

l′ � l′
−−−→ O′′

σ2
==⇒ , as required.

(L6): σ
�
σ1 · β · ∃?l � l · σ2 and σ′′

�
σ1 · ∃?l � l · β · σ2. By hypothesis,

O
σ1
==⇒ O1

β
−→ O2 =⇒ O3

l � l
−−→ O4

σ2
==⇒ ; moreover, by Proposition 4.2(1), l is the address of

a node in O3. By definition of the LTS, it is easy to see that τ-actions cannot change the
adresses of a net, while β at most introduces nodes with address in Υ(β). Since l < Υ(β), it

follows that l is the address of a node in O1; hence, O
σ1·l � l·β·σ2
=========⇒ , as required.

(L8): σ
�
σ1 · ∃?(ν̃l) 〈l〉@ l1 : l1 · ∃?l1

� l2 · σ2 and σ′′
�
σ1 · ∃?(ν̃l) 〈l〉@ l1 : l2 · σ2.

By hypothesis, O
σ1
==⇒ O1

(ν̃l) 〈l〉@ l1: l1
−−−−−−−−−−→ O2 =⇒ O3

l1 � l2
−−−−→ O4

σ2
==⇒ ; by Proposition 4.2(2/3),

O1 ≡ (ν̃l)(O2 ‖ l1 :: 〈l〉) and O3 ≡ O4 ‖ {l1 ↔ l2}. Thus, O1 =⇒ (ν̃l)(O4 ‖ {l1 ↔ l2} ‖ l1 :: 〈l〉)

and we can easily conclude that O
σ1·(ν̃l) 〈l〉@ l1: l2 ·σ2
================⇒ , as required.

(L9): σ
�
σ1 · ∃?(ν̃l) 〈l〉@ l1 : l2 · σ2 and σ′′

�
σ1 · ∃?(ν̃l) 〈l〉@ l1 : l1 · ∃?l1

� l2 · σ2. By

hypothesis, O
σ1
==⇒ O′

(ν̃l) 〈l〉@ l1: l2
−−−−−−−−−−→ O′′

σ2
==⇒ ; by Proposition 4.2(2/3), O′ ≡ (ν̃l)(O′′ ‖ l1 ::

〈l〉 ‖ {l1 ↔ l2}) and we can easily conclude that O
σ1·(ν̃l) 〈l〉@ l1: l1 ·l1 � l2·σ2
=====================⇒ , as required.

By properly adapting the proof of the previous Lemma, we can also prove that the laws in

Table 7 are ‘sound’, in the sense that, whenever σ′ �0 σ and N
σ′

==⇒ , any net M able to perform σ
may synchronise with N.

Proposition 5.7 Let σ′ �0 σ, N
σ′

==⇒ and M
σ·φ
===⇒; then, N ‖ M

φ
=⇒ .

Proof: Let us first assume that σ′ �0 σ has been inferred by using law (L7). In this case, σ
�

σ1 · (ν̃l) 〈l〉@ l1 : l2 ·σ2 and σ′
�
σ1 · l1

� l2 · (ν̃l) 〈l〉@ l1 : l1 ·σ2; thus, M
σ1·∃?(ν̃l) 〈l〉@ l1: l2 ·σ2·φ
===================⇒

and N
σ1
==⇒ N1

l1 � l2
−−−−→ N2 =⇒ N3

(ν̃l) 〈l〉@ l1: l1
−−−−−−−−−−→ N4

σ2
==⇒ N′. By Proposition 4.2, N

σ1
==⇒ N2 ‖ {l1 ↔
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l2} =⇒ (ν̃l)(N4 ‖ l1 :: 〈l〉 ‖ {l1 ↔ l2})
σ2
==⇒ ; hence, by (LTS-OFFER), N

σ1
==⇒ (ν̃l)(N4 ‖ l1 :: 〈l〉 ‖ {l1 ↔

l2})
(ν̃l) 〈l〉@ l1: l2
−−−−−−−−−−→ N4

σ2
==⇒ N′ and, by properly adapting Lemma 5.5, this implies that N ‖ M

φ
=⇒ .

If σ′ �0 σ has been inferred by using the remaining laws, we can easily adapt the proof of
Lemma 5.6 with M in place of O (just notice that case (L3).a can be smoothly adapted to also
consider a remote input); this suffices to conclude.

Now, the main theorem of this section follows.

Theorem 5.8 (Soundness of � w.r.t. ') If N � M then N ' M.

Proof: Let O be an observer such that N ‖ O
OK

==⇒ . By Lemma 5.5(2), there exists σ such that

N
σ
=⇒ and O

σ ·OK
====⇒ . By Definition 5.4, there exists σ′ � σ such that M

σ′

==⇒ ; by suffix closure of

� (that can be easily proved), we have that σ′ · ∃?OK � σ · ∃?OK. So, by Lemma 5.6, O
σ′·OK
====⇒ that,

Lemma 5.5(1), implies that M ‖ O
OK

==⇒ , as required by Definition 3.8.

5.3 Completeness w.r.t. May Testing

To prove that trace equivalence exactly captures may testing, we define a family of observers as
follows.

Definition 5.9 Given a trace σ, the canonical observer for σ, written q(σ), is

q(σ) = N ‖ test :: P

where the actual observer process P and net N enabling the observation are returned by O∅(σ) =
< P ; N > , which is defined in Table 8.

In Table 8, we write dl :: nilcL to denote l :: nil, if l < L, and 0, otherwise. With abuse of
notation, we use process GO l DO THEN P introduced in Section 4.2 also when is a sequence
of actions. In OL(σ), L is the (finite) set of names extruded by the trace, i.e. those names created by
the net that emitted σ and offered as a datum in a visible location. In the pair < P ; N > , the net N
has only to provide nodes in order to enable P’s observations. Indeed, N is just a parallel of nodes
hosting the inert process and its traces can only be sequences of labels of the form l � l. However,
N must not provide a node with locality l whenever l ∈ L. In this case, the observed net already
provides the needed node: indeed, if l ∈ L, then l has been extruded by an action (νl) 〈l〉@ l1 : l2
in σ.

The key property of the canonical observer for σ is that it always yields a successful computa-
tion when run in parallel with a net that may perform σ, as stated by the following Proposition.

Proposition 5.10 If M
σ
=⇒ , then M ‖ q(σ)

OK

==⇒ .

Proof: The proof is by induction on |σ|. The base step is trivial. The inductive step follows from
Definition 5.9; there are only two non-trivial cases:

σ = (ν̃l) 〈l〉@ l1 : l2 · σ′. In this case, M =⇒ M′
(ν̃l) 〈l〉@ l1: l2
−−−−−−−−−−→ M′′

σ′

==⇒ ; by Proposition 4.2(2/3),
M′ ≡ (ν̃l)(M′′ ‖ {l1 ↔ l2} ‖ l1 :: 〈l〉). Moreover, by construction,

q(σ)
∃?l1 � l2·∃?(ν̃l) 〈l〉@ l1: l1
====================⇒ q (σ′); hence, M ‖ q(σ) =⇒ (ν̃l)(M′′ ‖ q(σ′)) and, by induction,

we easily conclude.
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OL(ε) = < out()@test.nil ; 0 >

OL(l1
� l2 · σ) = < GO l1 DO disc(l2) THEN P ; N ‖ dl1 :: nilcL >

where OL(σ) = < P ; N >

OL( 〈l〉@ l1 : l2 · σ) = < GO l1 DO disc(l2).in(l)@l1 THEN P ; N ‖ dl1 :: nilcL >

where OL(σ) = < P ; N >

OL((νl) 〈l〉@ l1 : l2 · σ) = < GO l1 DO disc(l2).in(!x)@l1 THEN (P[x/l]) ; N ‖ dl1 :: nilcL >

where OL∪{l}(σ) = < P ; N >

OL(∃?l · σ) = < P ; N ‖ dl :: nilcL >

where OL(σ) = < P ; N >

OL(∃?l1
� l2 · σ) = < GO l1 DO conn(l2) THEN P ; N ‖ dl1 :: nilcL ‖ dl2 :: nilcL >

where OL(σ) = < P ; N >

OL(∃? 〈l〉@ l2 : l1 · σ) = < GO l2 DO conn(l1).out(l)@l2 THEN P ;
N ‖ dl1 :: nilcL ‖ dl2 :: nilcL >

where OL(σ) = < P ; N >

OL(∃?(νl) 〈l〉@ l2 : l1 · σ) = < GO l2 DO conn(l1).new(l).out(l)@l2 THEN P ;
N ‖ dl1 :: nilcL ‖ dl2 :: nilcL >

where OL(σ) = < P ; N >

Table 8: Constructing the Canonical Observers for Theorem 5.13

σ = l � l · σ′. In this case, q(σ) does not necessarily exhibit label ∃?l to become q(σ′) (while,
by definition, it will surely exhibit label ∃?l � l). However, by Proposition 4.2(1), M ≡ M ‖

l :: nil
σ′

==⇒ and q(σ)
�

N ‖ l :: nil ‖ test :: GO l DO disc(l) THEN P =⇒ N ‖ l :: nil ‖

test :: P
�
q(σ′) ‖ l :: nil, for < P ; N > = O∅(σ′). By induction, M ‖ q(σ′)

OK

==⇒ ; hence,

M ‖ q(σ) =⇒ M ‖ q(σ′)
OK

==⇒ .

The next lemma states that, if q(σ) reports success by interacting with a net N, then it can do
so by performing a trace σ′ that does not contain the reserved name test and labels of the form
∃?l (that require existence of node l and are generated when an action connis executed). Due to
the definition of the canonical observers (and to notation GO l DO a THEN P), this means that all
labels in σ′ are from σ or are generated by the localities in the observation context (the latter labels
are of the form l � l).

Lemma 5.11 If M ‖ q(σ)
OK

==⇒ , then there exists a σ′ such that M
σ′

==⇒ , q(σ)
σ′ · OK
=====⇒ , test < n(σ′)

and σ′ does not contain labels of the form ∃?l .

Proof: By Lemma 5.5(2), we know that there exists a trace σ′′ such that M
σ′′

==⇒ and q(σ)
σ′′ · OK
=====⇒ ;

moreover, since test is a reserved name, test < n(σ′′). The proof now proceeds by induction on
the number of labels of the form ∃?l in σ′′. The base step is trivial. For the inductive step, suppose
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that σ′′ is of the form σ1 · φ · σ2, where φ is the first label of kind ∃?l in σ′′. Let φ = ∃?l2 and L
be the set of names extruded by σ1; we consider two sub-cases:

1. l2 < L. By definition of canonical observers, it must be that q(σ)
σ1
==⇒ N ‖ l1 :: nil ‖ l2 :: nil ‖

l1 :: conn(l2).P ‖ {test ↔ l1}
∃?l2
−−−→ N ‖ l1 :: nil ‖ l2 :: nil ‖ l1 :: P ‖ {test ↔ l1}

σ2·OK
====⇒ ,

for proper N and P; thus, we can easily conclude that q(σ)
σ1·σ2·OK
=======⇒ . Additionally, by

hypothesis, M
σ1
==⇒ M′

l2 � l2
−−−−→ M′′

σ2
==⇒ and so M′ ≡ M′′ ‖ {l2 ↔ l2}; again, we can easily

conclude that M
σ1·σ2
====⇒ . The thesis follows from the inductive hypothesis on σ1 · σ2.

2. l2 ∈ L. Then, σ1 is of the form σ3 · (νl) 〈l2〉@ l3 : l4 ·σ4; thus, by rule (LTS-BIN), it must be

that q(σ)
σ3
==⇒ K

∃?(νl2) 〈l2〉@ l3: l4
−−−−−−−−−−−−−−→ K′ ‖ l2 :: nil

σ4
==⇒ N ‖ l1 :: nil ‖ l2 :: nil ‖ l1 :: conn(l2).P ‖

{test↔ l1}
∃?l ·σ2·OK
========⇒ and the proof proceeds like in the previous case.

The main Lemma to prove completeness of trace equivalence w.r.t. may testing is the following
one: it states that, if q(σ) can report success upon execution of a trace σ′ that does not contain the
reserved name test and labels of the form ∃?l , then σ′ � σ. The previous Lemma showed that
these assumptions on σ′ are not restrictive.

Lemma 5.12 Let q(σ)
σ′ · OK
=====⇒ . If test < n(σ′) and σ′ does not contain labels of the form ∃?l ,

then σ′ � σ.

Proof: The proof is by induction on |σ|. The base step is trivial. For the inductive step, let σ be
φ · σ′′; we reason by analysis on the cases for φ. In what follows, we use notation σ2\

N
L to denote

the trace obtained from σ2 by removing all the labels of the form l � l, for every l ∈ L such that
l < fn(N).

(i) φ
�
∃?l . By costruction, q(σ)

�
N ‖ l :: nil ‖ test :: P, where < P ; N > = O∅(σ′′). Now,

we have that σ′
�
σ1 · σ2, where N

σ1
==⇒ N′ and N′ ‖ l :: nil ‖ test :: P

σ2·OK
=====⇒ . Thus,

q(σ′′)
�

N ‖ test :: P
σ1·σ

′
2·OK

=======⇒ , where σ′2 = σ2\
N
{l}. Indeed, by definition of q(σ), we

have that P does not need l :: nil to evolve; hence, the only possible contribution of l :: nil to
the production of σ′ is by providing (possibly several times) label l � l. By induction, we
have that σ1 · σ

′
2 � σ

′′. We now have that σ � φ · σ1 · σ
′
2 � φ · σ1 · σ2 � σ1 · σ2

�
σ′,

where the first inequality has been obtained by prefix closure, the second inequality has been
obtained by repeated applications of laws (L5) and (L2) (as many times as the number of
labels l � l removed from σ2 to obtain σ′2) and the last inequality relies on law (L1).

(ii) φ
�

l1
� l2. By construction, q(σ)

�
N ‖ l1 :: nil ‖ test :: GO l1 DO disc(l2) THEN P,

where < P ; N > = O∅(σ′′). Then, σ′
�
σ1 · ∃?l1

� l2 · σ2, where N
σ1
==⇒ N′ and N′ ‖ l1 ::

nil ‖ l2 :: nil ‖ test :: P
σ2·OK
====⇒ . By induction, σ1 · σ

′
2 � σ

′′, where σ′2 = σ2\
N
{l1,l2}

; we can
conclude by prefix closure, by repeated applications of laws (L5) and (L2) (as many times as
the number of labels l1

� l1 and l2
� l2 removed from σ2 to obtain σ′2) and by law (L6);

indeed, since N is just a parallel of nodes hosting process nil, σ1 can only consist of labels of
kind ∃?l � l.

(iii) φ
�

(ν̃l) 〈l〉@ l1 : l2 . By construction, we have two subcases.
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1. If l̃ = ∅, then q(σ)
�

N ‖ l1 :: nil ‖ test :: GO l1 DO disc(l2).in(l)@l1 THEN P, where

< P ; N > = O∅(σ′′). Then, σ′
�
σ1 · ∃?l1

� l2 · ∃? 〈l〉@ l1 : l1 ·σ2, where N
σ1
==⇒ N′

and N′ ‖ l1 :: nil ‖ l2 :: nil ‖ test :: P
σ2·OK
====⇒ . By induction, σ1 · σ

′
2 � σ

′′, where

σ′2 = σ2\
N
{l1,l2}

; similarly to case (ii), we can conclude by prefix closure, by repeated
applications of laws (L5) and (L2), by law (L6) and by law (L7).

2. If l̃ = {l}, then q(σ)
�

N ‖ l1 :: nil ‖ test :: GO l1 DO disc(l2).in(!x)@l1 THEN P[x/l],
where < P ; N > = O{l}(σ′′). We then proceed similarly to case (iii).1, by also exploit-
ing rule (L4) if a name different from l is received. Just notice that, because of rule
(LTS-BIN), now also the parallel component l :: nil may contribute to the generation of
σ2 with labels l � l; nevertheless, by definition of function Υ(·), law (L5) can properly
handle also this situation.

(iv) φ
�
∃?l1

� l2. By construction, q(σ)
�

N ‖ l1 :: nil ‖ l2 :: nil ‖ test ::
GO l1 DO conn(l2) THEN P, where < P ; N > = O∅(σ′′). Then, σ′ = σ1 · σ2, where

N
σ1
==⇒ N′ and N′ ‖ test :: P ‖ {l1 ↔ l2}

σ2·OK
====⇒ . Notice that the component {l1 ↔ l2}

can contribute to the generation of σ2 or not. If it does not contribute, the thesis follows
by an easy induction, prefix closure and law (L1); otherwise, by exploiting Proposition 5.2
and because observers cannot perform remote inputs, there are only three possible kinds of
contributions (for the sake of simplicity, we ignore here labels of kind l � l, for l ∈ {l1, l2},
that can be handled like in case (ii).1):

1. symmetric version of Proposition 5.2(1): in this case, σ2

�
σ3 · l1

� l2 · σ4, where

N′ ‖ test :: P
σ3·σ4·OK
=======⇒ . By induction, σ1 · σ3 · σ4 � σ

′′; we can conclude by prefix
closure and law (L2).

2. Proposition 5.2(2): in this case, σ2

�
σ3 · (ν̃l) 〈l〉@ l1 : l2 · σ4, where N′ ‖ test ::

P
σ3·(ν̃l) 〈l〉@ l1: l1 ·σ4·OK
==================⇒ . By induction, σ1 · σ3 · ∃?(ν̃l) 〈l〉@ l1 : l1 · σ4 � σ

′′; we can
conclude by prefix closure and laws (L2) and (L8).

3. Proposition 5.2(3): in this case, σ2

�
σ3 · σ4, where N′ ‖ test :: P

σ3·∃?l1 � l2·σ4·OK
=============⇒ .

By induction, σ1 · σ3 · l1
� l2 · σ4 � σ

′′; we can conclude by prefix closure and laws
(L2) and (L3).

(v) φ
�
∃?(ν̃l) 〈l〉@ l1 : l2 . This is the most tedious case: q(σ) has a lot of possible evolutions

and, thus, σ′ can be of several forms. However, notice that the hypothesis of this Lemma
reduces the number of such possibilities and the definition of canonical observers forces
q(σ) to reduce to (ν̃l)(N ‖ test :: P ‖ l1 :: 〈l〉 ‖ {l1 ↔ l2}) in order to report success. For the
sake of simplicity, we only consider the case for l̃ = ∅; the case for l̃ = {l} is only notationally
heavier. Let H

�
l1 :: 〈l〉 ‖ {l1 ↔ l2}; then, H can only exhibit six traces that, by using

Proposition 5.2, can be combined in several ways with the traces of q(σ′′)
�

N ‖ test :: P
to yield σ′, as reported below (again, we ignore here labels of kind l � l, for l ∈ {l1, l2}).

1. ε (this case corresponds to Proposition 5.2(1)). Thus, q(σ′′)
σ′·OK
====⇒ and we can con-

clude by induction and by using (L1).

2. l1
� l2 (the case for l2

� l1 proceeds by symmetry). Similarly to case (iv), we have
three possibilities for σ′. In all of them, the proof proceeds like the corresponding proof
of case (iv), by furtherly using law (L9) to rewrite ∃? 〈l〉@ l1 : l2 into ∃? 〈l〉@ l1 :
l1 · ∃?l1

� l2 and law (L1) to delete ∃? 〈l〉@ l1 : l1 .
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3. 〈l〉@ l1 : l1 . In this case, σ′ = σ1 ·σ2, where N
σ1
==⇒ N′ and N′ ‖ test :: P ‖ H

σ2·OK
====⇒ .

We then have three possibilities for σ2:

(a) σ2

�
σ3 · 〈l〉@ l1 : l1 · σ4 and q(σ′′)

σ3·σ4·OK
=======⇒ (this case corresponds to the

symmetric version of Proposition 5.2(1)). The thesis follows by induction, prefix
closure and laws (L2), (L9) and (L1).

(b) σ2

�
σ3 · 〈l〉@ l1 : l3 ·σ4 and q(σ′′)

σ3·l1 � l3·σ4·OK
============⇒ (this case corresponds to the

symmetric version of Proposition 5.2(2)). The thesis follows by induction, prefix
closure and laws (L2), (L9), (L1) and (L8).

(c) σ2

�
σ3 · σ4 and q(σ′′)

σ3·∃? 〈l〉@ l1: l1 ·σ4·OK
==================⇒ (this case corresponds to Proposi-

tion 5.2(4)). The thesis follows by induction, prefix closure and laws (L9), (L1),
(L2) and (L3).

4. 〈l〉@ l1 : l2 . Again, σ′ = σ1 · σ2, where N
σ1
==⇒ N′ and N′ ‖ test :: P ‖ H

σ2·OK
====⇒ .

Since the observer cannot perform remote inputs, the only possibility for σ2 is σ2

�

σ3 · 〈l〉@ l1 : l2 · σ4, where q(σ′′)
σ3·σ4·OK
=======⇒ . We then work like in case (v).3(a), but

without using laws (L9) and (L1).

5. l1
� l2 · 〈l〉@ l1 : l1 . Obtained by combining cases (v).2 and (v).3 above.

6. 〈l〉@ l1 : l1 · l1
� l2. Obtained by combining cases (v).3 and (v).2 above.

Finally, we can prove that trace equivalence exactly captures may testing.

Theorem 5.13 (Completeness of � w.r.t. ') If N ' M then N � M.

Proof: Let N
σ
=⇒ ; by Proposition 5.10, it holds that N ‖ q(σ)

OK

==⇒ . By Proposition 3.9 and

Definition 3.8, it holds that M ‖ q(σ)
OK

==⇒ . By Lemma 5.11, there exists σ′ such that M
σ′

==⇒ ,

q(σ)
σ′ · OK
=====⇒ and σ′ does not contain labels of the form ∃?l . Since test is fresh for N and M, it

holds that test < n(σ′) = n(σ′); thus, by Lemma 5.12, σ′ � σ, as required by Definition 5.4.

From Theorems 5.8 and 5.13 we get the wanted result.

Corollary 5.14 (Alternative Characterization of May Testing) � = ' .

6 Controlling the Activation of a Connection

TKLAIM can be easily accommodated to model a finer scenario where a handshake between the
nodes involved is necessary to activate a connection (this feature is similar to the so-called co-
capabilities of Safe Ambients [27]). This mechanism can be implemented by introducing a new
action acpt that, by synchronizing with an action conn, authorises the activation of a new connec-
tion either from a specific node or from any node. An enabling action corresponding to disc seems
to be less reasonable, as disconnections are usually unilateral (and, then, asynchronous) events. We
extend the syntax of actions from Table 1 as follows:

a ::= . . .
∣∣∣ acpt(!x)

∣∣∣ acpt(u)

Intuitively, action acpt(l) executed by a process located at l′ means that l′ is ready to activate a
connection with l. Similarly, action acpt(!x) executed by a process located at l′ means that l′ is
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ready to activate a connection with any node, whose address will replace x in the continuation;
thus, acpt(!x).P binds x in P. These ideas are formalised by replacing in Table 4 rule (R-CONN)
with

(R-CONN1) l1 :: conn(l2).P ‖ l2 :: acpt(l1).Q 7−→ l1 :: P ‖ {l1 ↔ l2} ‖ l2 :: Q

(R-CONN2) l1 :: conn(l2).P ‖ l2 :: acpt(!x).Q 7−→ l1 :: P ‖ {l1 ↔ l2} ‖ l2 :: Q[l1/x]

We believe that both the two forms of acpt are useful in practice. On the one hand, acpt(!x) can
be exploited by a server willing to accept connection requests from any, initially unknown, client.
Notice that this form of client-server interaction could not be flexibly implemented by resorting to a
shared TS storing connection requests, because a connection between the node hosting the TS and
that of a potential client should be already in place for the client be able to put its request. On the
other hand, acpt(l) should be used if a process is ready to activate connections only with a specific
partner. Indeed, accepting connection requests from any process through acpt(!x) and then, after
checking the partner identity, disconnecting the unwanted partners through disc, could expose a
node to security risks because the sequence of actions is not guaranteed to be performed atomically.

Definitions 3.4 and 3.5 are formally unchanged in this finer scenario; we still denote the result-
ing equivalences with symbols ' and �. We now linger on their alternative characterisations: we
start by developing a revised LTS that handles the new language; then, in Section 6.2 we present a
sound and complete proof-technique for barbed congruence, while in Section 6.3 we touch upon a
sound (but not complete) trace-based proof-technique for may testing.

6.1 A Revised Labelled Transition System

The LTS of Section 4.1 must be now extended with two new, complementary, labels: one for action
conn and one for acpt. Thus, the syntax of labels becomes as follows:

α ::= . . .
∣∣∣ (ν̃l)l1 : ?l2

∣∣∣ l1 : !l2

Intuitively, (ν̃l)l1 : ?l2 results from enriching label ∃? l2 (that in the LTS of Section 4.1 is pointed
out when action conn(l2) is performed) with the node address l1 (that can also be restricted) where
the action is executed; of course, bn( (ν̃l)l1 : ?l2 )

�
l̃. Label l1 : !l2 is instead pointed out when

an action acpt accepting a connection request from l2 is performed at l1. These new labels are gen-
erated by rules (LTS-CONN), (LTS-ACC1) and (LTS-ACC2) in Table 9; they are synchronised via
rule (LTS-EST), which activates a new connection as a consequence of a synchronization between
a connection request and an acceptance. Like for (LTS-COMPL), no scope extrusion is carried out
by (LTS-EST): the scope must have been extended previously through (LTS-STRUCT) (this also
ensures the freshness of the node performing the conn for the net where the acpt is performed).

The new version of rule (LTS-OPEN) in Table 9 allows restricted nodes to perform action conn;
however, it does not admit labels of the form 〈l′〉@ l′ : l . Indeed, in the new framework, exporting
a bound name via a communication does not ‘fully open’ its scope. Consider, for example, the net

(νl′)(l :: 〈l′〉 ‖ l′ :: C)

It would be too informative to state that (νl′)(l :: 〈l′〉 ‖ l′ :: C)
(νl′) 〈l′〉@ l: l
−−−−−−−−−−→ l :: nil ‖ l′ :: C. Indeed, if

C
�
〈〉, no context can observe the datum at l′, because l′ is “unreachable” (i.e., it is not connected

with any other node of the net, nor it requires/accepts any connection). Hence, the nets

(νl′)(l :: 〈l′〉 ‖ l′ :: 〈〉) and (νl′)(l :: 〈l′〉 ‖ l′ :: nil)
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(LTS-ACC1) (LTS-ACC2)

l1 :: acpt(l2).P
l1: !l2
−−−−→ l1 :: P l1 :: acpt(!x).P

l1: !l2
−−−−→ l1 :: P[l2/x]

(LTS-CONN) (LTS-EST)

l1 :: conn(l2).P
l1: ?l2
−−−−−→ l1 :: P N1

l1: ?l2
−−−−−→ N′1 N2

l2: !l1
−−−−→ N′2

N1 ‖ N2
τ
−→ N′1 ‖ N

′
2 ‖ {l1 ↔ l2}

(LTS-OPEN)

N
l: ?l′
−−−−→ N′ l′ , l

(νl)N
(νl) l: ?l′
−−−−−−→ N′

(LTS-HALFOPEN )

N
〈l〉@ l1: l2
−−−−−−−−→ N′ l < {l1, l2}

(νl)N
(νl) 〈l〉@ l1: l2
−−−−−−−−−−→ (l)N′

(LTS-FULLOPEN )

N
α
−→ N′ α ∈ {l � l′, l : ?l′ , l : !l′ } l′ , l

(l)N
α
−→ N′

(LTS-HALFRES1 )

N
α
−→ N′ l < n(α)

(l)N
α
−→ (l)N′

(LTS-HALFRES2 )

N
α
−→ N′ α ∈ { 〈l〉@ l1 : l2 ,∃? 〈l〉@ l1 : l2 } l < {l1, l2}

(l)N
α
−→ (l)N′

plus all rules from Table 5, but (LTS-CONN) and (LTS-OPEN), with N in place of N
everywhere and with the extended ≡.

Table 9: The Revised LTS

are equated by both � and '. Fully opening the scope of l′ would give to the bisimilarity and the
trace equivalence an observational power that no context of the language has.

To properly tackle these situations, we say that the scope of an extruded name is only half-
opened by a label of the form (νl′) 〈l′〉@ l : l and introduce the notion of extended nets, that are
nets possibly containing half-restricted names. Extended nets are ranged over by N, M, K, ... (and
their decorated versions) and are formally defined as follows:

N ::= N
∣∣∣ (l)N

∣∣∣ (νl)N
∣∣∣ N1 ‖ N2

Intuitively, half-restricted names correspond to addresses of nodes whose scope has been extended
but whose reachability is still unknown. Thus, the half-restriction operator (l) is not a binder for l,
because l is known to the environment (that has previously received l via an action (νl) 〈l〉@ l1 : l2 );
so, fn((l)N)

�
{l} ∪ fn(N) and, in (l)N, l cannot be alpha-converted. The following rules extend

structural equivalence to cope with half-restrictions too:

(HCOM) (l1)(l2)N ≡ (l2)(l1)N (RHCOM) (l1)(νl2)N ≡ (νl2)(l1)N

(HGARB) (l)0 ≡ 0 (HEXT) N ‖ (l)M ≡ (l)(N ‖ M) if l < fa(N)

where we write l ∈ fa(N) if N ≡ N ‖ l :: nil, i.e. l is the address of a non-restricted node in N
(we shall sometimes say that l is a free address of N, and this motivates the notation). The last rule
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is justified by the fact that, since l is half-restricted, it has been previously exported via a bound
output; thus, it can occur as a free name in N (maybe, in the receiving process), but it cannot be a
free address of N, since it is still (potentially) unreachable in M.

Thus, a label (νl) 〈l〉@ l1 : l2 is pointed out when a restriction on l is turned to a half-restriction,
see rule (LTS-HALFOPEN) in Table 9. Half-restrictions are removed only when the node corre-
sponding to a half-restricted name becomes ‘reachable’, i.e. whenever it performs a conn/acpt or
whenever it exhibits a connection with another node of the net (see rule (LTS-FULLOPEN)). Until
such a moment, actions involving a half-restricted name l are regulated by rules (LTS-HALFRES 1 ),
that permits all those actions not involving l, and (LTS-HALFRES2 ), that permits output and in-
put of l. This should motivate the term half-restriction: a half-restricted name is not either really
restricted nor free, since only some actions involving it are forbidden.

Summarizing, the revised labelled transition relation (between extended nets) is presented in
Table 9. Notably, its τ-steps coincide with the reductions of the extended language (that is, an
analogous of Proposition 4.4 still holds). Moreover, an analogous of Proposition 4.2 holds; in what
follows, whenever we mention Proposition 4.2, we intend its analogous for the LTS of Table 9.
Finally, Proposition 4.3 becomes as follows (in particular, cases 2., 3. and 6. are similar to the
corresponding cases); the proof of the following result is omitted since it is very similar to the proof
of Proposition 4.3.

Proposition 6.1 Let l̃1 ∩ l̃2 = ∅; then, (νl̃1)(l̃2)(N ‖ K)
α
−→ N̄ if and only if one of the following

conditions holds:

1. (νl̃1)(l̃2)N
α
−→ (νl̃′1)(l̃′2)N′ and N̄ ≡ (νl̃′1)(l̃′2)(N′ ‖ K). In particular

(a) n(α) ∩ {l̃1, l̃2} = ∅ implies that N
α
−→ N′, l̃′1 = l̃1 and l̃′2 = l̃2

(b) α = (νl)α′, α′ = 〈l〉@ l1 : l2 , l ∈ l̃1 and {l1, l2} ∩ {l̃1, l̃2} = ∅ imply that N
α′

−→ N′,
l̃′1 = l̃1 − {l} and l̃′2 = l̃2 ∪ {l}

(c) α ∈ { 〈l〉@ l1 : l2 , ∃? 〈l〉@ l1 : l2 }, l ∈ l̃2 and {l1, l2} ∩ {l̃1, l̃2} = ∅ imply that N
α
−→ N′,

l̃′1 = l̃1 and l̃′2 = l̃2

(d) α = (νl)α′, α′ = l : ?l′ , l ∈ l̃1 and l′ < {l̃1, l̃2} imply that N
α′

−→ N′, l̃′1 = l̃1 − {l} and l̃′2 = l̃2

(e) α ∈ {l � l′, l : ?l′ , l : !l′ }, l ∈ l̃2 and l′ < {l̃1, l̃2} imply that N
α
−→ N′, l̃′1 = l̃1 and

l̃′2 = l̃2 − {l}

2. N
(νl̃′) 〈l〉@ l1: l1
−−−−−−−−−−−→ N′, K

l1 � l2
−−−−→ K′ and N̄ ≡ (νl̃′′)(N′ ‖ K′); moreover, if l̃′ = ∅ and l ∈ l̃, then

α = (νl) 〈l〉@ l1 : l2 and l̃′′ = l̃ − {l}; otherwise, α = (νl̃′) 〈l〉@ l1 : l2 and l̃′′ = l̃

3. N
∃?l1 � l2
−−−−−→ N′, K

l1 � l2
−−−−→ K′, N̄ ≡ (νl̃1)(l̃2)(N′ ‖ K′) and α = τ

4. (a) N
∃? 〈l〉@ l2: l1
−−−−−−−−−−→ (̃l)N′, K

(ν̃l) 〈l〉@ l2: l1
−−−−−−−−−−→ K′, l̃ ∩ fn(N) = ∅, N̄ ≡ (ν̃l, l̃1)(l̃2)(N′ ‖ K′) and α = τ

(b) N
∃? 〈l〉@ l2: l1
−−−−−−−−−−→ N′, K ≡ (l)K′, K′

〈l〉@ l2: l1
−−−−−−−−→ K′′, l < fa(N), N̄ ≡ (νl̃1)(l, l̃2)(N′ ‖ K′′) and α = τ

5. (a) N
l1 � l2
−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ N′, K

(ν̃l) 〈l〉@ l2: l2
−−−−−−−−−−→ K′, l̃ ∩ fn(N) = ∅, N̄ ≡ (ν̃l, l̃1)(l̃2)(N′ ‖ K′) and

α = τ

(b) N
l1 � l2
−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ N′, K ≡ (l)K′, K′

〈l〉@ l2: l2
−−−−−−−−→ K′′, l < fa(N), N̄ ≡ (νl̃1)(l, l̃2)(N′ ‖ K′′) and

α = τ
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6. N
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ N′, K

l2 � l1
−−−−→ K′, l̃′ ∩ fn(K) = ∅, N̄ ≡ (νl̃1)(l̃2)(N′ ‖ K′) and α = τ

7. N
(ν̃l)l1: ?l2
−−−−−−−→ N′, K

l2: !l1
−−−−→ K′, l̃ ∩ fn(K) = ∅, N̄ ≡ (νl̃1, l̃)(l̃2)(N′ ‖ K′ ‖ {l1 ↔ l2}) and α = τ

8. one of the previous cases with K in place of N and vice versa.

Finally, we give a simple Proposition that describes how the free addresses of a net change
upon execution of a transition; the proof straightforwardly follows from the definition of the LTS.
In particular, notice that half-restricted names are not free addresses, because of the side condition
of rule (HEXT).

Proposition 6.2 Let N
α
−→ N′; then

� if α ∈ { τ , (ν̃l) 〈l〉@ l1 : l2 } then fa(N′) = fa(N)

� if α ∈ { l � l′, (ν̃l) l : ?l′ , l : !l′ } then fa(N′) = fa(N) ∪ {l}, if l is half-restricted in N, and
fa(N′) = fa(N) ∪ l̃, otherwise

� if α ∈ { ∃?l1
� l2, ∃? 〈l〉@ l2 : l1 } then fa(N′) = fa(N) ∪ {l2}.

Proof: The proof can be done by an easy induction on the depth of the shortest inference of the

judgement N
α
−→ N′.

6.2 A Bisimulation-based Characterisation of Barbed Congruence

We can softly adapt Definition 4.5 to characterise barbed congruence also in the richer language.
We only remark that actions conn and acpt correspond quite closely to the output/input prefixes
of the synchronous π-calculus [29]. Thus, they are handled in a ‘traditional’ way, see point 1. of
Definition 6.3 below.

Definition 6.3 (Bisimilarity) A symmetric relation < between TKLAIM nets is a bisimulation if,

for each N < M and N
α
−→ N′, it holds that:

1. α ∈ {τ, l1
� l2, (ν̃l) 〈l〉@ l1 : l1 , (ν̃l)l1 : ?l2 , l1 : !l2 } implies that M

α̂
=⇒ M′ and N′ < M′,

for some M′;

2. α = ∃?β implies that M ‖ NET(β) =⇒ M′ and N′ < M′, for some M′.

Bisimilarity, ≈, is the largest bisimulation.

We now prove that this new version of the bisimilarity still exactly captures barbed congru-
ence. We follow the path of Section 4.2 to prove the main result of this section, as reported by the
following theorem.

Theorem 6.4 (Alternative Characterisation of Barbed Congruence) ≈ = � .

The inclusion “⊆ ” trivially follows from the fact that ≈ is context closed. The inclusion “⊇ ”
follows from the fact that � is a bisimulation; thanks to context closure, this can be proved by
building, for any possible action, a context forcing two barbed congruent nets to behave as required
by Definition 6.3. In the remainder of this section, we give full details on these key steps.

Lemma 6.5 ≈ is context closed.
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Proof: We shall prove that the relation

<
�
{( (νl̃1)(l̃2)(N ‖ K) , (νl̃1)(l̃2)(M ‖ K) ) : (̃l)N ≈ (̃l)M, l̃ ⊆ (l̃1, l̃2), l̃ ∩ fa(K) = ∅,

K is restriction and half-restriction free }

is a bisimulation up-to ≡; by taking l̃ = ∅ we obtain the thesis. Consider (νl̃1)(l̃2)(N ‖ K)
α
−→ N̄; by

Proposition 6.1 we have the following cases (notice that, since K is restriction and half-restriction
free, cases 4(b) and 5(b) do not occur; moreover, there is no restriction on the label from K in cases
4(a) and 5(a) and in the symmetric of cases 2 and 7):

1. (Proposition 6.1(1)) (νl̃1)(l̃2)N
α
−→ (νl̃′1)(l̃′2)N′ and N̄ ≡ (νl̃′1)(l̃′2)(N′ ‖ K); we have five sub-cases:

(a) (l̃1, l̃2) ∩ n(α) = ∅, N
α
−→ N′, l̃′1 = l̃1 and l̃′2 = l̃2: then, (̃l)N

α
−→ (̃l)N′; we reason by case

analysis on α:

i. α ∈ {τ, l1
� l2, (ν̃l) 〈l〉@ l1 : l1 , (ν̃l)l1 : ?l2 , l1 : !l2 }. By hypothesis, (̃l)M

α̂
=⇒ (̃l)M′

and (̃l)N′ ≈ (̃l)M′; thus, trivially, (νl̃1)(l̃2)(M ‖ K)
α̂
=⇒ (νl̃1)(l̃2)(M′ ‖ K)

�
M̄ and, by

definition, N̄< M̄.

ii. α = ∃?l1
� l2. Then, since (l̃1, l̃2) ∩ {l1, l2} = ∅, we have (̃l)M ‖ {l1 ↔ l2} ≡ (̃l)(M ‖

{l1 ↔ l2}) =⇒ (̃l)M′ and (̃l)N′ ≈ (̃l)M′; hence, it holds that (νl̃1)(l̃2)(M ‖ K) ‖ {l1 ↔
l2} ≡ (νl̃1)(l̃2)(M ‖ {l1 ↔ l2} ‖ K) =⇒ (νl̃1)(l̃2)(M′ ‖ K)

�
M̄ and N̄< M̄.

iii. α = ∃? 〈l〉@ l2 : l1 . This is similar to the previous case: by (EXT) and (HEXT),
(νl̃1)(l̃2)(M ‖ K) ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉 ≡ (νl̃1)(l̃2)(M ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉 ‖ K).

(b) α = (νl)α′, α′ = 〈l〉@ l1 : l2 , l ∈ l̃1, {l1, l2} ∩ (l̃1, l̃2) = ∅, N
α′

−→ N′, l̃′1 = l̃1 − {l} and

l̃′2 = l̃2 ∪ {l}: then, it can be either l ∈ l̃ or not; however, in both cases, (̃l)M
α′

==⇒ (̃l)M′ and

(̃l)N′ ≈ (̃l)M′. Then, (νl̃1)(l̃2)(M ‖ K)
α
=⇒ (νl̃′1)(l̃′2)(M′ ‖ K)

�
M̄ and N̄< M̄, since l̃ is still a

subset of (l̃′1, l̃
′
2) .

(c) α ∈ { 〈l〉@ l1 : l2 ,∃? 〈l〉@ l1 : l2 }, l ∈ l̃2, {l1, l2} ∩ (l̃1, l̃2) = ∅, N
α
−→ N′, l̃′1 = l̃1 and

l̃′2 = l̃2: the case for α = 〈l〉@ l1 : l2 is trivial, whereas the case for α = ∃? 〈l〉@ l1 : l2
is similar to case 1(a).iii.

(d) α = (νl)α′, α′ = l : ?l′ , l ∈ l̃1, l′ < (l̃1, l̃2), N
α′

−→ N′, l̃′1 = l̃1 − {l} and l̃′2 = l̃2: if l < l̃

then the case is simple. Otherwise, (̃l)N
α′

==⇒ (l̃′)N′, for l̃′ = l̃ − {l}; thus, (̃l)M
α′

==⇒ (l̃′)M′

and (l̃′)N′ ≈ (l̃′)M′. Then, (νl̃1)(l̃2)(M ‖ K)
α
=⇒ (νl̃′1)(l̃2)(M′ ‖ K)

�
M̄ and N̄< M̄, since l̃′ ⊆ l̃

and, hence, l̃′ ∩ fa(K) = ∅.

(e) α ∈ {l � l′, l : ?l′ , l : !l′ }, l ∈ l̃2, l′ < (l̃1, l̃2), N
α
−→ N′, l̃′1 = l̃1 and l̃′2 = l̃2 − {l}: similar

to case 1(d).

2. (symmetric of Proposition 6.1(1)) (νl̃1)(l̃2)K
α
−→ (νl̃′1)(l̃′2)K′ and N̄ ≡ (νl̃′1)(l̃′2)(N ‖ K′); since we

are working up-to ≡, by using laws (EXT) and (HEXT), we can assume that K′ is restriction
and half-restriction free. Points (b)/.../(e) are similar to the corresponding cases in point 1;
for case (a), we reason by case analysis on α:

(i) α = τ. Then, trivially, l̃1 ⊆ l̃′1 (‘⊂’ holds whenever K evolves by performing a new)

and l̃′2 = l̃2. Thus, (νl̃1)(l̃2)(M ‖ K)
τ
−→ (νl̃′1)(l̃′2)(M ‖ K′)

�
M̄; by definition, N̄ < M̄, since

l̃ ⊆ (l̃′1, l̃
′
2) and fa(K′) = fa(K) (see Proposition 6.2).
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(ii) α = 〈l〉@ l1 : l2 . By Proposition 6.2, fa(K′) = fa(K). Moreover, by definition of the
LTS, it must be {l1, l2} ∩ (l̃1, l̃2) = ∅; hence, we have three subcases:

� l < (l̃1, l̃2): similar case 2(i), with l̃′1 = l̃1.
� l ∈ l̃1: then, l̃′1

�
l̃1 − {l} and l̃′2 = l̃2 ∪ {l}. Since l̃ is still a subset of (l̃′1, l̃

′
2), we

conclude as before.
� l ∈ l̃2: then, l̃′1 = l̃1 and l̃′2 = l̃2; thus, we easily conclude.

(iii) α ∈ {l1
� l2, l1 : ?l2 , l1 : !l2 }. Then, by definition of the LTS, l2 < (l̃1, l̃2) and, because

l1 ∈ fa(K), l1 < l̃. Moreover, if l1 < (l̃1, l̃2), then l̃′1 = l̃1 and l̃′2 = l̃2; if l1 ∈ l̃1, then

l̃′1 = l̃1 − {l1} and l̃′2 = l̃2; finally, if l1 ∈ l̃2, then l̃′1 = l̃1 and l̃′2 = l̃2 − {l1}. Hence,

(νl̃1)(l̃2)(M ‖ K)
α
−→ (νl̃′1)(l̃′2)(M ‖ K′)

�
M̄ and, by definition, N̄< M̄, since l̃ is still a subset

of (l̃′1, l̃
′
2) and l̃ ∩ fa(K′) = ∅.

(iv) α = ∃?l1
� l2. Then (νl̃1)(l̃2)(M ‖ K) ‖ {l1 ↔ l2} ≡ (νl̃1)(l̃2)(M ‖ K ‖ {l1 ↔

l2})
τ
−→ (νl̃1)(l̃2)(M ‖ K′)

�
M̄ and, trivially, N̄ < M̄. Indeed, by Proposition 6.2,

fa(K′) = fa(K) ∪ {l2} but, by definition of the LTS, l2 < (l̃1, l̃2); thus, fa(K′) ∩ l̃ = ∅.

(v) α = ∃? 〈l〉@ l2 : l1 . This is similar to the previous case: indeed, it can at most be l ∈ l̃2.
In that case, l < {l1, l2} and, by (HEXT), we can easily conclude.

3. (Proposition 6.1(2)) N
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→ (l̃′)N′, K

l1 � l2
−−−−→ K′ and N̄ ≡ (νl̃′, l̃1)(l̃2)(N′ ‖ K′); this case is

easy derivable from case 11.

4. (symmetric of Proposition 6.1(2)) N
l1 � l2
−−−−→ N′, K

〈l〉@ l2: l2
−−−−−−−−→ K′ and N̄ ≡ (νl̃1)(l̃2)(N′ ‖ K′); this

case is easy derivable from case 12.

5. (Proposition 6.1(3)) N
∃?l1 � l2
−−−−−→ N′, K

l1 � l2
−−−−→ K′ and N̄ ≡ (νl̃1)(l̃2)(N′ ‖ K′); then, since {l1, l2} ⊆

fa(K), we have that {l1, l2} ∩ l̃ = ∅. Hence, (̃l)M ‖ {l1 ↔ l2} ≡ (̃l)(M ‖ {l1 ↔ l2}) =⇒ (̃l)M′ and
(̃l)N′ ≈ (̃l)M′. Now, by Proposition 4.2(1), (νl̃1)(l̃2)(M ‖ K) ≡ (νl̃1)(l̃2)(M ‖ {l1 ↔ l2} ‖ K′) and
we can easily conclude.

6. (symmetric of Proposition 6.1(3)) N
l1 � l2
−−−−→ N′, K

∃?l1 � l2
−−−−−→ K′ and N̄ ≡ (νl̃1)(l̃2)(N′ ‖ K′); then,

since l1 ∈ fa(K), we have that l1 < l̃. If l2 < l̃, then (̃l)M
l1 � l2
====⇒ (̃l)M′ and (̃l)N′ ≈ (̃l)M′; we can

easily conclude (notice that fa(K′) = fa(K) ∪ {l2} and, hence, fa(K′) ∩ l̃ = ∅). If l2 ∈ l̃, then

we consider N
l2 � l1
−−−−→ N′ (that must hold whenever N

l1 � l2
−−−−→ N′ holds). Thus, (̃l)N

l2 � l1
−−−−→ (l̃′)N′,

for l̃′ = l̃ − {l2}; then, (̃l)M
l2 � l1
====⇒ (l̃′)M′ and (l̃′)N′ ≈ (l̃′)M′; this suffices to conclude, as

fa(K′) ∩ l̃′ = ∅.

7. (Proposition 6.1(4).a) N
∃? 〈l〉@ l2: l1
−−−−−−−−−−→ N′, K

〈l〉@ l2: l1
−−−−−−−−→ K′ and N̄ ≡ (νl̃1)(l̃2)(N′ ‖ K′); this case is

similar to case 5, but also uses (HEXT).

8. (symmetric of Proposition 6.1(4)) N
(νl̃′) 〈l〉@ l2: l1
−−−−−−−−−−−→ N′ and K

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ K′; then, we have two

sub-cases:

(a) N
(νl̃′) 〈l〉@ l2: l1
−−−−−−−−−−−→ (l̃′)N′, l̃′ ∩ fn(K) = ∅ and N̄ ≡ (νl̃′, l̃1)(l̃2)(N′ ‖ K′): again, by definition

of the LTS, l1 ∈ fa(K). So, l1 < l̃ while it may be either l2 ∈ l̃ or not; we only consider

the first case, as the second one is simpler. Then, (̃l)N
l2 � l1
−−−−→

(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→ (l̃′′)N′, where



6 CONTROLLING THE ACTIVATION OF A CONNECTION 39

l̃′′ = (̃l−{l2})∪ l̃′. Thus, (̃l)M
l2 � l1
====⇒

(νl̃′) 〈l〉@ l2: l2
============⇒ (l̃′′)M′ and (l̃′′)N′′ ≈ (l̃′′)M′. By Propo-

sition 4.2, (νl̃1)(l̃2)(M ‖ K) =⇒ (νl̃′, l̃1)(l̃2)(M′ ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉 ‖ K)
τ
−→ (νl̃′, l̃1)(l̃2)(M′ ‖

K
′)

�
M̄ and N̄ < M̄: indeed, l̃′′ ⊆ (l̃′, l̃1, l̃2) and, because l̃′ ∩ fn(K) = ∅, it holds that

l̃′′ ∩ fa(K′) = ∅.

(b) N ≡ (l)N′, N′
〈l〉@ l2: l1
−−−−−−−−→ N′′, l < fa(K) and N̄ ≡ (νl̃1)(l, l̃2)(N′′ ‖ K′): this case can be

proved like case 8(a); notice that here we have l̃′′ = (̃l − {l2}).

9. (Proposition 6.1(5).a) N
l1 � l2
−−−−→ N′

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ N′′, K

〈l〉@ l2: l2
−−−−−−−−→ K′ and N̄ ≡ (νl̃1)(l̃2)(N′′ ‖

K
′); by definition of K and of the LTS, it holds that l2 < l̃. On the other hand, it may be

either l1 ∈ l̃ or not; we only explicitly consider the first case, that is more delicate. We

now have (̃l)N
l1 � l2
−−−−→ (l̃′)N′, with l̃′ = l̃ − {l}; then, (̃l)M

l1 � l2
====⇒ (l̃′)M′ and (l̃′)N′ ≈ (l̃′)M′.

Now, (l̃′)N′
∃? 〈l〉@ l2: l1
−−−−−−−−−−→ (l̃′)N′′; thus, (l̃′)M′ ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉 ≡ (l̃′)(M′ ‖ {l1 ↔ l2} ‖

l2 :: 〈l〉) =⇒ (l̃′)M′′ and (l̃′)N′′ ≈ (l̃′)M′′. By Proposition 4.2(1) and 4.2(2), (νl̃1)(l̃2)(M ‖
K) =⇒ (νl̃1)(l̃2)(M′ ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉 ‖ K′) =⇒ (νl̃1)(l̃2)(M′′ ‖ K′)

�
M̄ and N̄< M̄.

10. (symmetric of Proposition 6.1(5))

(a) N
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→ (l̃′)N′, K

l1 � l2
−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ K′ and N̄ ≡ (νl̃′, l̃1)(l̃2)(N′ ‖ K′): this is similar

to case 6 but simpler, since l̃ ∩ {l1, l2} = ∅.

(b) N ≡ (l)N′
〈l〉@ l2: l2
−−−−−−−−→ (l)N′′, K

l1 � l2
−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ K′ and N̄ ≡ (νl̃1)(l, l̃2)(N′′ ‖ K′): this case

is similar to case 8(a) but simpler, since l̃ ∩ {l1, l2} = ∅.

11. (Proposition 6.1(6)) N
(νl̃′) 〈l〉@ l2: l2
−−−−−−−−−−−→ (l̃′)N′

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ (l̃′)N′′, K

l1 � l2
−−−−→ K

′ and N̄ ≡

(νl̃′, l̃1)(l̃2)(N′′ ‖ K′); by definition of K, it holds that {l1, l2} ∩ l̃ = ∅. Hence,

(̃l)M
(νl̃′) 〈l〉@ l2: l2
============⇒ (̃l, l̃′)M′, (̃l, l̃′)M′ ‖ {l1 ↔ l2} ‖ l2 :: 〈l〉 ≡ (̃l, l̃′)(M′ ‖ {l1 ↔ l2} ‖ l2 ::

〈l〉) =⇒ (̃l, l̃′)M′′ and (̃l, l̃′)N′′ ≈ (̃l, l̃′)M′′; we easily conclude up-to ≡, since (̃l, l̃′) ⊆ (l̃′, l̃1, l̃2)
and (̃l, l̃′) ∩ fa(K′) = ∅, because bound names are different from the free ones.

12. (symmetric of Proposition 6.1(6)) N
l1 � l2
−−−−→ N′, K

〈l〉@ l2: l2
−−−−−−−−→

∃? 〈l〉@ l2: l1
−−−−−−−−−−→ K′ and N̄ ≡ (νl̃1)(l̃2)(N′ ‖

K
′); notice that {l1, l2} ∩ l̃ = ∅ and easily conclude.

13. (Proposition 6.1(7)) N
(νl̃′) l2: ?l1
−−−−−−−−→ N′, K

l1: !l2
−−−−→ K′ and N̄ ≡ (νl̃′, l̃1)(l̃2)(N′ ‖ K′ ‖ {l1 ↔ l2});

by definition of the LTS and by l̃ ∩ fa(K) = ∅, it holds that l1 < l̃. If l̃′ = {l2}, then

(̃l)M
(νl2) l2: ?l1
=========⇒ (̃l)M′, for (̃l)N′ ≈ (̃l)M′, and we easily conclude. If l̃′ = ∅, we reason like

in case 6.

14. (symmetric of Proposition 6.1(7)) N
l2: !l1
−−−−→ N′, K

l1: ?l2
−−−−−→ K′ and N̄ ≡ (νl̃1)(l̃2)(N′ ‖ K′ ‖ {l1 ↔

l2}); similar to case 13.

By proceeding as for Theorem 4.8, we can prove the following result.

Corollary 6.6 (Soundness) ≈ ⊆ � .

We now consider the completeness part that can be easily proved, as before, once we prove the
following Lemma (that generalises Lemma 4.9).

Lemma 6.7
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1. Let (νl)(N ‖ l f :: 〈l〉) � (νl)(M ‖ l f :: 〈l〉) and l f be fresh for N, M and l; then, (l)N ≈ (l)M.

2. Let (νl)(N ‖ {l ↔ l f } ‖ l f :: 〈l〉) � (νl)(M ‖ {l ↔ l f } ‖ l f :: 〈l〉), l f be fresh for N, M and l,
and l ∈ fa(N) ∩ fa(M); then, N ≈ M.

Proof: We shall prove the two claims at once. To this aim, let l̃1
�
{l1, . . . , lk} and l̃2

�
{l′1, . . . , l

′
h}

such that h, k ≥ 0 and l̃1 ∩ l̃2 = ∅. Let f̃1
�
{ f1, . . . , fk} and f̃2

�
{ f ′1 , . . . , f ′h} be distinct, fresh and

reserved names. Finally, let

[[N, l̃1, f̃1, l̃2, f̃2]]
�

(νl̃1, l̃2)(N ‖
k
Π
i=1

fi :: 〈li〉 ‖
h
Π
j=1

( f ′j :: 〈l′j〉 ‖ { f
′
j ↔ l′j}))

When l̃1, f̃1, l̃2, f̃2 are clear from the context, we shall abbreviate [[N, l̃1, f̃1, l̃2, f̃2]] as [[N]]. Intu-
itively, nodes in l̃1 are those whose scope must be captured by a half-restriction (see claim 1. of
this Lemma), whereas nodes in l̃2 are those whose scope must be fully opened (see claim 2. of this
Lemma). We now prove that the relation

<
�
{( (l̃1)N , (l̃1)M ) : [[N, l̃1, f̃1, l̃2, f̃2]] � [[M, l̃1, f̃1, l̃2, f̃2]] ∧

( f̃1, f̃2) ∩ fn(N,M, l) = ∅ ∧ l̃2 ⊆ fa(N) ∩ fa(M)}

is a bisimulation up-to ≡. Let (l̃1)N
α
−→ N. Notice that, since ( f̃1, f̃2) are reserved, they will remain

fresh upon any transition; moreover, since free addresses can only increase upon transitions (see
Proposition 6.2), nodes in l̃2 will remain present in any reduct of N and M. We reason by case
analysis on α:3

1. α = τ: then, N ≡ (l̃1)N′, for N
τ
−→ N′. This implies that [[N]]

τ
−→ [[N′]]; because of reduction

closure of �, [[M]] =⇒ M̄ and [[N′]] � M̄. Since ( f̃1, f̃2) are fresh, it must be that M =⇒ M′

(thus, (l̃1)M =⇒ (l̃1)M′) and M̄ ≡ [[M′]]; hence, by definition, N< (̃l1)M′ up-to ≡.

2. α = l � l′: by definition of the LTS, l′ < l̃1; however, l′ can belong to l̃2 or not, while it can
be either l < (l̃1, l̃2), l ∈ l̃1 or l ∈ l̃2; moreover, if both l and l′ belong to l̃2, we also have to
consider whether they are the same name or not. This yield seven sub-cases:

(a) (l̃1, l̃2) ∩ {l, l′} = ∅: as before, N ≡ (l̃1)N′ for N
α
−→ N′. Let l f ∈ ( f̃1, f̃2) (if f̃1, f̃2 = ∅, we

take a fresh l f ) and consider the context

C[·]
�

[ · ] ‖ l′ :: acpt(l f ) ‖ l f :: GO l′ DO disc(l) THEN (nil ⊕ out()@l f )

By context and reduction closure, we obtain that ( l̃1)M
l � l′
===⇒ (l̃1)M′′ and

(l̃1)N′ < (l̃1)M′′.

(b) l ∈ l̃1 and l′ < l̃2: then l , l′ and N
�

(l̃′1)N′, for N
l � l′
−−−→ N′ and l̃′1

�
l̃1 − {l}; let l = li

and f ′h+1 be a new, reserved and fresh name. Consider the context

C[·]
�

[ · ] ‖ l′ :: acpt( f ′h+1) ‖ { fi ↔ f ′h+1} ‖

f ′h+1 :: in(!x)@ fi.disc( fi).GO l′ DO eval(acpt( f ′h+1))@x.disc(x) THEN

conn(x).(nil ⊕ out(x)@ f ′h+1)

By reasoning like above, we consider the reductions
C[[[N]]] |=⇒D′ [[[N′, l̃′1, f̃∗, l̃′2, f̃ ′∗ ]]] ‖ fi :: nil, where D′ [·] is defined similarly

to case 2(a) above (with f ′h+1 in place of l f ), f̃∗
�

f̃1 − { fi}, l̃′2
�

l̃2 ∪ {li} and

f̃ ′∗
�

f̃2 ∪ { f ′h+1}.

3We follow here a way of reasoning similar to the one used in Theorem 4.10. Thus, we shall only give the discrimi-
nating context C[·] and some details on the key issues.
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(c) l ∈ l̃2 and l′ < l̃2: let l = l′j and consider the context

C[·]
�

[ · ] ‖ l′ :: acpt( f ′j ) ‖ f ′j :: in(!x)@ f ′j .GO l′ DO disc(x) THEN

out(x)@ f ′j .(nil ⊕ out()@ f ′j )

(d) l′ ∈ l̃2 and l < l̃1, l̃2: like the previous case, with l in place of l′.

(e) l ∈ l̃1 and l′ ∈ l̃2: let l = li, l′ = l′j and f ′h+1 be a new, reserved and fresh name; then,
consider the context, derived from that in 2(b)

C[·]
�

[ · ] ‖ { f ′j ↔ fi} ‖ { f ′j ↔ f ′h+1} ‖

f ′j :: in(!x)@ fi.disc( fi).in(!y)@ f ′j .out(y)@ f ′j .eval(acpt( f ′j ))@y.
GO y DO eval(acpt( f ′h+1))@x.disc(x) THEN

eval(disc( f ′j ).conn(x).(nil ⊕ out(x)@ f ′h+1))@ f ′h+1

(f) l ∈ l̃2 and l′ ∈ l̃2, with l , l′: let l = l′j1 and l = l′j2 , for j1 , j2; consider the context

C[·]
�

[ · ] ‖ { f ′j1 ↔ f ′j2 } ‖
f ′j2 :: in(!y)@ f ′j2 .in(!x)@ f ′j1 .eval(acpt( f ′j2))@y.

GO y DO disc(x) THEN out(y)@ f ′j2 .
eval(disc( f ′j2 ).out(x)@ f ′j1 .(nil ⊕ out()@ f ′j1 ))@ f ′j1

(g) l = l′ ∈ l̃2: then, by rule (SELF), l ∈ fa(M) implies M ≡ M ‖ {l ↔ l}, and the thesis
easily follows.

3. α = 〈l〉@ l′ : l′ : by definition of the LTS, l′ < l̃1. Like case 2., we have seven subcases:

(a) (l̃1, l̃2) ∩ {l, l′} = ∅: like case 2(a), with action in(l)@l′ in place of disc(l) in C[·].

(b) l = li and l′ < l̃2: like case 2(c), with fi in place of f ′j and in(x)@l′ in place of disc(x).

(c) l ∈ l̃2 and l′ < l̃2: like case 2(c), with in(x)@l′ in place of disc(x).

(d) l′ = l′j and l < l̃1, l̃2: consider the context

C[·]
�

[ · ] ‖ f ′j :: in(!x)@ f ′j .eval(acpt( f ′j ))@x.
GO x DO in(l)@x THEN out(x)@ f ′j .(nil ⊕ out()@ f ′j )

(e) l = li and l′ = l′j: like case 2(f), with fi in place of f ′j1 , f ′j in place of f ′j2 and in(x)@y in
place of disc(x).

(f) l = l′j1 and l = l′j2 , for j1 , j2: like case 2(f), with in(x)@y in place of disc(x).

(g) l = l′ ∈ l̃2: like case 3(d), with x in place of l.

4. α = (νl) 〈l〉@ l′ : l′ : we have two subcases:

(a) l′ < l̃2: then, N ≡ (l̃1)N′, for N
α
−→ N′ and N′ ≡ (l)N′′. Let fk+1 be a new, reserved and

fresh name; consider the context

C[·]
�

[ · ] ‖ { fk+1 ↔ l′} ‖ fk+1 :: in(!x)@l′.disc(l′).out(x)@ fk+1

Similarly to the 3rd case in the proof of Theorem 4.10, closure under such a context

implies that (l̃1)M
α
=⇒ (l, l̃1)M′ and (l, l̃1)N′′ ≈ (l, l̃1)M′; we can easily conclude.
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(b) l′ = l′j: as before, let fk+1 be a new, reserved and fresh name, and consider the context

C[·]
�

[ · ] ‖ { fk+1 ↔ f ′j } ‖ f ′j :: in(!y)@ f ′j .out(y)@ f ′j .in(!x)@y.
eval(disc( f ′j ).(out(x)@ fk+1 ⊕ nil))@ fk+1

5. α = ∃?l � l′: by definition of the LTS, {l, l′} ∩ l̃1 = ∅; we have five subcases:

(a) {l, l′} ∩ l̃2 = ∅: we consider the context C[·]
�

[ · ] ‖ {l↔ l′} and easily conclude.

(b) l = l′j and l′ < l̃2: consider the context

C[·]
�

[ · ] ‖ {l′ ↔ f ′j } ‖
f ′j :: in(!x)@ f ′j .eval(acpt(x))@l′.disc(l′).eval(acpt( f ′j ))@x.

GO x DO conn(l′) THEN out(x)@ f ′j .(nil ⊕ out()@ f ′j )

(c) l′ = l′j and l < l̃2: like case 5(b), with l in place of l′.

(d) l = l′j1 and l = l′j2 , for j1 , j2: like case 2(f), with acpt( f ′j2).acpt(x) in place of acpt( f ′j2)
and conn(x) in place of disc(x).

(e) l = l′ ∈ l̃2: like case 2(g).

6. α = l : !l′ : by definition of the LTS, l′ < l̃1; thus, like case 2., we have seven subcases:

(a) (l̃1, l̃2) ∩ {l, l′} = ∅: like case 2(a), with conn(l).disc(l) in place of disc(l).

(b) , (c) , (d) , (e) , (f): like cases 2(b)/(c)/(d)/(e)/(f), with conn(x).disc(x) in place of
disc(x).

(g) like case 3(d), with conn(x).disc(x) in place of in(l)@x.

7. α = l : ?l′ : like case 6., with acpt in place of conn.

8. α = (νl) l : ?l′ : by definition of the LTS, l′ < l̃1; thus, we have two subcases:

(a) l′ < l̃2: let f ′h+1 be a new, reserved and fresh name; consider the context

C[·]
�

[ · ] ‖ { f ′h+1 ↔ l′} ‖ l′ :: acpt(!x).eval(conn( f ′h+1))@x.disc(x).
eval(disc(l′).acpt(x).(nil ⊕ out(x)@ f ′h+1))@ f ′h+1

Notice that, by reasoning as in case 4(a), we can state that M performs a conn(l′) from
a restricted node (whose address can be alpha-converted to l).

(b) l′ = l′j: as before, let f ′h+1 be a new, reserved and fresh name, and consider the context

C[·]
�

[·] ‖ { f ′h+1 ↔ f ′j } ‖ f ′j :: in(!y)@ f ′j .out(y)@ f ′j .eval(acpt( f ′j ))@y.
GO y DO acpt(!x).eval(conn( f ′h+1))@x.disc(x) THEN

eval(disc( f ′j ).acpt(x).(nil ⊕ out(x)@ f ′h+1))@ f ′h+1

9. α = ∃? 〈l〉@ l′′ : l′ : by definition of the LTS, {l′, l′′} ∩ l̃1 = ∅, while it can be l ∈ l̃1. By also
distinguishing whenever l = l′, l = l′′ and l′ = l′′, we have nineteen sub-cases:

(a) {l, l′, l′′} ∩ (l̃1, l̃2) = ∅: consider the context C[·]
�

[ · ] ‖ {l′ ↔ l′′} ‖ l′′ :: 〈l〉.
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(b) l = li and {l′, l′′} ∩ l̃2 = ∅: consider the context

C[·]
�

[ · ] ‖ {l′′ ↔ fi} ‖ {l′′ ↔ l′} ‖
fi :: in(!x)@ fi.out(x)@ fi.out(x)@l′′.disc(l′′).(nil ⊕ out()@ fi)

(c) l = l′j and {l′, l′′} ∩ l̃2 = ∅: like case 9(b), with f ′j in place of fi.

(d) l′ = l′j and {l, l′′} ∩ (l̃1, l̃2) = ∅: consider the context

C[·]
�

[ · ] ‖ {l′′ ↔ f ′j } ‖
f ′j :: in(!x)@ f ′j .eval(acpt(x))@l′′.out(l)@l′′.disc(l′′).eval(acpt( f ′j ))@x.

GO x DO conn(l′′) THEN out(x)@ f ′j .(nil ⊕ out()@ f ′j )

(e) l′′ = l′j and {l, l′} ∩ (l̃1, l̃2) = ∅: consider the context

C[·]
�

[·] ‖ l′ :: acpt( f ′j ) ‖ f ′j :: in(!x)@ f ′j .eval(acpt(l′))@x.out(l)@x.
GO l′ DO conn(x) THEN

out(x)@ f ′j .(nil ⊕ out()@ f ′j )

(f) l = li, l′ = l′j and l′′ < l̃2: consider the context, derived from that in case 9(d)

C[·]
�

[ · ] ‖ {l′′ ↔ f ′j } ‖ { f
′
j ↔ fi} ‖

f ′j :: in(!y)@ fi.out(y)@ fi.disc( fi).
in(!x)@ f ′j .eval(acpt(x))@l′′.out(y)@l′′.disc(l′′).eval(acpt( f ′j ))@x.
GO x DO conn(l′′) THEN out(x)@ f ′j .(nil ⊕ out()@ f ′j )

(g) l = l′j1 , l′ = l′j2 , j1 , j2 and l′′ < l̃2: like case 9(f), with f ′j1 in place of fi and f ′j2 in place
of f ′j .

(h) l = l′ = l′j and l′′ < l̃2: like case 9(d), with x in place of l.

(i) l = li, l′′ = l′j and l′ < l̃2: like case 9(f), with l′ in place of l′′.

(j) l = l′j1 , l′′ = l′j2 , j1 , j2 and l′ < l̃2: like case 9(g), with l′ in place of l′′.

(k) l = l′′ = l′j and l′ < l̃2: like case 9(e), with x in place of l.

(l) l′ = l′j1 , l′′ = l′j2 , j1 , j2 and l < l̃1, l̃2: consider the context

C[·]
�

[ · ] ‖ { f ′j1 ↔ f ′j2 } ‖ f ′j1 :: acpt( f ′j2) ‖
f ′j2 :: in(!x)@ f ′j1 .out(x)@ f ′j1 .disc( f ′j1 ).in(!y)@ f ′j2 .

GO f ′j1 DO eval(acpt(y))@x THEN eval(acpt( f ′j2 ))@y.
GO y DO out(l)@y.conn(x) THEN out(y)@ f ′j2 .(nil ⊕ out()@ f ′j2 )

(m) l′ = l′′ = l′j and l < l̃1, l̃2: consider the context

C[·]
�

[ · ] ‖ f ′j :: in(!y)@ f ′j .out(l)@y.out(y)@ f ′j .(nil ⊕ out()@ f ′j )
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(n) l = li, l′ = l′j1 and l′′ = l′j2 , with j1 , j2: consider the following context, derived from
case 9(l):

C[·]
�

[ · ] ‖ { fi ↔ f ′j2 } ‖ { f
′
j1
↔ f ′j2} ‖ f ′j1 :: acpt( f ′j2 ) ‖

f ′j2 :: in(!z)@ fi.out(z)@ fi.disc( fi).
in(!x)@ f ′j1 .out(x)@ f ′j1 .disc( f ′j1 ).in(!y)@ f ′j2 .
GO f ′j1 DO eval(acpt(y))@x THEN eval(acpt( f ′j2 ))@y.
GO y DO out(z)@y.conn(x) THEN out(y)@ f ′j2 .(nil ⊕ out()@ f ′j2 )

(o) l = li, l′ = l′′ = l′j: consider the following context, derived from case 9(m):

C[·]
�

[ · ] ‖ { f ′j ↔ fi} ‖ f ′j :: in(!z)@ fi.out(z)@ fi.disc( fi).in(!y)@ f ′j .
out(z)@y.out(y)@ f ′j .(nil ⊕ out()@ f ′j )

(p) l = l′j, l′ = l′j1 and l′′ = l′j2 , with |{ j, j1, j2}| = 3: like case 9(n), with l′j in place of li.

(q) l = l′ = l′j1 , l′′ = l′j2 and j1 , j2: like case 9(l), with x in place of l.

(r) l = l′′ = l′j2 , l′ = l′j1 and j1 , j2: like case 9(l), with y in place of l.

(s) l = l′ = l′′ = l′j: like case 9(m), with y in place of l.

Theorem 6.8 (Completeness) If N � M then N ≈ M.

Proof: We shall prove that the relation

<
�
{ (N,M) : N � M } ∪ ≈

is a bisimulation. Let N
α
−→ N and reason by case analysis on α. Since the proof proceeds as that of

Theorem 4.10, we shall only give the contexts used to force M to properly reply to α.

1. α = τ: the thesis easily follows from reduction closure.

2. α = 〈l〉@ l1 : l1 : then N
�

N′, for N
α
−→ N′. By using the context exhibited in the

corresponding case of Theorem 4.10, we get that M
α
=⇒ M′ and, by Lemma 6.7(1), (l′)N′ ≈

(l′)M′; by (HEXT) and (HGARB), this yields N ′ ≈ M′, as required.

3. α = (νl) 〈l〉@ l1 : l1 : then, N ≡ (l)N′, for N ≡ (νl)N′′ and N′′
〈l〉@ l1: l1
−−−−−−−−→ N′. Hence, we

can proceed as in the corresponding case of Theorem 4.10 and obtain that M
α
=⇒ (l)M′ and

(l)N′ ≈ (l)M′, as required.

4. α = l1
� l2: then N

�
N′, for N

α
−→ N′. Let l f be a reserved and fresh name; now, consider

the context

C[·]
�

[·] ‖ l1 :: acpt(l f ) ‖ l f :: GO l1 DO disc(l2) THEN

new(l′).disc(l′).(out(l′)@l f ⊕ nil)

Like in case 2., we obtain M
α
=⇒ M′ and N′ ≈ M′, as required.

5. α = ∃?β: the thesis easily follows by exploiting the context C[·]
�

[ · ] ‖ NET(β).
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6. α = l2 : !l1 : consider the context

C[·]
�

[·] ‖ {l f ↔ l1} ‖ l f :: conn(l2).disc(l2).disc(l1).new(l′).disc(l′)(out(l′)@l f ⊕ nil)

for l f fresh, and proceed like in case 2.

7. α = l2 : ?l1 : like case 6., with acpt in place of conn.

8. α = (νl1) l1 : ?l2 : then N
�

N′, for N ≡ (νl1)N′′ and N′′
l1: ?l2
−−−−−→ N′. Let l f be a reserved and

fresh name; now, consider the context

C[·]
�

[ · ] ‖ l2 :: acpt(l f ) ‖ l f :: GO l2 DO acpt(!x).eval(acpt(l f ))@x.disc(x) THEN

conn(x).(out(x)@l f ⊕ nil)

Like before, we obtain that M
α
=⇒ M′; moreover, like in case 3., the node performing the conn

must be bound also in M. Thus, by definition of the LTS, both N′ and M′ contain a free node
with address l1, since they both have performed a transition labelled with (νl1) l1 : ?l2 . By
Lemma 6.7(2), this implies that N ′ ≈ M′, as required.

6.3 On a Trace-based Characterisation of May Testing

The theory in Section 5 can be smoothly adapted to the present setting. First, notice that label ∃?l
is now replaced by label (ν̃l) l1 : ?l2 . This allows us to simplify the complementation function as
follows:

β
�
∃?β ∃?β

�
β (ν̃l) l2 : ?l1

�
l1 : !l2 l2 : !l1

�
l1 : ?l2

The resulting equivalence is still a sound proof technique for may-testing (we leave the easy task
of adapting the proofs in Section 5.2 to this new scenario). Unfortunately, we have not been able
to prove the corresponding completeness result. The problem lies in the definition of canonical
observers: to enable observations, other than providing some nodes, it is sometimes necessary to
make such nodes accepting connection requests originating from test. While this task can be
accomplished for free addresses, we have not found a smart and simple way to force restricted
addresses to accept connection requests.

7 An Example: Dynamic Connections in a Cellular Net

In this section we model a scenario for communications between mobile devices and use the intro-
duced proof techniques to analyze it and verify some relevant properties. Since we want to asses
usability for practical purposes of the semantic theories for TKLAIM, we use the language of Sec-
tion 2 for which we developed sound and complete proof techniques for both barbed congruence
and may testing.

The scenario we consider is inspired by the handover protocol, proposed by the European
Telecommunication Standards Institute (ETSI) for the GSM Public Land Mobile Network (PLMN).
A formal specification and verification of the protocol by using the π-calculus can be found in [32].
The PLMN is a cellular system which consists of Mobile Stations (MSs), Base Stations (BSs) and
Mobile Switching Centres (MSCs). MSs are mobile devices that provide services to end users.
BSs manage the interface between the MSs and a stationary net; they control the communications
within a geographical area (a cell). Any MSC handles a set of BSs; it communicates with them and
with other MSCs using a stationary net. A handover occurs whenever the BS responsible for a MS



7 AN EXAMPLE: DYNAMIC CONNECTIONS IN A CELLULAR NET 46

should be changed during the computation (e.g., because the MS exit the area associated to the BS
and entered in the area associated to a different BS).

We now model the handover of a PLMN in TKLAIM; for the sake of simplicity, we focus here
on the aspects more closely related to connection handling; for more details, see [16]. Both MSs,
BSs and MSCs are modelled as nodes. We shall exploit polyadic communications: thus, tuples of
names will be used as basic data. Data will be retrieved by using pattern matching. A pattern is a
sequence of names u and bound names !x. A pattern matches against a tuple if both have the same
number of fields and corresponding fields match (i.e. two names match if they are identical, whereas
a bound name matches any name). The pattern matching function in case of successful matching
returns a substitution that associates the bound names of the pattern with the corresponding names
of the tuple in the continuation process. All the theory we have developed in this paper for the
monadic version of TKLAIM can be adapted to its polyadic version; the price to be paid is a heavier
notation in the proofs (see, e.g., [22]).

We consider a simple PLMN, with one MSC (whose address is msc), n BSs (whose addresses
are bs1, . . . , bsn, resp.) and just one MS (whose address is l). We assume a private data repository
of msc, located at the reserved node table and used to store two kinds of information: the address of
the BSs (this is a permanent information) and the current MS-to-BS associations (that can change
upon handover). The handover for l is handled by the MSC via the following process:

HNDVR
�

in(l, !x)@table.in(!y)@table.out(y)@table.
evalx( disc(l).evalmsc,y( conn(l).evalmsc(out(l, y)@table) ) )

where evalu(P) is a more readable way of writing process eval(P)@u and, similarly, evalu,v(P)
stands for eval(eval(P)@v)@u. Process HNDVR first selects a MS-to-BS association to be changed
(the reason why this is needed is not modelled here); then, it chooses a new BS, properly changes
the connections between the MS and the BSs, and updates the repository table. By assuming that l
is handled by the BS bsi, the resulting system is

SYSi

�
(ν table, bs1, . . . , bsn)(msc :: ∗HNDVR ‖ {msc↔ table} ‖

n
Π
j=1

(table :: 〈bs j〉 ‖ {msc↔ bs j}) ‖ table :: 〈l, bsi〉 ‖ {bsi ↔ l} )

The main property we want to ensure in this scenario is that the MS l remains connected to the
PLMN upon handovers. To formalise this requirement, we consider the following process:

CONN
�

in(l, !x)@table.evalx( out(“conn”, l,msc)@l.eval msc(out(l, x)@table) )

Intuitively, this process aims at delivering to l a message stating that l is connected to the net
governed by msc. Now, consider the following minor variation of SYS i:

SYS′i
�

(ν table, bs1, . . . , bsn)(msc :: ∗HNDVR | ∗ CONN ‖ {msc↔ table} ‖
n
Π
j=1

(table :: 〈bs j〉 ‖ {msc↔ bs j}) ‖ table :: 〈l, bsi〉 ‖ {bsi ↔ l} )

Soundness of the protocol can be established by proving that SYS′i is behaviourally equivalent to
SPEC, where

SPEC
�

msc :: nil ‖ l :: ∗out(“conn”, l,msc)@l

Intuitively, such an equivalence holds if (and only if) l is permanently connected to the net governed
by msc; indeed, in SPEC we can produce at l as many data of the form 〈“conn”, l,msc〉 as wanted,
whereas in SYS′i this can be done only if there is always a connection between l and some BS.
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Proof of soundness We shall give both a bisimulation-based and a trace-based proof of the sound-
ness condition just described. To this aim, we define the following nets:

PLMN
�

msc :: ∗HNDVR | ∗ CONN ‖ {msc↔ table}

‖
n
Π
j=1

(table :: 〈bs j〉 ‖ {msc↔ bs j})

PLMN−i

�
msc :: ∗HNDVR | ∗ CONN ‖ {msc↔ table}

‖
1..n
Π
j,i

table :: 〈bs j〉 ‖
n
Π
j=1
{msc↔ bs j}

Intuitively, PLMN is the ‘static’ part of the net, i.e. the part (almost) always present in it; PLMN−i

is a transient state of PLMN where the datum 〈bsi〉 has been temporarily removed from table. If we
let l̃

�
table, bs1, . . . , bsn, then we get that

SYS′i = (ν̃l)(PLMN ‖ table :: 〈l, bsi〉 ‖ {bsi ↔ l} )

Now, let k

l :: (〈“conn”, l,msc〉) k
�


l ::
︷                                             ︸︸                                             ︷
〈“conn”, l,msc〉 | · · · | 〈“conn”, l,msc〉 if k > 0

l :: nil if k = 0
Moreover, define also the following generalisations of SYS′i and SPEC:

SYS′i,k
�

(ν̃l)(PLMN ‖ table :: 〈l, bsi〉 ‖ {bsi ↔ l}) ‖ l :: (〈“conn”, l,msc〉) k

SPECk

�
SPEC ‖ l :: (〈“conn”, l,msc〉) k

The following nets describe the evolutions of SYS′i,k arising from the execution of one copy of
process CONN:

N0
i,k

�
(ν̃l)(PLMN ‖ msc :: evalbsi( out(“conn”, l,msc)@l.eval msc(out(l, bsi)@table) )
‖ {bsi ↔ l}) ‖ l :: (〈“conn”, l,msc〉) k

N1
i,k

�
(ν̃l)(PLMN ‖ bsi :: out(“conn”, l,msc)@l.eval msc(out(l, bsi)@table) ‖ {bsi ↔ l})
‖ l :: (〈“conn”, l,msc〉) k

N2
i,k

�
(ν̃l)(PLMN ‖ bsi :: evalmsc(out(l, bsi)@table) ‖ {bsi ↔ l}) ‖ l :: (〈“conn”, l,msc〉) k+1

N3
i,k

�
(ν̃l)(PLMN ‖ msc :: out(l, bsi)@table ‖ {bsi ↔ l}) ‖ l :: (〈“conn”, l,msc〉) k+1

Similarly, the following nets describe the evolutions of SYS′i,k arising from the execution of one
copy of process HNDVR:

M0
i, j,k

�
(ν̃l)(PLMN ‖ msc :: in(!y)@table.out(y)@table.evalbsi(· · · ) ‖ {bsi ↔ l})
‖ l :: (〈“conn”, l,msc〉) k

M1
i, j,k

�
(ν̃l)(PLMN− j ‖ msc :: out(bs j)@table.evalbsi(· · · ) ‖ {bsi ↔ l})
‖ l :: (〈“conn”, l,msc〉) k

M2
i, j,k

�
(ν̃l)(PLMN ‖ msc :: evalbsi (disc(l).evalmsc,bs j(· · · )) ‖ {bsi ↔ l})
‖ l :: (〈“conn”, l,msc〉) k

M3
i, j,k

�
(ν̃l)(PLMN ‖ bsi :: disc(l).evalmsc,bs j(· · · ) ‖ {bsi ↔ l}) ‖ l :: (〈“conn”, l,msc〉) k

M4
i, j,k

�
(ν̃l)(PLMN ‖ bsi :: evalmsc,bs j(conn(l).evalmsc(· · · ))) ‖ l :: (〈“conn”, l,msc〉) k

M5
i, j,k

�
(ν̃l)(PLMN ‖ msc :: evalbs j (conn(l).evalmsc(· · · ))) ‖ l :: (〈“conn”, l,msc〉) k

M6
i, j,k

�
(ν̃l)(PLMN ‖ bs j :: conn(l).evalmsc(· · · )) ‖ l :: (〈“conn”, l,msc〉) k

M7
i, j,k

�
(ν̃l)(PLMN ‖ bs j :: evalmsc( out(l, bs j)@table ) ‖ {bs j ↔ l})
‖ l :: (〈“conn”, l,msc〉) k

M8
i, j,k

�
(ν̃l)(PLMN ‖ msc :: out(l, bs j)@table ‖ {bs j ↔ l}) ‖ l :: (〈“conn”, l,msc〉) k
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We then consider the possible evolutions of nets SYS′i,k, SPECk, Nh
i,k and Mh

i, j,k.

SYS′i,k
msc � msc
−−−−−−−→ SYS′i,k (1)

l � l
−−→ SYS′i,k (2)

〈“conn”,l,msc〉@ l: l
−−−−−−−−−−−−−−−→ SYS′i,k−1 for k > 0 (3)

τ
−→ N0

i,k (4)
τ
−→ M0

i, j,k (5)

SPECk
msc � msc
−−−−−−−→ SPECk (6)

l � l
−−→ SPECk (7)

〈“conn”,l,msc〉@ l: l
−−−−−−−−−−−−−−−→ SPECk−1 for k > 0 (8)

∃?l � l
−−−−→ SPECk+1 (9)
τ
−→ SPECk+1 (10)

Nh
i,k

msc � msc
−−−−−−−→ Nh

i,k (11)
l � l
−−→ Nh

i,k (12)
〈“conn”,l,msc〉@ l: l
−−−−−−−−−−−−−−−→ Nh

i,k−1 for k > 0 (13)
τ
−→ Nh+1

i,k for h = 0, 2 (14)
τ
−→ N2

i,k+1 for h = 1 (15)
τ
−→ SYS′i,k for h = 3 (16)

Mh
i, j,k

msc � msc
−−−−−−−→ Mh

i, j,k (17)

l � l
−−→ Mh

i, j,k (18)

〈“conn”,l,msc〉@ l: l
−−−−−−−−−−−−−−−→ Mh

i, j,k−1 for k > 0 (19)
τ
−→ Mh+1

i, j,k for h < 8 (20)
τ
−→ SYS′j,k for h = 8 (21)

A bisimulation-based proof We must exhibit a bisimulation containing the pair (SYS ′i , SPEC).
Our candidate relation is

<
� ⋃

k ≥ 0
i= 1..n

{(SYS′i,k , SPECk)} ∪
⋃

k≥ 0
i= 1..n
h= 0..3

{(Nh
i,k , SPECk)} ∪

⋃

k≥ 0
i, j ∈ {1..n}
h= 0..8

{(Mh
i, j,k , SPECk)}

We now prove that it is indeed a bisimulation. Consider the pair (SYS ′i,k , SPECk). The transitions
(1), (2) and (3) are replied to by the transitions (6), (7) and (8) respectively, and vice versa; the
transitions (4) and (5) are replied to by the empty sequence of τ actions; the transitions (9) and (10)
are replied to by the sequence of τ actions (4), (14) and (15) leading SYS′i,k to N2

i,k+1. Then, consider

the pair (Nh
i,k , SPECk). The transitions (11), (12) and (13) are replied to by the transitions (6),
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(7) and (8) respectively, and vice versa; the transitions (14) and (16) are replied to by the empty
sequence of τ actions; the transition (14) is replied to by the transition (10); the transitions (9) and
(10) are replied to by the sequence of τ actions leading to N2

i,k+1, if h = 0, 1, or by the sequence

of τ actions Nh
i,k =⇒ SYS′i,k =⇒ N2

i,k+1, if h = 2, 3. Finally, consider the pair (Mh
i, j,k , SPECk). The

transitions (17), (18) and (19) are replied to by the transitions (6), (7) and (8) respectively, and vice
versa; the transitions (20) and (21) are replied to by the empty sequence of τ actions; the transitions
(9) and (10) are replied to by the sequence of τ actions Mh

i, j,k =⇒ SYS′j,k =⇒ N2
j,k+1.

This proves that < is a bisimulation; consequently, this suffices to prove that SYS′i ≈ SPEC, as
SYS′i ≡ SYS′i,0 and SPEC ≡ SPEC0.

A trace-based proof We must prove that any trace of SYS′i can be replied to by a proper trace of

SPEC, and vice versa. We start with the easier task, i.e. that SPECk
σ
=⇒ implies that SYS′i,k

σ′

==⇒ ,
for σ′ � σ. The proof is by induction on the length of σ; the base step is trivial. For the inductive

step, let σ
�
φ ·σ1, i.e. SPECk

φ
=⇒ SPECk′

σ1
==⇒ . According to transitions (6)/.../(10), we have only

four possibilities for the visible action φ:

φ = msc � msc: then k′ ≥ k, as τ-actions can only expand the TS located at l in SPECk (see

transition (10)). By transitions (1), (4), (14), (15) and (16), SYS′i,k
msc � msc
========⇒ SYS′i,k′ and, by

induction, there exists a σ2 � σ1 such that SYS′i,k′
σ2
==⇒ . We can conclude, by letting σ′ be

msc � msc · σ2.

φ = l � l: similar to the previous case.

φ = 〈“conn ′′, l,msc〉@ l : l : then k′ ≥ k − 1 and the proof proceeds like above.

∃?l � l: then k′ > k. Thus, by transitions (4), (14), (15) and (16), we get SYS′i,k =⇒ SYS′i,k′ . By

induction, there exists a σ2 � σ1 such that SYS′i,k′
σ2
==⇒ . We can conclude, by letting σ′ be

σ2; indeed, by using law (L1), we have that σ′
�
σ2 � σ1 � φ · σ1

�
σ.

We now consider the converse. Actually, we prove a stronger result, i.e. that SYS ′i,k
σ
=⇒ implies

SPECk
σ
=⇒ . The proof is by induction on the length of σ; the base case is trivial. For the inductive

case, let σ
�
φ · σ′, i.e. SYS′i,k =⇒ K

φ
−→ K′

σ′

==⇒ . If K
�

SYS′i′,k′ , for some i′ and k′ ≥ k (again,
τ-steps can only add data at l), the thesis follows by an easy induction. Otherwise, we have two
possible sub-cases:

K
�

Mh
i′, j,k′ : then, K′

�
Mh

i′, j,k′′ , where k′′ = k′, if transitions (17) or (18) have been used, and
k′′ = k′ − 1, if (19) has been used. In the first case, to be able to apply induction, we first
need to let K′ produce σ′ through a net of the form SYS′i′,k′ . Therefore, we consider the

following alternative way4 to produce σ′: K′ =⇒ SYS′j,k′ =⇒ M0
j,i′,k′ =⇒ SYS′i′,k′ =⇒ Mh

i′, j,k′
σ′

==⇒ .

Now, SPECk =⇒ SPECk′
φ
−→ SPECk′ and, by induction, SPECk′

σ′

==⇒ ; this suffices to conclude.
In the second case, i.e. when transition (19) has been used, the proof can be carried out

similarly: K′ =⇒ SYS′i′,k′−1

σ′

==⇒ and SPECk =⇒ SPECk′
φ
−→ SPECk′−1

σ′

==⇒ .

4Notice that, since trace equivalence does not rely on co-induction (i.e., it is not reduction closed), the way in which
SYS′i,k generates σ is not relevant.
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K
�

Nh
i′,k′ : then, K′

�
Nh

i′,k′′ , where k′′ = k′, if transitions (11) or (12) have been used,
and k′′ = k′ − 1, if (13) has been used. When h = 0, 2, 3, we can proceed ex-

actly as in the previous case. When h = 1, we consider K ′ =⇒ SYS′i′,k′′+1

σ′

==⇒ . Now,

SPECk =⇒ SPECk′
φ
−→ SPECk′′ =⇒ SPECk′′+1 that, by induction, implies that SPECk′′+1

σ′

==⇒ ;
again, this suffices to conclude.

Concluding remarks As this example should have pointed out, working with bisimilarity is def-
initely simpler than working with trace equivalence. To establish the former one, we only had to
find, for every action of one net, a proper reply of the other net. To establish the latter one, on the
contrary, a more sophisticated reasoning was needed; indeed, trace equivalence is usually proved
by inductive arguments, that makes it difficult to automatise. Moreover, even for a basic setting
like CCS, bisimulation is tractable [26, 33] whereas trace equivalence is not [41]. We leave as a
future work the task of adapting known algorithms and tools to (semi-)automatically work with our
bisimulation.

8 Conclusions and Related Work

We have presented some semantic theories for TKLAIM, a process calculus equipped with primitives
for process distribution and mobility, remote and asynchronous communication through distributed
data repositories, dynamic activation and deactivation of inter-node connections. This combination
of design choices has already proved to be valuable from both an implementative and applicative
point of view. The semantic theories we introduced in this paper have been defined in a uniform
fashion [7]: first, we defined some basic observables for a global computing setting; second, we
closed them under all possible contexts and/or reductions, thus obtaining two touchstone equiva-
lences (namely barbed congruence and may testing); and third, we gave more tractable characterisa-
tions of these equivalences by means of labelled bisimulation and trace equivalence. The language
proposed and its semantic theories have proved valuable to program and verify a non-trivial exam-
ple, inspired by the handover protocol. Finally, we have also studied the impact on the semantic
theories of adding a powerful primitive that enables a tight control on the activation of connections.

We believe that, although TKLAIM can be somewhat encoded in the π-calculus [14], the in-
troduction of the former is justified by at least two reasons. First, TKLAIM clearly enlightens the
key features we want to model such as distribution and mobility of processes, and inter-node con-
nections; an encoding of such features in the π-calculus would hide them within complex process
structures. TKLAIM and π-calculus can be seen as formalisms standing at two different levels of
abstraction: TKLAIM is network aware and allows the user to directly exploit knowledge of the
topology of the net; the π-calculus (and more specifically its dialects more suitable for distributed
implementations, like the Join calculus [18] and the π1`-calculus [1]) is at network level and permits
to directly refer network sockets (that can be represented by communication channels). Second, a
convincing encoding should enjoy ‘reasonable’ properties, like those pointed out in [34]. We be-
lieve this is not the case. For example, in [14] we developed an intuitive encoding of a TKLAIM’s
sub-calculus into the asynchronous π-calculus that does not preserve convergence. We are now
working on proving that this is not incidental and is due to the check of existence of the target of
a communication that is performed in TKLAIM and not in the π-calculus. We conjecture that a
divergence free encoding does not exist.

We now conclude by touching upon some possible directions for future developments and upon
most strictly related work.
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Future work Possible developments of this work include the study of abstractions, e.g. adminis-
trative domains and security policies, that determine virtual networks on top of the effective ones.
To this aim, dynamically evolving type environments could be exploited to constraint the behaviours
of processes and the observations of an environment. Some work in this direction has been done in
[23].

Orthogonally, it would also be interesting to analyze efficiency issues to better clarify, e.g., the
advantages of mobile code and process distribution. A possible application is to find out possible
rearrangements of the processes over a given net that minimize the number of remote operations.
In real scenarios, local operations are usually cheaper and faster than remote ones. A simple way
to model this scenario is to assign costs to connections (see, e.g., [12]) and develop efficiency
preorders based on such information.

Related work Several calculi with process distribution and mobility have been proposed in the
last decade. In the Introduction, we have already touched upon major differences between some
calculi for global computers and TKLAIM from a linguistic point of view, namely the modelling of
the network underlying global computers. Here, we want to mention work on equivalences for such
languages.

To our knowledge, no alternative characterization of may testing in terms of a trace-based equiv-
alence has ever been given for a distributed language with process mobility. On the contrary,
bisimulation-based equivalences have been studied to some extent. Bisimulation-based equiva-
lences for calculi relying on a flat net topology are developed in [1, 23]; such equivalences are
mainly derived from bisimulation equivalences for the π-calculus and its variants. Bisimulation-
based equivalences for calculi relying on a hierarchical net topology are developed in [28, 8, 10, 24].
Although these bisimulations are inspired by Sangiorgi’s context bisimulation [37] and, thus, exploit
universal quantification over processes, they yield proof techniques that are usable in practice. No-
tice that the bisimulations introduced in the last two mentioned papers are sound but not complete
proof techniques for the corresponding barbed congruences.

The work most closely related to ours is [20, 19]. There, a distributed version of the π-calculus,
called DπF, is presented where nodes are connected through links that can fail during the compu-
tation and a bisimulation-based proof technique is used to establish properties of systems. Indeed,
they also tackle the problem of dealing with distributed systems whose behaviour is dependent on
an underlying unreliable network, whose characteristics can vary over time and have to “manage”
the knowledge about unreachable parts of the network. For this, they rely on partial views and
‘unreachable nodes’ while we resort to ‘half-restricted’ names. Their technical developments are
however very different from ours: they need to resort to a type environment to take the knowledge
of the net into account and nodes or links can only die (forever) while our conn/acpt primitives
allow modeling of more dynamic networks.
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