
Towards a Unified Approach to Encodability and
Separation Results for Process Calculi

Daniele Gorla

Dip. di Informatica, Univ. di Roma “La Sapienza”
PPS - Université Paris Diderot & CNRS, France

Proc. of CONCUR’08, LNCS 5201, pages 492–507. c© Springer.

Abstract. In this paper, we present a unified approach to evaluating the relative
expressive power of process calculi. In particular, we identify a small set of crite-
ria (that have already been somehow presented in the literature) that an encoding
should satisfy to be considered a good means for language comparison. We argue
that the combination of such criteria is a valid proposal by noting that: (i) the best
known encodings appeared in the literature satisfy them; (ii) this notion is not
trivial, because there exist encodings that do not satisfy all the criteria we have
proposed; (iii) the best known separation results can be formulated in terms of
our criteria; and (iv) some widely believed (but never formally proved) separa-
tion results can be proved by using the criteria we propose. Moreover, the way
in which we prove known separation results is easier and more uniform than the
way in which such results were originally proved.

1 Introduction

As argued in [27], one of the hottest topic in concurrency theory, and mainly in process
calculi, is the identification of a uniform way to formally compare different languages
from the expressiveness point of view. Indeed, while the literature contains several re-
sults and claims concerning the expressive power of a language, such results are usually
difficult to appreciate because they are proved sound by using different criteria. For a
very good overview of the problem, we refer the reader to [31].

In the 1980s, the trend was to adopt the approach followed in computability theory
and study the absolute expressive power of languages, e.g. by studying which problems
were solvable or which operators were definable in a given language. In the 1990s, the
focus moved to the relative expressive power: it became more interesting to understand
the extent to which a language could be encoded in another one, also because of the
proliferation of different process calculi.

A very common approach to proving soundness of encodings is based on the notion
of full abstraction. This concept was introduced in the 1970s to require an exact corre-
spondence between a denotational semantics of a program and its operational seman-
tics. Intuitively, a denotational semantics is fully abstract if it holds that two observably
equivalent programs (i.e., two programs that ‘behave in the same way’ in any execu-
tion context) have the same denotation, and vice versa. The notion of full abstraction
has been adapted to prove soundness of encodings by requiring that an encoding maps
equivalent source terms into equivalent target terms, and vice versa. This adaptation was

justified by the fact that an encoding resembles a denotation function: they both map
elements of a formalism (viz., terms of the source language) into elements of a different
formalism (another language, in the case of an encoding, or a mathematical object, in
the case of a denotation function). In this way, the stress is put on the requirement that
the encoding must translate a language in another one while respecting some associated
equivalences. This can be very attractive, e.g., if in the target we can exploit automatic
tools to prove equivalences and then pull back the obtained result to the source. How-
ever, we believe that full abstraction is too focused on the equivalences and thus it gives
very little information on the computation capabilities of the two languages.

Operational and structural criteria have been developed in the years to state and
prove separation results [9, 17, 29, 32, 33], that are a crucial aspect of building a hierar-
chy of languages. Indeed, to prove that a language L1 is more expressive than another
language L2, we need to show that there exists a “good” encoding of the latter in the
former, but not vice versa. Usually, the latter fact is very difficult to prove and is ob-
tained by: (1) identifying a problem that can be solved in L1 but not in L2, and (2)
finding the least set of criteria that an encoding should meet to translate a solution inL1
into a solution in L2. Such criteria are problem-driven, in that different problems call
for different criteria (compare, for example, the criteria in [29, 32, 33] with those in [9,
17]). Moreover, the criteria used to prove separation results are usually not enough to
testify to the quality of an encoding: they are considered minimal requirements that any
encoding should satisfy to be considered a good means for language comparison.

In this paper, we present a new proposal for assessing the quality of an encoding,
tailored to aspects that are strictly related to relative expressiveness. We isolate a small
set of requirements that, in our opinion, are very well-suited to proving both soundness
of encodings and separation results. In this way, we obtain a notion of encodability
that can be used to place two (or more) languages in a clearly organized hierarchy. A
preliminary proposal appeared in [15] but it was formulated in a too demanding way.

Of course, in order to support our proposal, we have to give evidences of its reason-
ableness. To this aim, we exhibit both philosophical and pragmatic arguments. From
the pragmatic side, we notice that most of the best known encodings appeared in the
literature satisfy our criteria and that their combination is not trivial, because there exist
some encodings (namely, the encodings of π-calculus in Mobile Ambients proposed in
[10, 11]) that do not satisfy all the criteria we propose. Moreover, we also prove that
the best known separation results can be formulated and proved (in an easier and more
uniform way) in terms of our criteria; furthermost, some widely believed (but never
proved) separation results can be now formally proved by using the criteria we propose
(this task is carried out in [14]). The philosophical part is, instead, more delicate because
we have to convince the reader that every proposed criterion is deeply related to relative
expressiveness. To this aim, we split the criteria in two groups: structural and semantic.
We think that structural criteria are difficult to criticize: we simply require that the en-
coding is compositional and that it does not depend on the specific names appearing in
the source term. Semantic criteria are, as usual, more debatable, because different peo-
ple have different views on the semantics of a calculus and because the same semantic
notions can be defined in different ways. Here, we assume that an encoding should be:
operationally corresponding, in the sense that it preserves and reflects the computations

of the source terms; divergence reflecting, in that we do not want to turn a terminating
term into a non-terminating one; and success sensitive, i.e., once defined a notion of
successful computation of a term, we require that successful source terms are mapped
into successful target terms and vice versa.

Although intuitively quite clear, the above mentioned criteria can be formulated
in different ways. In particular, operational correspondence is usually defined up to
some semantic equivalence/preorder that gets rid of dead processes yielded by the en-
coding. However, there is a wide range of equivalences/preorders and choosing one or
another is always highly debatable. In Section 2 we start by leaving the notion of equiva-
lence/preorder unspecified; this is, in our opinion, the ideal scenario, where encodability
and separation results do not depend on the particular semantic theory chosen. How-
ever, when we want to prove some concrete result, we are forced to make assumptions
on the equivalence used in operational correspondence. In doing this, we try to work
at the highest possible abstraction level; in particular, we never commit to any specific
equivalence/preorder and always consider meaningful families of such relations.

The paper is organized as follows. In Section 2, we present the criteria that we are
going to consider and compare them with other ones already presented in the literature.
Then, in Section 3, we show how to prove (in a simpler and more uniform way) known
separation results appearing in the literature; to this aim, we specialize in three ways the
semantic theory used to define operational correspondence. In Section 4, we conclude
by summing up our main contributions and discussing future work.

For space limitations, we shall work with process calculi (CCS [22]; the asyn-
chronous π-calculus, πa [5]; the separate and mixed choice π-calculus, πsep and πmix

[35]; Mobile Ambients, MA [11]; the π-calculus with polyadic synchronizations, eπ

and πn [9]) without defining them; a sketch of their syntax and operational semantics is
in the Appendix.

2 The Encodability Criteria

In this section we discuss the criteria an encoding should satisfy to be considered a good
means for language comparison. For the moment, we work at an abstract level and do
not commit to any precise formalism. Indeed, we just assume a (countable) set of names
N and specify a calculus as a triple L = (P, 7−→,�), where

– P is the set of language terms (usually called processes) that is built up from the
terminated process 0 by at least using the parallel composition operator ‘|’.

– 7−→ is the operational semantics, needed to specify how a process computes; fol-
lowing common trends in process calculi, we specify the operational semantics by
means of reductions. As usual, Z=⇒ denotes the reflexive and transitive closure of
7−→. To compositionally reason on process reductions, we shall also assume a la-
beled transition relation,

µ−→ , whose τ’s characterize 7−→.
– � is a behavioural equivalence/preorder, needed to describe the abstract behaviour

of a process. Usually,� is a congruence at least with respect to parallel composition;
it is often defined in the form of a barbed equivalence [25] or can be derived directly
from the reduction semantics [20].

A translation of L1 = (P1, 7−→1,�1) into L2 = (P2, 7−→2,�2), written J · K : L1 →
L2, is a function from P1 into P2. We shall call encoding any translation that satisfies
the criteria we are going to present. Moreover, to simplify reading, we let S range
over processes of the source language (viz., L1) and T range over processes of the
target language (viz., L2). Notice that, since we aim at a set of criteria suitable for both
encodability and separation results, we have to find a compromise between ‘minimality’
(typical of separation results, where one wants to identify the minimal set of properties
that make a separation result provable) and ‘maximality’ (typical of encodability results,
where one wants to show that the encoding satisfies as many properties as possible).

First of all, a translation should be compositional, i.e. the translation of a compound
term must be defined in terms of the translation of the subterms, where, in general,
the translated subterms can be combined by relying on a context that coordinates their
inter-relationships. A k-ary context C[1; . . . ; k] is a term where k occurrences of 0 are
replaced the holes { 1; . . . ; k}. In defining compositionality, we let the context used to
combine the translated subterms depend on the operator that combines the subterms and
on the free names (written F(·)) of the subterms. For example, we could think to have
a name handler for every free name in the subterms.

Property 1 (Compositionality). A translation J · K : L1 → L2 is composi-
tional if, for every k-ary operator op of L1 and for every subset of names N,
there exists a k-ary context CN

op[1; . . . ; k] such that, for all S 1, . . . , S k with
F(S 1, . . . , S k) = N, it holds that J op(S 1, . . . , S k) K = CN

op[J S 1 K; . . . ; J S k K].
Compositionality is a very natural property and, indeed, every encoding we are

aware of is defined compositionally. Compositionality with respect to some specific op-
erator has been assumed also to prove some separation result, viz. of synchronous vs
asynchronous π-calculus [8] or of persistent fragments of the asynchronous π-calculus
[7]. However, for separation results, the most widely accepted criterion is homomor-
phism of parallel composition [9, 17, 29, 30, 32, 33]; indeed, translating a parallel pro-
cess by introducing a coordinating context would reduce the degree of distribution and
show that L2 has not enough expressive power to simulate L1. This point of view has
been, however, sometimes criticized and, indeed, there exist encodings that do not trans-
late parallel composition homomorphically [4, 6, 26].

Our definition of compositionality allows two processes that only differ in their free
names to have totally different translations: indeed, it could be that CN

op[. . .] is very
different from CM

op[. . .], whenever N , M. We want to avoid this fact; indeed, a “good”
translation cannot depend on the particular names involved in the source process, but
only on its syntactic structure. However, it is possible that a translation fixes some names
to play a precise rôle or it can translate a single name into a tuple of names. Thus, every
translation assumes a renaming policy, that we now formally define.

Definition 1 (Renaming policy). Given a translation J · K, its underlying renaming pol-
icy is a function ϕJ K : N −→ Nk, for some constant k > 0, such that ∀u, v ∈ N with
u , v, it holds that ϕJ K(u) ∩ ϕJ K(v) = ∅, where ϕJ K(·) is simply considered a set here.

In most of the encodings present in the literature, every name is simply translated
to itself. However, it is sometimes necessary to have a set of reserved names, i.e. names

with a special function within the encoding. Reserved names can be obtained either by
assuming that the target language has more names than the source one, or by exploiting
what we call a strict renaming policy, i.e. a renaming policy ϕJ K : N −→ N . For
example, we can isolate one reserved name by linearly ordering the set of names N as
{n0, n1, n2, . . .} and by letting ϕJ K(ni) , ni+1, for every i; the reserved name is n0.

The requirement that ϕJ K maps names to tuples of the same length can be justi-
fied by the fact that names are all ‘at the same level’ and, thus, they must be treated
uniformly. Moreover, such tuples must be finite, otherwise it would be impossible to
transmit all ϕJ K(a) in the translation of a communication where name a is exchanged
(notice that, since the sender cannot know how the receiver will use a, all ϕJ K(a) must
be somehow transmitted). Consequently, the requirement that different names are asso-
ciated to disjoint tuples can be intuitively justified as follows. Assume that there exists
u , v such that ϕJ K(u) ∩ ϕJ K(v) , ∅; since there is no relationship between different
names, this implies that, for every w, ϕJ K(u) ∩ ϕJ K(w) , ∅. If the name shared by every
pair of tuples is the same, then such a name can be considered reserved and we can
define a renaming policy ϕ′J K satisfying the requirement of Definition 1. Otherwise, for
every v and w, ϕJ K(v) and ϕJ K(w) must have a different name in common with ϕJ K(u);
thus, ϕJ K(u) would contain an infinite number of names.

In our view, a translation should reflect in the translated term all the renamings
carried out in the source term. In what follows, we denote withσ a substitution of names
for names, i.e. a function σ : N −→ N , and we shall usually specify only the non-trivial
part of a substitution: for example, {b/a} denotes the (non-injective) substitution that
maps a to b and every other name to itself. Moreover, we shall also extend substitutions
to tuples of names in the expected way, i.e. component-wise.

Property 2 (Name invariance). A translation J · K : L1 → L2 is name invariant
if, for every S and σ, it holds that

J Sσ K
{

= J S Kσ′ if σ is injective
�2 J S Kσ′ otherwise

where σ′ is such that ϕJ K(σ(a)) = σ′(ϕJ K(a)) for every a ∈ N .

To understand the distinction between injective and non-injective substitutions, as-
sume that σ fuses two (or more) different names. Then, the set of free names of Sσ is
smaller than the set of free names in S ; by compositionality, this fact leads to different
translations, in general. For example, if the translation introduces a name handler for
every free name, having sets of free names with different cardinality leads to inherently
different translations. However, non-injective substitutions are natural in name-passing
calculi, where language contexts can force name fusions. In this case, the formulation
with ‘=’ is too demanding and the weaker formulation (with ‘�2’) is needed. Thus,
this formulation implies that two name handlers for the same name are behaviourally
equivalent to one handler for that name; this seems to us a very reasonable requirement.
Notice that our definition of name invariance is definitely more complex than those, e.g.,
of [9, 29, 32, 33], where it is required that J Sσ K = J S Kθ for some (not better specified)
substitution θ. However, we do not think that our formulation is more demanding; it is
just more detailed and we consider this fact a further contribution of our paper.

Up to now, we have presented and discussed properties dealing with the way in
which an translation is defined; we are still left with the more crucial part of the criteria.
We want to focus our attention on the computation capabilities of the languages (i.e.,
what the languages can calculate); thus, we require that the source and the target lan-
guage have the same computations. A widely accepted way to formalize this idea is via
operational correspondence that, intuitively, ensures two crucial aspects: (i) every com-
putation of a source term can be mimicked by its translation (thus, the translation does
not reduce the behaviours of the source term); and (ii) every computation of a translated
term corresponds to some computation of its source term (thus, the translation does not
introduce new behaviours).

Property 3 (Operational correspondence). A translation J · K : L1 → L2 is
operationally corresponding if it is

Complete: for all S Z=⇒1 S ′, it holds that J S K Z=⇒2�2 J S ′ K;
Sound: for all J S K Z=⇒2 T , there exists an S ′ such that S Z=⇒1 S ′

and T Z=⇒2�2 J S ′ K.
Notice that operational correspondence is very often used for assessing the quality

of an encoding; thus, we have considered it to have a set of criteria that works well both
for encodability and for separation results. Nothing related to this property has ever been
assumed for separation results, except in [15, 16] where, however, it was formulated in
a too demanding way. Also notice that the original formulation of operational corre-
spondence put forward in [28] does not use ‘�2’; for this reason, it is too demanding
and, indeed, several encodings (including those in loc.cit.) do not enjoy it. The problem
is that usually encodings leave some ‘junk’ process after having mimicked some source
language reduction; such a process invalidates the ‘exact’ formulation of this property.
The use of ‘�2’ is justified to get rid of potential irrelevant junks.

Another important semantic issue, borrowed from [9, 12, 19, 26], is that a translation
should not introduce infinite computations, written 7−→ω.

Property 4 (Divergence reflection). A translation J · K : L1 → L2 reflects di-
vergence if, for every S such that J S K 7−→ω

2 , it holds that S 7−→ω
1 .

One may argue that divergence can be ignored if it arises with negligible proba-
bility or in unfair computations. However, suppose that every translation of L1 in L2
introduces some kind of divergence; this means that, to preserve all the functionalities
of a terminating source term, every translation has to add infinite computations in the
translation of the term. This fact makes L2 not powerful enough to encode L1 and is
fundamental to proving several separation results (e.g., that the test-and-set primi-
tive cannot be encoded via any combination of read and write – see [19]).

It is interesting to notice that, with all the properties listed up to now, one can accept
the translation that maps every source term into 0. Of course, this translation is “wrong”
because it does not distinguish processes with different interaction capabilities. In pro-
cess calculi, interaction capabilities are usually described either by the barbs that a
process exhibits [25] or by the set of tests that a process successfully passes [13, 34].
Barbs are often defined in a very ad hoc way, are chosen as the simplest predicates that
induce meaningful congruences and strictly depend on their language (even though in

[34] there is a preliminary attempt at a ‘canonical’ definition of barbs); for this reason,
we found it difficult to work out a satisfactory semantic property relying on barbs for
encodings that translate a source language into a very different target language (notice
that barb correspondence is instead very natural in, e.g., [9, 17, 29] where similar lan-
guages are studied). On the contrary, the testing approach is more uniform: it identifies
a binary predicate P ⇓ O of successful computation for a process P in a parallel con-
text O (usually called observer, that is a normal process containing occurrences of the
success term

√
), and, by varying O, it describes the interactions P can be engaged in.

Moreover, the testing approach is at the same time more general and more elementary
than barbs: the latters can be identified via elementary tests and test passing is the basic
mechanism for the ‘canonical’ definition of barbs in [34].

By following [3, 7, 8], we shall require that the source and the translated term behave
in the same way with respect to success. However, a formulation like “∀P∀O.P ⇓ O iff
J P K ⇓ JO K” is not adequate in our setting: indeed, it is possible to have a successful
computation for P|O but not for J P K | JO K since, because of compositionality, a suc-
cessful computation in the target would be possible only with the aid of the coordinating
context used to compositionally translate the parallel composition. Thus, we have to de-
fine ⇓ as a unary predicate and require that “∀P∀O.P|O ⇓ iff J P|O K ⇓”. For our aims,
it is not necessary to distinguish between processes and observers. Moreover, to formu-
late our property in a simpler way, we assume that all the languages contain the same
success process

√
and that ⇓ means reducibility (in some modality, e.g. may/must/...)

to a process containing a top-level unguarded occurrence of
√

. This is similar to [17,
29], where

√
is an output over a reserved channel and ⇓ is defined in terms of may and

must, respectively. Clearly, different modalities in general lead to different results; in
this paper, proof will be carried out in a ‘may’ modality, but all our results could be
adapted to other modalities. Finally, for the sake of coherence, we require the notion of
success be caught by the semantic theory underlying the calculi, viz. �; in particular,
we assume that � never relates two processes P and Q such that P ⇓ and Q 6⇓.

Property 5 (Success sensitiveness). A translation J · K : L1 → L2 is success
sensitive if, for every S , it holds that S ⇓ if and only if J S K ⇓.

3 Proving Known Separation Results

The properties we have just presented are met by most of the best known encodings
appearing in the literature (e.g. the encoding of polyadic communications into monadic
ones [24], of synchronous into asynchronous communications [5], and so on). More-
over, their combination yields a non-trivial proposal: the first encoding of the asyn-
chronous π-calculus into Mobile Ambients that satisfies all such criteria is in [14]. We
now show that their combination allows us to prove in a simpler and more uniform way
the best known separation results appearing in the literature.

For example, let us start with the separation results in [17]. There, they work by
assuming (a form of) success sensitiveness, homomorphism of ‘|’ and name invariance
under any renaming policy that maps every name into a single name. The last two
properties, mainly the last one, are debatable. We now prove such results by removing

any assumption on the renaming policy and by allowing parallel composition be trans-
lated by introducing a centralized coordination process. Thus, we assume that, for every
N ⊆ N , there exist ñ and R such that CN

| [1 ; 2] = (ν̃n)(1 | 2 | R).

Theorem 1. There exists no encoding of πa in CCS.

Proof. By contradiction. Let a, b, c and d be pairwise distinct names and define
P , [x = b][c = c][d = d]

√
. Property 3 implies that J (a(x).P | 0) | a〈b〉 K

reduces to a process equivalent to J√ K that, by Property 5, reports success. Let

C{a,b,c,d}| [1 ; 2] be (ν̃n)(1 | 2 | R); then, J a(x).P | 0 K ρ
=⇒ K and J a〈b〉 K |R ρ

=⇒ K′, for
(ν̃n)(K | K′) �2 J√ K. In particular, ρ , µ1 · . . . · µk and ρ , µ1 · . . . · µk, for
µi ∈ {mi, m̄i} and {m1, . . . ,mk} ∩ ñ = ∅ (indeed, J a(x).P | 0 K = (ν̃n)(J a(x).P K | J 0 K | R)

and J a(x).P | 0 K ρ
=⇒ imply that the names in ρ do not belong to ñ). Let σ be the per-

mutation that swaps a with c and b with d. By Property 2, J c(x).Pσ | 0 K ρ′
=⇒ Kσ′ and

J c〈d〉 K |R ρ′
=⇒ K′σ′, for (ν̃n)(Kσ′ | K′σ′) �2 J√ K and ρ′ = ρσ′; here σ′ denotes

the permutation of names induced by σ, as defined in Property 2. More precisely,
ρ′ , µ′1 · . . . · µ′k and ρ′ , µ′1 · . . . · µ′k, for µ′i , µiσ

′ and {σ′(m1), . . . , σ′(mk)} ∩ ñ = ∅.
Now, consider Q , ((a(x).P | 0) | a〈d〉) | ((c(x).Pσ | 0) | c〈b〉). Triv-

ially, Q 6⇓ whereas, as we shall see, JQ K ⇓; this yields the desired
contradiction. By compositionality, JQ K , (ν̃n)((ν̃n)(J a(x).P | 0 K | J a〈d〉 K |R) |
(ν̃n)(J c(x).Pσ | 0 K | (J c〈b〉 K |R) | R). Then, consider JQ K Z=⇒ (ν̃n)((ν̃n)(K | K′) |
(ν̃n)(Kσ′ | K′σ′) | R) �2 (ν̃n)(J√ K | J√ K | R), obtained by synchronizing

– µi produced by J a(x).P K with µi produced by J a〈d〉 K | R, if mi < ϕJ K(b);
– µi produced by J a(x).P K with µ′i produced by J c〈b〉 K | R, if mi ∈ ϕJ K(b);
– µ′i produced by J c(x).Pσ K with µ′i produced by J c〈b〉 K | R, if mi < ϕJ K(b);
– µ′i produced by J c(x).Pσ K with µi produced by J a〈d〉 K | R, if mi ∈ ϕJ K(b). ut

Theorem 2. There exists no encoding of MA in CCS.

Proof. The previous proof can be adapted to MA: indeed, in [14] we provide an en-
coding of channel based communications of πa in MA and in [32] it is shown how to
encode name matching in MA. Thus, process (a(x).[x = b][c = c][d = d]

√ | 0) | a〈b〉
can be written in MA and the proof then proceeds like above. ut

We now aim at proving other separation results, viz. those in [9, 29, 32, 33], in a
more uniform and abstract setting. To this aim, however, we must leave the ideal frame-
work presented in Section 2 and make it slightly more concrete; carrying out proofs at
the abstract level is a challenging open problem. Mainly, we have to make some as-
sumptions on the semantic theory of the target language, viz. ‘�2’. We propose three
possible instantiations that allow us to develop proofs.

3.1 First Setting

Let us assume that �2 is exact, i.e. T �2 T ′ and T
µ−→ imply that T ′

µ
=⇒ , whenever µ , τ.

Notice that examples of exact equivalences are (the different kinds of) synchronous

bisimilarity and synchronous trace equivalence. Regretfully, under this assumption, we
are able to develop proofs only if CN

| [1; 2], the context used to compositionally trans-
late the parallel composition of two processes with free names in N, is 1 | 2, for
every set of names N; thus, similarly to [9, 17, 29, 30, 32, 33], we are now working with
encodings that translate ‘|’ homomorphically.

Theorem 3. Assume that there is a L1-process S such that S 7−→/ 1, S 6⇓ and S | S ⇓;
moreover, assume that every L2-process T that does not reduce is such that T | T 7−→/ 2.
If �2 is exact, then there cannot exist any encoding J · K : L1 −→ L2 that translates ‘|’
homomorphically.

Proof. We work by contradiction. First, let us fix, for every L1-process S that does
not reduce, a L2-process f (J S K) such that J S K Z=⇒2 f (J S K) 7−→/ 2; such a process
always exists because of Property 4 (when J S K does not reduce, we can always let
f (J S K) = J S K). Now, consider the auxiliary encoding L · M : L1 −→ L2 such that:

L S M ,

f (J S K) if S 7−→/ 1
L S 1 M | L S 2 M if S = S 1 | S 2 7−→1
J S K otherwise

Such an encoding satisfies the following two properties:

A. if S 7−→/ 1 then L S M 7−→/ 2 B. L S M �2 J S K
Property A follows by construction of L · M; let us prove Property B, by induction on the
structure of S . If S 7−→/ 1 (base step and first sub-case of the inductive step), then, by
operational completeness (that is part of Property 3), we have that J S K Z=⇒2 f (J S K)
implies the existence of a S ′ such that S Z=⇒1 S ′ and f (J S K) Z=⇒2�2 J S ′ K. Since
S 7−→/ 1, we have that S ′ can only be S itself; moreover, the fact that f (J S K) 7−→/ 1 implies
that L S M �2 J S K, as desired. If S = S 1 | S 2 7−→1 then, by structural induction, L S 1 M �2
J S 1 K and L S 2 M �2 J S 2 K; we easily conclude by congruence of �2 with respect to
parallel composition. The third sub-case is trivial, by reflexivity of �2.

Now, let us take a L1-process S such that S 7−→/ 1, S 6⇓ and S | S ⇓; by Property 5
and homomorphism, we have that J S K 6⇓ and J S | S K , J S K | J S K ⇓. This implies that

J S K | J S K 7−→2, with J S K µ−→ and J S K µ̄−→ , for some pair of complementary actions
µ and µ̄ (here we are assuming binary synchronizations, as often happens in process

calculi). Since �2 is ‘exact’, we can use property B to obtain that L S M µ−→ and L S M µ̄−→ ;
thus, L S M | L S M 7−→2 whereas, by S 7−→/ 1 and property A, L S M 7−→/ 2, in contradiction
with the hypothesis. ut

Corollary 1. There exist no encoding of πmix, CCS and MA in πsep that translates ‘|’
homomorphically.

Proof. Take any ‘exact’ behavioural theory for πsep (e.g., strong/branching/weak bisim-
ilarity, both in their early/late/open form, or may/must/fair testing, just to mention some
possibilities). On one hand, notice that, if T is a πsep-process such that T | T 7−→2,
then T ≡ (ν̃n)(Σm

i=1ai(xi).Ti | Σn
j=1a′j〈b j〉.T ′j | T ′′) and there exist i ∈ {1, . . . ,m} and

j ∈ {1, . . . , n} such that ai = a′j. Thus, trivially, T 7−→2; hence, every πsep-process T that
does not reduce is such that T | T 7−→/ 2.

On the other hand, we can find both in CCS, in πmix and in MA a process
S that does not reduce and does not report success, but such that S | S reports
success: it suffices to let S be a.0 + ā.

√
in CCS, a(x).0 + a〈b〉.√ in πmix and

(νp)(open p.
√ | n[in n.p[out n.out n.0]]) in MA. ut

3.2 Second Setting

We now consider a second setting where �2, the semantic theory of the target language,
is reduction sensitive; this means that T �2 T ′ and T ′ 7−→ imply that T 7−→. Exam-
ples of reduction sensitive equivalence/preorders are strong synchronous/asynchronous
bisimulation [1, 22] and the expansion preorder [2].

Working under this assumption has the advantage that we are able to carry out
proofs also under translations of ‘|’ more liberal than the homomorphic one. As al-
ready said, the fact that parallel composition must be translated homomorphically can
be criticized and some authors [26] advocate a more liberal formulation, that we now
consider. In particular, for every N, we let CN

| [1; 2] = (ν̃n)(1 | 2 | R), for some pro-
cess R and restricted names ñ that only depend on N. We would like to remark that an
unconstrained form of compositionality (where nothing is said on CN

| [1; 2]) would not
change the validity of the results we obtain; it would just force us to prove Theorems 4
and 5 is specific cases and not in a general setting, as now they are.

A Uniform Approach to Separation Results. We now describe the methodological ap-
proach we shall follow to prove separation results. The key fact that will enable all our
proofs is the following (adapted from [15] and corresponding to property A in the proof
of Theorem 3).

Proposition 1. If �2 is reduction sensitive and J · K : L1 −→ L2 is an encoding, then
S 7−→/ 1 implies that J S K 7−→/ 2, for every S .

Proof. By contradiction, assume that J S K 7−→2 T , for some S 7−→/ 1. By operational
soundness, there exists a S ′ such that S Z=⇒1 S ′ and T Z=⇒2 T ′ �2 J S ′ K; but the only
such S ′ is S itself. Since �2 is reduction sensitive and since J S ′ K = J S K 7−→2 , then
T ′ 7−→2 T ′′. Again, by operational soundness T ′′ Z=⇒2 T ′′′ �2 J S K, and so on; thus,
J S K 7−→2 T 7−→2 T ′′ 7−→2 . . ., in contradiction with Property 4 (since S 7−→/ 1 implies
that S does not diverge). ut

Another crucial consequence of our criteria is the following proposition.

Proposition 2. Let J · K : L1 −→ L2 be an encoding and �2 be reduction sensitive. If
there exist twoL1-terms S 1 and S 2 such that S 1 | S 2 ⇓, with S i 6⇓ and S i 7−→/ for i = 1, 2,
then J S 1 K | J S 2 K 7−→ .

Proof. In this proof, let us assume the following notation: block(S) denotes any term S ′

such that F(S ′) = F(S), S ′ 7−→/ 1 and S ′ �1 0. It is easy to build such a S ′: it suffices
to prefix S with any blocking action involving a fresh restricted name.

By Properties 1 and 5, J S 1 | S 2 K = (ν̃n)(J S 1 K | J S 2 K | R) ⇓. However, since
none of J S 1 K, J S 2 K and J block(S 1) | block(S 2) K can report success, it must be that
J S 1 | S 2 K 7−→2 . This can only happen either because J S 1 K | R 7−→2 , or because
J S 2 K | R 7−→2 , or because J S 1 K | J S 2 K 7−→2. The first two possibilities are impos-
sible, because otherwise J S 1 | block(S 2) K 7−→2 or J block(S 1) | S 2 K 7−→2 and this
would violate Proposition 1: S 1 | block(S 2) 7−→/ because S 1 7−→/ 1, block(S 2) 7−→/ 1 and
block(S 2) �1 0, and similarly for block(S 1) | S 2. ut

In this framework, the way in which we prove a separation result between L1 and
L2 is the following:

(a) by contradiction, suppose that there exists an encoding J · K : L1 −→ L2;
(b) find a pair of L1-processes S 1 and S 2 that satisfy the hypothesis of Proposition 2;

by such a result, J S 1 K | J S 2 K 7−→ ;
(c) from S 2 obtain a process S ′2 such that S 1 | S ′2 7−→/ but J S 1 K | J S ′2 K 7−→ ;
(d) by Property 1, this implies that J S 1 | S ′2 K 7−→ , in contradiction with Proposition 1.

Notice that the identification of S 1 and S 2 (point (b) above) is usually very simple: they
are directly obtained from the constructs of L1 that one believes not to be encodable
in L2. This is different from [9, 17, 29, 32, 33] where, instead, a lot of efforts must be
spent to define a programming scenario that can be properly implemented in the source
language but not in the target one. Point (c) is the only part that requires some ingenuity
(it can be easy or quite difficult): usually, it strongly relies on Property 2 (sometimes
also on compositionality) to slightly modify S 2 in order to obtain the new process S ′2.

A Simpler Proof of Known Separation Results. First, we reformulate Theorem 3 by
changing the hypothesis on �2; this modification will allow us to obtain Corollary 1
under a different choice of semantic theories for πsep.

Theorem 4. Assume that there is a L1-process S such that S 7−→/ 1, S 6⇓ and S | S ⇓;
moreover, assume that every L2-process T that does not reduce is such that T | T 7−→/ 2.
Also assume that �2 is reduction sensitive. Then, there cannot exist any encoding J · K :
L1 −→ L2.

Proof. By contradiction. Let S be such that S 7−→/ 1, S 6⇓ and S | S ⇓; by Proposition 2,
J S K | J S K 7−→2 that, by hypothesis, implies that J S K 7−→2 , in contradiction with
Proposition 1. ut

We now give a second proof-technique that allows us to obtain the hierarchy for
polyadic synchronizations in [9] and to adapt the results in [15, 16] to the present setting.
To this aim, let us define the matching degree of a language L, written M(L), as the
greatest number of names that must be matched to yield a reduction in L. For example,
the matching degree of CCS [22], of the π-calculus [22] and of Mobile Ambients [11] is
1; the matching degree of Dπ [18] is 2; the matching degree of πn (the π-calculus with
n-ary polyadic synchronizations [9]) is n; the matching degree of eπ (the π-calculus
with arbitrary polyadic synchronizations [9]) is ∞. Indeed, as a representative sample,

the π-calculus process a(x).P | a〈b〉.Q can reduce because of the successful matching
between the channel name specified for input and for output (a here).1

Theorem 5. If M(L1) > M(L2), then there exists no encoding J · K : L1 −→ L2.

Proof. By contradiction. Pick two L1-processes S 1 and S 2 that satisfy the hypothesis
of Proposition 2 and that synchronize only once (before reporting success) by matching
exactly k = M(L1) names, viz. {n1, . . . , nk}. By Proposition 2, their encodings must

synchronize: i.e., J S 1 K
µ−→ and J S 2 K

µ̄−→ . Since M(L1) > M(L2), it must be that the
names in F(µ) ∩ F(µ̄) matched when synchronizing µ and µ̄ (say, {m1, . . . ,mh}) are
less than k; this implies the existence of an ni such that ϕJ K(ni) ∩ {m1, . . . ,mh} = ∅. Let
us choose a fresh m (i.e., m < F(S 1)∪ F(S 2)∪ F(µ)∪ F(µ̄)) and consider the substi-
tution σ that swaps m and ni. Trivially, S 1 | S 2σ 7−→/ 1, whereas their encodings do syn-

chronize (in contradiction with Proposition 1): by Property 2, J S 2σ K = J S 2 Kσ′
µ̄σ′−−→ ,

with µ̄σ′ that is still synchronizable with µ because σ′ swaps component-wise ϕJ K(ni)
and ϕJ K(m) (and so it does not touch {m1, . . . ,mh}). ut

Corollary 2. There exists no encoding from eπ into πm, for every m, and from πm into
πn, whenever m > n.

Proof. Observe that M(eπ) = ∞ and that M(πm) = m; then apply Theorem 5. ut

Proving New Separation Results and Building Hierarchies of Languages. We have just
shown that our approach is more ‘usable’ than previous approaches to separation re-
sults, since it can be used to prove known results in a simpler and more uniform way.
However, it also has the advantage of allowing the proof of new separation results: in
[14], we exploit such criteria to compare the relative expressive power of several calculi
for mobility (viz., the asynchronous π-calculus, a distributed π-calculus, a distributed
version of L, and Mobile/Safe/Boxed Ambients together with several of their vari-
ants); moreover, the results in [15, 16] can be easily re-formulated under Properties 1–5.
Finally, least but not last, the fact that our criteria are also well-suited for encodability
results allows us to build hierarchies of languages in a uniform way.

3.3 Third Setting

The setting presented in Section 3.2 relies on the assumption that �2 is reduction sensi-
tive. This restriction seems us not too severe, since most of the operational correspon-
dence results appearing in the literature are formulated up to such semantic theories; the
only notable exception we are aware of is [26, 28], where weak (asynchronous) bisim-
ilarity [1] is exploited. We now sketch a weaker setting, that covers all the separation
results we are aware of (including [26, 28]) without breaking the elegant and powerful
proof-techniques developed in Section 3.2.

1 Incidentally, the early-style LTS for the π-calculus also verifies that
āb−→ synchronizes with

ab−→ . However, this does not
imply that the matching degree of the π-calculus is 2. Indeed, the process that generates label ab can generate label ac,
for every name c; thus, the only name that is matched is the name of the communication channel (a in this case), whereas
the second name (viz. b) is only a parameter exchanged.

Electoral Systems Matching Systems Our Criteria
1st setting 2nd setting 3rd setting

CCS −→/ πsep [29] (a) × X X X
πmix −→/ πsep [29] (a) × X X X
MA −→/ πsep [32] (a) × X X X

eπ −→/ πm −→/ πn

(m > n) × [9] (c) ? X X

MA −→/ CCS [33] (b) [17] (a) X
πa −→/ CCS [29] (b) [17] (a) X

Table 1. Comparison between different separation methodologies. For every result, we list where
it appears (‘×’ if it has never been published and ‘?’ if we believe that it holds but we have not
been able to prove it) and the criteria adopted: (a) stands for homomorphism w.r.t. ‘|’, (a form
of) name invariance and (a form of) success sensitiveness; (b) is (a) plus a condition requiring
that source processes without shared free names must be translated into target processes without
shared free names; (c) is (a) plus divergence reflection.

We have said that the aim of formulating operational correspondence up to �2 is to
get rid of junk processes possibly arising from the encoding. We can make this intuition
explicit by formulating operational correspondence as follows:

– for all S Z=⇒1 S ′, there exist ñ and T ′ such that J S K Z=⇒2 (ν̃n)(J S ′ K | T ′) �2 J S ′ K;
– for all J S K Z=⇒2 T , there exist S ′, ñ and T ′ such that S Z=⇒1 S ′ and T Z=⇒2

(ν̃n)(J S ′ K | T ′) �2 J S ′ K.
Maybe, such a formulation can be criticized by saying that it is too ‘syntactic’, but
in practice we are not aware of any encoding that does not satisfy it. Restricting �2
to pairs of kind ((ν̃n)(T | T ′),T), for (ν̃n)(T | T ′) �2 T , yields a reduction sensitive
relation, for any �2; thus, Propositions 1 and 2 (and, consequently, all the results proved
in Section 3.2) hold also in this setting without requiring reduction sensitiveness of �2.

4 Conclusion

We have presented some criteria that an encoding should satisfy to be considered a
good means for language comparison. We have argued that the resulting set of criteria
is a satisfactory notion for assessing the relative expressive power of process calculi
by noting that most of the best known encodings appearing in the literature satisfy
them. Moreover, this notion is not trivial, because there exist known encodings that do
not satisfy all the criteria we have proposed: a representative sample is given by the
encodings of the π-calculus in Mobile Ambients [10, 11].

This paper is mostly methodological, as it describes a new approach both to encod-
ability and to separation results. On one hand, we believe that, for encodability results,
we have proposed a valid alternative to full abstraction for comparing languages: our
proposal is more focused on expressiveness issues, whereas full abstraction is more
appropriate when we look for a tight correspondence between the behavioural equiv-
alences associated with the compared languages. We think that full abstraction is still

an interesting notion to investigate when developing an encoding, but it should be con-
sidered an “extra-value”: if it holds, the encoding is surely more interesting, because
it enables not only a comparison of the languages, but also of their associated equiva-
lences. On the other hand, our proposal is also interesting for separation results: as we
have shown, several separation results appearing in the literature can be formulated and
proved (in an easier and more uniform way) in terms of our criteria. In Table 1 we have
comparatively listed such results. Roughly speaking, the approach taken in [9, 17, 29,
32, 33] consists in (i) identifying a problem that can be solved in the source language
but not in the target, and then (ii) finding the least set of criteria that an encoding should
meet to translate a solution of the problem in the source into a solution of the problem in
the target. Concerning point (ii), we have already argued that the criteria put forward by
our criteria are not more demanding than those in [9, 17, 29, 32, 33]. Concerning point
(i), we are only aware of two kinds of problem: symmetric electoral systems [29, 32, 33]
and matching systems [9, 17]. However, none of them is ‘universal’, in the sense that
different separation results usually require different separation problems (see the ‘×’ in
Table 1).

Of course, there is still a lot of work to do. For example, with the general formulation
of our criteria (see Section 2) we have only been able to prove the last two separation
results of Table 1, even though we strongly believe that also the remaining ones hold.
It would be nice to prove more separation results in the general framework because,
in that setting, such results are very strong, being the formulation of our criteria more
liberal and abstract.

An orthogonal research line could be the study of enhanced kinds of translation.
For example, it may happen to have a ‘two-level’ encoding [4, 6] where J · K is a trans-
lation that satisfies Properties 2–5 and is such that J P K , CF(P)[L P M], where L · M
is a compositional translation (this property is called weak compositionality in [31]).
The proof-techniques presented in Sections 3.2 and 3.3 can be readily adapted to this
enhanced notion of encoding, whereas the proof-technique of Section 3.1 cannot (re-
call that there we had to work with homomorphic translations of parallel composition).
Another possibility [21, 23] is to define an encoding as a family of translations J · KΞ
indexed with a set or a sequence of names Ξ (representing, e.g., an upper bound on the
free names of the translated process or some auxiliary parameters for the translation).
In this case, our framework is less adequate: it is difficult to adapt our properties and
carry out proofs without knowing what the index represents. For example, which is the
initial (i.e., top-level) value of Ξ in J · KΞ? Are Ξ names in the source or in the target
language? The latter question is very delicate: in the first case, Property 2 should be
adapted by requiring that J Sσ KΞσ is equal/equivalent to (J S KΞ)σ′; in the second case,
we have that J Sσ KΞσ′ must be equal/equivalent to (J S KΞ)σ′. Thus, even if we believe
that such an enhanced form of encoding is reasonable, we have problems in adapting
our framework without specifying anything on the index.

To conclude, the challenge raised in [27] is still open, but we think and hope that
our proposal can contribute to its final solution.

Acknowledgments: I am grateful to Daniele Varacca, Jesus Aranda, Frank Valencia
and Cosimo Laneve for several comments that improved an earlier draft of this work.

References

1. R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous π-
calculus. Theoretical Computer Science, 195(2):291–324, 1998.

2. S. Arun-Kumar and M. Hennessy. An efficiency preorder for processes. Acta Informatica,
29(8):737–760, 1992.

3. M. Baldamus, J. Parrow and B. Victor. Spi-Calculus Translated to Pi-Calculus Preserving
May-Tests. In Proc. of LICS, pages 22–31. IEEE Computer Society, 2004.

4. M. Baldamus, J. Parrow and B. Victor. A Fully Abstract Encoding of the Pi-Calculus with
Data Terms. in Proc. of ICALP, volume 3580 of LNCS, pages 1202–1213. Springer, 2005.

5. G. Boudol. Asynchrony and the π-calculus (note). Rapp. de Recherche 1702, INRIA 1992.
6. M. Bugliesi, M. Giunti. Secure implementations of typed channel abstractions. In Proc. of

POPL, pages 251–262. ACM, 2007.
7. D. Cacciagrano, F. Corradini, J. Aranda, F. Valencia. Persistence and Testing Semantics in

the Asynchronous π-calculus. In Proc. of EXPRESS, ENTCS 194(2): 59–84, 2007.
8. D. Cacciagrano, F. Corradini, C. Palamidessi. Separation of Synchronous and Asynchronous

Communication Via Testing. Theoretical Computer Science, 386(3): 218–235, 2007.
9. M. Carbone and S. Maffeis. On the expressive power of polyadic synchronisation in pi-

calculus. Nordic Journal of Computing, 10(2):70–98, 2003.
10. L. Cardelli, G. Ghelli, and A. D. Gordon. Types for the ambient calculus. Information and

Computation, 177(2):160–194, 2002.
11. L. Cardelli and A. Gordon. Mobile ambients. Theor. Comp. Science, 240(1):177–213, 2000.
12. F. de Boer and C. Palamidessi. Embedding as a tool for language comparison. Information

and Computation, 108(1):128–157, 1994.
13. R. De Nicola and M. Hennessy. Testing equivalence for processes. TCS, 34:83–133, 1984.
14. D. Gorla. Comparing calculi for mobility via their relative expressive power. Technical

Report 09/2006, Dipartimento di Informatica, Università di Roma “La Sapienza”.
15. D. Gorla. On the relative expressive power of asynchronous communication primitives. In

Proc. of FoSSaCS’06, volume 3921 of LNCS, pages 47–62. Springer, 2006.
16. D. Gorla. Synchrony vs asynchrony in communication primitives. In Proc. of EXPRESS’06,

volume 175 of ENTCS, pages 87–108. Elsevier, 2007.
17. B. Haagensen, S. Maffeis, and I. Phillips. Matching systems for concurrent calculi. In Proc.

of EXPRESS’07, ENTCS 194(2):85–99, 2007.
18. M. Hennessy and J. Riely. Resource Access Control in Systems of Mobile Agents. Informa-

tion and Computation, 173:82–120, 2002.
19. M. Herlihy. Wait-free synchronization. ACM ToPLaS, 13(1):124–149, 1991.
20. K. Honda and N. Yoshida. On reduction-based process semantics. TCS, 152:437-486, 1995.
21. F. Levi. A Typed Encoding of Boxed into Safe Ambients. Acta Inform., 42(6):429-500, 2006.
22. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
23. R. Milner. Functions as Processes. Mathem. Struct. in Comp. Science, 2(2):119–141, 1992.
24. R. Milner. The polyadic π-calculus: A tutorial. In Logic and Algebra of Specification,

volume 94 of Series F. NATO ASI, Springer, 1993.
25. R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. of ICALP ’92, volume 623 of

LNCS, pages 685–695. Springer, 1992.
26. U. Nestmann. What is a ‘good’ encoding of guarded choice? Inf. Comp., 156:287-319, 2000.
27. U. Nestmann. Welcome to the jungle: A subjective guide to mobile process calculi. In

Proc.of CONCUR’06, volume 4137 of LNCS, pages 52–63. Springer, 2006.
28. U. Nestmann and B. C. Pierce. Decoding choice encodings. Inf. and Comp., 163:1–59, 2000.
29. C. Palamidessi. Comparing the expressive power of the synchronous and the asynchronous

π-calculi. Mathematical Structures in Computer Science, 13(5):685–719, 2003.

30. C. Palamidessi, V. Saraswat, F. Valencia and B. Victor. On the Expressiveness of Linearity
vs Persistence in the Asynchronous π-calculus. In Proc. of LICS, pages 59–68. IEEE, 2006.

31. J. Parrow. Expressiveness of Process Algebras. Proc. of Emerging trends in Concurrency
Theory, ENTCS 209:173–186. Elsevier, 2008.

32. I. Phillips and M. Vigliotti. Electoral systems in ambient calculi. In Proc. of FoSSaCS,
volume 2987 of LNCS, pages 408–422. Springer, 2004.

33. I. Phillips and M. Vigliotti. Leader election in rings of ambient processes. Theoretical
Computer Science, 356(3):468–494, 2006.

34. J. Rathke, V. Sassone and P. Sobocinski. Semantic Barbs and Biorthogonality. In Proc. of
FoSSaCS, volume 4423 of LNCS, pages 302–316. Springer, 2007.

35. D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. C.U.P., 2001.

Syntax, Operational and Behavioural Semantics of the Calculi
Considered

We now very briefly present the syntax and the operational semantics of the languages
considered; for more details, the interested reader can refer to [5, 9, 11, 22]. All the
languages have a common syntax given by

P ::= 0
∣∣∣ (νn)P

∣∣∣ P1|P2

∣∣∣ !P
∣∣∣ √

As usual, 0 is the terminated process, whereas
√

denotes success (see the discussion
on Property 5); P1|P2 denote the parallel composition of two processes; (νn)P restricts
to P the visibility of n and binds n in P; finally, !P denotes the replication of process
P. We have assumed here a very simple way to modeling recursive processes; all what
we are going to prove does not rely on this choice and can be rephrased under different
forms of recursion.

Terms of this syntax are equated up-to structural congruence, that is the least con-
gruence closed under alpha-renaming of bound names and under the following axioms:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

!P ≡ P | !P (νn)0 ≡ 0 (νn)(νm)P ≡ (νm)(νn)P

P | (νn)Q ≡ (νn)(P |Q) if n< F(P)

where F(P) denotes the free names (i.e., the names not bound) in P. The inference
rules that define the operational semantics of processes are:

P 7−→ P′

P |Q 7−→ P′ |Q
P 7−→ P′

(νn)P 7−→ (νn)P′
P ≡ P′ P′ 7−→ Q′ Q′ ≡ Q

P 7−→ Q

Of course, the operational axioms are peculiar to every language and are given below.

CCS: it is obtained from the common syntax as follows:

P ::= . . .
∣∣∣ Σn

i=1πi.Pi π ::= a
∣∣∣ ā

where Σn
i=1πi.Pi is the non-deterministic choice between the prefixed processes

πi.Pi. In CCS, prefixes are just names (ranged over by a) or co-names (ranged over
by ā). To fully define the operational semantics, it suffices to consider the following
axiom:

(. . . + a.P + . . .) | (. . . + ā.Q + . . .) 7−→ P |Q
πa: the asynchronous π-calculus is obtained from the common syntax as follows:

P ::= . . .
∣∣∣ a〈b〉

∣∣∣ a(x).P
∣∣∣ [a = b]P

Here, a〈b〉 denotes the emission of name b along channel a; a(x).P in an input
prefixed process that waits some name from channel a that will replace x in the
continuation P (and is a binder for x in P); finally, [a = b]P is a test for equality of
a and b (if the test is passed, then P is activated, otherwise P is blocked for ever).
The only reduction axiom is

a(x).P | a〈b〉 7−→ P{b/x}
Moreover, structural congruence is extended to handle name matching:

[a = a]P ≡ P

πmix: the mixed choice π-calculus is defined similarly to CCS, but with the possibility of
passing/receiving names during a communication and of checking name equality:

P ::= . . .
∣∣∣ [a = b]P

∣∣∣ Σn
i=1πi.Pi π ::= a(x)

∣∣∣ a〈b〉
Apart from the presence of choices, the only difference with πa is that in πmix also
output actions are prefixes: they block the continuation process until a communica-
tion happens. The operational semantics is obtained from the following axiom:

(. . . + a(x).P + . . .) | (. . . + a〈b〉.Q + . . .) 7−→ P{b/x} |Q
and it includes the structural axiom given for πa to handle name matching.

πsep: the separate choice π-calculus is the sub-calculus of πmix where every choice con-
tains prefixes of the same kind. It is obtained from the common syntax as follows:

P ::= . . .
∣∣∣ [a = b]P

∣∣∣ Σn
i=1ai(xi).Pi

∣∣∣ Σn
i=1ai〈bi〉.Pi

The operational and structural axioms are formally identical to the ones for πmix.
πn and eπ: the π-calculus with polyadic synchronizations is defined similarly to πmix

but, instead of specifying a single channel, a tuple of names (of length at most n in
πn or of unbounded length in eπ) is exploited. Formally, πn and eπ are defined like
πmix with prefixes defined as follows:

π ::= a1 · . . . · ak(x)
∣∣∣ a1 · . . . · ak〈b〉 for every k ≤ n

π ::= a1 · . . . · ak(x)
∣∣∣ a1 · . . . · ak〈b〉 for every k

The operational axiom is the one of πmix, tailored to polyadic synchronizations:

(. . . + a1 · . . . · ak(x).P + . . .) | (. . . + a1 · . . . · ak〈b〉.Q + . . .) 7−→ P{b/x} |Q

MA: the mobile ambient calculus is a calculus for modeling mobile and hierarchically
distributed processes; it can be obtained from the common syntax as follows:

P ::= . . .
∣∣∣ a[P]

∣∣∣ M.P
∣∣∣ 〈M〉

∣∣∣ (x).P

M ::= n
∣∣∣ in a

∣∣∣ out a
∣∣∣ open a

∣∣∣ M.M

The term a[P] denotes a process P located within an ambient named a; of course, P
can have as sub-terms other ambients, that are then nested in a. In MA entire ambi-
ents can move: an ambient n can enter into another ambient m via the in m action
or exit from another ambient m via the out m action; moreover, an ambient n can be
opened via the open n action. Communication is anonymous (no channel name is
specified for input/output), can only happen between co-located processes and can
exchange sequences of actions, apart from raw names. Formally, the operational
semantics is obtained from the following axioms:

n[in m.P1|P2] | m[P3] 7−→ m[P3 | n[P1|P2]]

m[n[out m.P1|P2] | P3] 7−→ n[P1|P2] | m[P3]

open n.P1 | n[P2] 7−→ P1 | P2

〈M〉 | (x).P 7−→ P{M/x}

and the new reduction rule:
P 7−→ P′

n[P] 7−→ n[P′]

Moreover, structural congruence also includes the following axioms:

(M.M′).P ≡ M.(M′.P) m[(νn)P] ≡ (νn)m[P] if n , m

MA strongly relies on a type system to avoid inconsistent processes like, e.g.,
n.P or in n[P]; these two processes can arise after the (ill-typed) communica-
tions (x).x.P | 〈n〉 and (x).x[P] | 〈in n〉. For MA we only consider the sub-language
formed by all the well-typed processes, as defined in [10].

