
A Taxonomy of Process Calculi for Distribution and Mobility

Daniele Gorla
Dipartimento di Informatica, “Sapienza” Università di Roma

Abstract

In this paper, we comparatively analyze some mainstream calculi for mobility and distribution,
together with some of their variants: asynchronous π-calculus, distributed π-calculus, and some
dialects of Mobile/Boxed/Safe ambients. In particular, we focus on their relative expressive power,
i.e. we try to encode every language in the other while respecting some reasonable properties.
According to the possibility or the impossibility for such results, we set up a taxonomy of these
languages. Our study enables understanding, for every pair of calculi, which features of one can be
rendered in the other and how this is possible, or which features cannot be rendered and why this is
impossible.

Contents
1 Introduction 2

2 The Process Calculi 7
2.1 The asynchronous π-calculus (πa) . 8
2.2 Distributed π-calculus (Dπ) . 8
2.3 Mobile Ambients (MA) . 9
2.4 Safe Ambients (SA) and Safe Ambients with Passwords (SAP) 10
2.5 The Family of Boxed-like Ambients (BA, BAs, SBA, NBA) 11

3 Valid Encodings 12
3.1 Properties for Valid Encodings . 12
3.2 Derived Properties . 14

4 The Taxonomy, bottom-up 17
4.1 Technical Preliminaries . 17
4.2 Building up the first level of the Taxonomy . 21

4.2.1 Dπ is more expressive than πa . 21
4.2.2 BA and BAs are more expressive than πa . 21
4.2.3 MA is more expressive than πa . 22

4.3 Building the second level of the Taxonomy . 24
4.3.1 SA is more expressive than MA . 24
4.3.2 SBA is more expressive than BA . 25
4.3.3 NBA is more expressive than BAs . 25
4.3.4 SAP, SBA and NBA are more expressive than Dπ . 26

4.4 Further Impossibility Results . 28
4.5 Completing the Taxonomy and Composing Valid Encodings 34

5 Conclusions and Related Work 38

1

1 Introduction

In the last years, one of the main research lines in the field of concurrency theory has been the de-
velopment of new formalisms, paradigms and environments that better model distributed and mobile
systems. These are systems whose configuration deeply varies in time, as a consequence of the inter-
actions between the principals (usually called processes) they host. Several terms have been coined to
name this research line (network-aware programming, WAN computing, global computing, ...) that is
now a well-established field for many computer scientists around the world.

Calculi for mobility and/or distribution In this scenario, the term mobility has become the reference
keyword to denote several possible dynamic evolutions of systems [12, 16]. The first language where
mobility plays a crucial rôle is the π-calculus [40, 52], a calculus centered around the notion of name
mobility. In π-calculus, a collection of concurrent processes communicate through named channels
and the communicated objects are channel names as well. This is evident from the reduction rule

ā〈b〉 | a(x).P 7−→ P{b/x}

where a process P receives a name b from an output particle, after a synchronization on channel a.
Thus, the dynamic modifications of a system consist in the variation of the interconnection structure
underlying the processes as a result of inter-process communications. An evolution of the π-calculus
is the distributed π-calculus [26, 28], where processes are located at network nodes and only co-located
processes can communicate. In languages of this kind (featuring what is sometimes called mobile
computation [12]), the net structure (seen as a collection of network nodes) is fixed and visible to the
processes running in the system; processes can move across the net for communicating with remote
processes, i.e. they can migrate from one node to another, as expressed by the two following sample
reductions

l : go k.a(x).P | k : ā〈b〉.R 7−→ l : 0 | k : (ā〈b〉.R | a(x).P) 7−→ l : 0 | k : (R | P{b/x})

A more radical approach can be obtained by assuming that network nodes can move as a whole, i.e.
together with the processes and data they host (this has been sometimes called mobile computing [12]).
A typical example is the Mobile Ambient calculus [15]; ambients are collections of data and processes,
and they can enter or exit other ambients, as expressed by the following two sample reductions:

n[in m.out m.P | Q | 〈b〉] | m[R] 7−→ m[n[out m.P | Q | 〈b〉] | R] 7−→ n[P | Q | 〈b〉] | m[R]

Different kinds of mobility stress different features of the system modeled; the static analysis
of such features has longly been the primary research topic on calculi for mobility and distribution,
yielding more and more sopisticated type theories ([7, 8, 13, 14, 28, 31, 33, 36, 49], just to cite a very few
examples). More recently, calculi for mobility have also been the workbench of orthogonal research
lines, like the development of efficient implementations of new programming paradigms [20, 21, 46, 50]
and of easy-to-handle proof-techniques for proving behavioural properties of systems [8, 27, 33, 35,
37]. From the practical side, we would need real-life applications where the distinctive features of
such formalisms are essential. From the theoretical side, one of the things that is still lacking is an
exhaustive comparative analysis of all these proposals, from a linguistic perspective; in particular, there

2

is a plethora of results (either formal or informal) about the inter-relationships between the different
languages and paradigms, but very few unified results are around.

In this paper, we approach this problem by comparing some mainstream calculi for mobility: asyn-
chronous π-calculus (written πa) [6, 30], distributed π-calculus (written Dπ) [26, 28], Mobile Ambients
(written MA) [15], Safe Ambients (written SA) [33], together with its variant with passwords (written
SAP) [35], and Boxed Ambients (written BA) [7], together with its variant with shared channels (writ-
ten BAs) [7], with co-actions (written SBA) [36] and with co-actions and passwords (written NBA) [8].
Our results formally prove some claims informally appeared in the literature and prove in a different
way some formal results already known. Moreover, for the sake of systematization, we also consider
and compare languages that, to the best of our knowledge, have never been contrasted, not even in-
formally. Consequently, our results carry a two-fold contribution: on one hand, they help in better
clarifying the peculiarities of the languages studied and their distinctive programming features; on the
other hand, they allow us to formally compare the expressive power of the languages and organize them
in a taxonomy based on their relative expressiveness.

First of all, let us briefly discuss the choice of the nine languages considered in this paper. The
previous discussion on the three different kinds of mobility justifies the choice of πa, Dπ and MA, since
they are maybe the simplest and most representative samples of languages with name mobility, mobile
computation and mobile computing, respectively. For example, several variations of the π-calculus
featuring distribution and process mobility have appeared in the last fifteen years ([1, 19, 53], just to
cite some samples); however, differently from Dπ [26, 28], none of them has become a reference model
for a distributed π-calculus.

We then decided to include several variants of MA; this choice was driven by two reasons. First,
in the last decade MA is the formalism for mobility and distribution that originated the highest number
of (sometimes minor) variations; for the sake of completeness, we would like to consider the most
representative ones. Second (and more important), for didactic reasons: we want to show that it may
happen that even very small modifications in the syntax and/or in the operational semantics can produce
a different (i.e. incomparable) formalism.

Let us briefly examine the six variations we are going to consider. First, we have SA, where every
ambient activity has to be authorized by the target ambient. For example, in SA ambient n can enter
into the sibling ambient m only if m authorizes such an entrance, via a proper co-action:

n[in m.P] | m[in m.Q] 7−→ m[n[P] | Q]

This is different from MA, where only the presence of an ambient named m suffices. To have a tighter
control, SA has been evolved into SAP, where every movement is also associated to a password. For
example, n can enter into m only if m authorizes the entrance and n provides the right password for
entering:

n[in (m, p).P] | m[in (m, p).Q] 7−→ m[n[P] | Q]

An orthogonal way of modifying MA is related to the open primitive. In MA all communications are
local; so, if a process P wants to access a datum contained into a sibling ambient m, it has to dissolve m
and place the datum locally, in order to access it:

open m.(x).P | m[〈b〉] 7−→ (x).P | 〈b〉 7−→ P{b/x}

Dissolving ambient boundaries is a sensible task; for this reason, BA was defined, by removing the open
primitive and allowing a limited form of remote communication. For example, the previous interaction

3

can be alternatively rendered in BA as

(x)m.P | m[〈b〉?] 7−→ P{b/x} | m[0] or (x)?.P | m[〈b〉↑] 7−→ P{b/x} | m[0]

Indeed, a local output (tagged with ‘?’) can interact either with a local input, or with an input from the
parent (tagged with the name of the ambient towards which the input is directed, m in our example) or
with an input from a son (tagged with ‘↑’). This choice can create a lot of conflicts between processes
competing for the same datum. For this reason, it has been defined BAs, where an input/output tagged
with m can only synchronize with an output/input tagged with ‘↑’. Hence, in BAs the previous remote
communications would take a unique form:

(x)m.P | m[〈b〉↑] 7−→ P{b/x} | m[0]

Finally, BA and BAs have been developed further to allow a finer control on ambient movements, by
following paths similar to those put forward by SA and SAP. On one hand, SBA adds co-actions to BA;
for example, an ambient n can enter into m if m allows the entrance of n or of any ambient (this feature
is also an enhancement of SA’s co-actions):

n[in m.P] | m[in δ.Q] 7−→ m[n[P] | Q] for δ ∈ {n, ∗}

On the other hand, NBA adds to BAs co-actions, passwords and the possibility of dynamically learning
the name of the entering ambient (the latter feature is an enhancement of SAP too):

n[in (m, p).P] | m[in (x, p).Q] 7−→ m[n[P] | Q{n/x}]

Relative expressiveness and Valid encodings Of course, it is crucial to fix the criteria to evaluate the
expressive power of the languages considered. Too liberal criteria would lead us to poorly informative
results: most (if not all) of the languages would satisfy them. But also too stringent criteria would be
fruitless: (almost) none of the languages would satisfy it. A good compromise seems to be the notion of
relative expressiveness: this approach relies on the possibility/impossibility of translating one language
into another, while respecting some reasonable properties. Again, the definition of such properties is
essential for the meaningfulness of our study.

In principle, a good encoding function should satisfy at least two properties: compositionality
(roughly, this is a way to require that the encoding is defined inductively on the syntax of the en-
coded term) and faithfulness (the encoding of a term must have the same functionalities as the original
term, without introducing new ones). There are different ways to formalize these notions; mainly for the
second one, a number of different proposals have been considered in the literature (e.g., sensitiveness
to barbs/divergence/deadlock, operational correspondence, full abstraction, ...). Here, we consider the
proposal of [25] and consider valid only the encodings that satisfy the following five properties:

• compositionality: the encoding of a compound term must be expressed by combining the encod-
ing of its components via a translating context that only depends on the top-level operator that is
translated and on the free names of the term itself;

• name invariance: the encodings of two source processes that differ only in their free names must
only differ in the associated free names;

4

• operational correspondence: computations of the source term must correspond to computations
in the encoded term, and vice versa;

• divergence sensitiveness: non-terminating processes must be translated into non-terminating pro-
cesses, and vice versa;

• success sensitiveness: successful terms (for some notion of success) must be translated into suc-
cessful terms, and vice versa.

We think that these criteria form a valid proposal for language comparison; indeed, several well known
encodings respect them (so our notion is consistent with the common understanding of the community),
but there still exist encodings in the literature that do not satisfy them (so our notion is non-trivial). Here,
we furthermore vindicate the validity of our proposal by showing that some widely believed (but never
formally proved) separation results can be established by relying on the above mentioned criteria.

Of course, several alternatives are possible when formulating the criteria. We shall now discuss a
couple of representative samples.

Compositionality requires that the encoding of P|Q, that denotes the parallel composition of pro-
cesses P and Q, is J P|Q K , Cf n(P,Q)

|
(J P K ; J Q K), where Cf n(P,Q)

|
(1 ; 2) is the context used to translate

the parallel composition of two processes that have as free names the union of the free names of P
and Q. This formulation can be both weakened and strenghtened. A weakening is to require that the
encoding is ‘two-level’ (in [45] this is called weak compositionality): J P|Q K , C(L P|Q M), where C(·) is
some context and the second-level encoding function L · M is compositional (in the way defined above).
Compositionality can also be strenghtened (see, e.g., [11, 44, 47, 48]), by imposing that the parallel
operator is translated homomorphically: J P|Q K , J P K | J Q K. All these formulations have their own
merits and can be exploited in practice. We decided to work with the first one because it seems us a
good compromise between generality and usability. Of course, all our results also hold when assuming
homomorphism and most of them still hold also under weak compositionality.

As a second example, operational correspondence requires that every source reduction P 7−→ P′

must be preserved by the encoding (this property is sometimes called operational completeness, see
[42]), i.e. that J P K reduces (maybe, in several reduction steps) to J P′ K in the target language. However,
it is too demanding to formulate this intuition by requiring that J P K Z=⇒ J P′ K: in general, the encoding
leaves some junk dead processes around. So, a more liberal formulation of operational completeness
is J P K Z=⇒' J P′ K, for some behavioural equivalence ‘'’ in the target language (that gets rid of the
junk processes left around). Of course, a finer equivalence entails a stronger property of the encoding.
In this paper we shall work with strong berbed equivalence, that is usually considered the strongest
‘reasonable’ equivalence for process calculi. Of course, this makes our encodability results very strong;
furthermore, our impossibility results are not undermined by this choice, since we believe that they hold
under any ‘reasonable’ notion of behavioural equivalence.

Contributions A full account of our study is given in Table 1 in Section 4.5; here, in Figure 1, we just
report a pictorial summary of our taxonomy. Notationally, we write L1 −→ L2 if L1 can be encoded
in L2 but not vice versa, and absence of an arrow means that no valid encoding exists from one to the
other. The dashed arrows mean that an encodability result holds, but its properties are not as strong
as the other arrows: in particular, they are formulated up to a coarser notion of process equivalence
(namely, strong translated barbed equivalence) or by relying on weak compositionality.

5

Level 2 SA SAP SBA NBA

Level 1 MA

OO�
�
�
�
�
�

=={
{

{
{

{
{

{
{

{
Dπ

OO ;;wwwwwwwwwwwwwwwwwww

55lllllllllllllllllllllllllllllllll
BA

OO

BAs

OO

Level 0 πa

ffMMMMMMMMMMMMMMMMMMMMMMMM

ZZ4
4

4
4

4
4

4

DD

88ppppppppppppppppppppppppp

^^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

TT***************************

JJ���������������������������

@@����������������������������������

Figure 1: The Taxonomy of Calculi for Distribution and Mobility

With respect to the extended abstracts [23, 24], this paper fully builds up a unique taxonomy and it
formally proves new results (either conjectured or not considered at all in the two preliminary versions).
In detail, most of the separation results (i.e., the arrows that are not present in the figure) have already
been mentioned in the extended abstracts but here we give full details on complex proofs just sketched
in [23, 24]. It is worth noting that a very few of them (i.e., the non encodability of MA, SA and BA
in πa and Dπ) have already appeared in the literature [47, 48] but under a different set of encoding
properties. Here, we also refine some results; for example, here we can prove the incomparability of
BA and BAs in the setting of [25], i.e. by getting rid of an extra property assumed in [23]. Also some
of the encodability results are new, or are considered in a new way in this paper. More precisely:

• the encodability of πa in MA has already been presented in [24], but here we present a simpler
and more elegant encoding;

• the encodability of πa in SA (and in SAP) comes from [33];

• the encodability of πa in Dπ has never been formally discussed, to the best of our knowledge;
even if it may look trivial, it raises some interesting issues and, in detail, we show that only a
weak compositional valid encoding exists (this fact justifies the dashed arrow);

• the encodability of πa in BA (and in BAs, SBA and NBA) comes from [7];

• the encodability of MA in SA (and in SAP) comes from [33], but here we spell out the precise
properties enjoyed by the encoding proposed in loc.cit., in particular that operational correspon-
dence only holds under translated barbed equivalence (this fact justifies the dashed arrow);

• the encodability of Dπ in SAP, SBA and NBA are a totally new contribution of this paper (they
not even appeared in the extended abtracts);

• the encodability of BA in SBA and of BAs in NBA are straightforward but, to the best of our
knowledge, they have never been spelled out formally.

Some of our results are expected: for example, we confirm that πa is the minimal common de-
nominator of calculi for mobility, since it can be encoded in all the languages considered. Some other
results, though expected, turned out very difficult to prove. For example, the task of encoding πa in MA

6

is quite challenging with our formulation of operational correspondence. Indeed, ruling out target com-
putations that are not present in the source process is a sensible task when dealing with MA, because
of the high possibility of interferences between MA processes. A simpler encoding of πa is possible,
e.g., in SA (see [33]), because the latter language is “more controlled” than MA. Another issue that
turned out to be surprisingly difficult to understand is the relative expressiveness of MA and BA. As
a new contribution w.r.t. [24], here we formally prove a separation result between MA and BA, only
conjectured in loc.cit.. Moreover, we also discovered that very few dialects of MA are related to it.
This entails that, in many cases, the dialect is not an enhancement of the original language nor a minor
variation on it, as it is sometimes believed. Indeed, the distinguishing features added to (or modified
in) the original language can have advantages (e.g., in terms of ease-of-programming or of controlling
interferences) that make the dialect non-encodable in the original language; the price to be paid is that
some computational features of the original language get lost, thus making also the converse encoding
impossible.

This paper is organized as follows. In Section 2, we formally present the syntax and operational
semantics of the nine languages depicted in Figure 1. In Section 3, we recall from [25] the properties
that a valid encoding should satisfy. In Section 4, we formally build up the taxonomy of Figure 1: for
every pair of languages, we give a formal proof of encodability/non-encodability; in conclusion, we
also discuss some sufficient conditions that allow us to have that the composition of valid encodings
is still a valid encoding. Finally, in Section 5 we conclude the paper by also mentioning some related
work.

2 The Process Calculi

In what follows, we assume a countable set of names, N , ranged over by a, b, c, . . . , l, k, . . . ,m, n, . . . ,
u, v,w, . . . , x, y, z, . . . and their decorated versions. To simplify reading, we use: a, b, c, . . . to denote
channels; l, k, . . . to denote localities; m, n, . . . to denote ambients; x, y, z, . . . to denote input variables;
finally, u, v,w, . . . are used to denote generic names (channels and variables in πa; channels, localities
and variables in Dπ; ambients and variables in ambient-based calculi).

A process calculus is a triple L = (P, 7−→,'), where

• P is the set of language terms, usually called processes and ranged over by P,Q,R, All the
process calculi we are going to consider have a common syntax given by:

P ::= 0
∣∣∣ (νn)P

∣∣∣ P1|P2
∣∣∣ !P

∣∣∣ √
As usual, 0 is the terminated process, whereas

√
denotes success (see the discussion on Property 5

in Section 3); P1|P2 denotes the parallel composition of two processes; (νn)P restricts to P the
visibility of n and binds n in P; finally, !P denotes the replication of process P. We have assumed
here a very simple way of modeling infinite processes; all our results do not rely on this choice
and can be rephrased under different forms of recursion.

• 7−→ is the operational semantics, needed to specify how a process computes; following common
trends in process calculi, we specify the operational semantics by means of reductions. These are
inductively defined judgements whose inference rules shared by all our process calculi are:

P 7−→ P′

E(P) 7−→ E(P′)

P ≡ P′ P′ 7−→ Q′ Q′ ≡ Q

P 7−→ Q

7

where E(·) denotes an evaluation context, E(P) denotes the process obtained by replacing the
hole ‘ · ’ with process P, and ≡ denotes structural equivalence (used to equate different ways
of writing the same process). Of course, the operational axioms, the evaluation contexts and the
structural equivalence are peculiar to every language and will be defined in a few moments. As
usual, Z=⇒ denotes the reflexive and transitive closure of 7−→.

• ' is a behavioural equivalence, needed to describe the abstract behaviour of a process; usually,
' is a congruence with respect to closure under evaluation contexts (or, at the very least, with
respect to parallel composition).

2.1 The asynchronous π-calculus (πa)

We consider the asynchronous version of the π-calculus, as defined in [6]. This language is nowadays
widely considered the minimal common denominator of calculi for mobility, it is a good compromise
between expressiveness and simplicity, and it also has a running implementation [50]. Its syntax extends
the common syntax of processes by letting

P ::= . . .
∣∣∣ ū〈v〉

∣∣∣ u(x).P

Intuitively, ū〈v〉 represents message v unleashed along channel u. Dually, u(x).P waits for some message
from channel u and, once received, replaces with such a message every occurrence of variable x in P.
Processes u(x).P and (νa)P bind x and a in P, respectively; a name occurring in P that is not bound is
called free. Consequently, we define the free and bound names of a process P, written f n(P) and bn(P);
alpha-conversion is then defined accordingly. For the sake of notation, we shall write f n(P,Q) to denote
f n(P) ∪ f n(Q), and similarly for bound names.

Evaluation contexts are defined as follows:

E(·) ::= ·
∣∣∣ E(·) | P

∣∣∣ P | E(·)
∣∣∣ (νn)E(·)

The structural equivalence relation, ≡, is the least equivalence on processes closed by evaluation con-
texts, including alpha-conversion and satisfying the following axioms:

P|0 ≡ P P1|P2 ≡ P2|P1 P1|(P2|P3) ≡ (P1|P2)|P3 !P ≡ P|!P

(νa)0 ≡ 0 (νa)(νb)P ≡ (νb)(νa)P P1|(νa)P2 ≡ (νa)(P1|P2) if a < f n(P1)

The reduction relation, 7−→, is the least relation on processes closed by the inference rules previously
described and satisfying the following axiom:

a(x).P | ā〈b〉 7−→ P{b/x}

where P{b/x} denotes the capture-avoiding substitution of each occurrence of x in P with an occurrence
of b.

2.2 Distributed π-calculus (Dπ)

We present a slightly simplified version of [28]; mainly, we elide typing information from the syntax.
The main syntactic entity is the set of nets, that are collections of located processes, possibly sharing
restricted names:

N ::= 0
∣∣∣ l : P

∣∣∣ N |N
∣∣∣ (νu)N

8

Processes are obtained from the common syntax by letting

P ::= . . .
∣∣∣ u(x).P

∣∣∣ ū〈v〉.P
∣∣∣ go u.P

The main differences between Dπ and πa are: processes and channels are located at a specified
locality; communication can only happen between co-located processes and, hence, there is a primitive
to let processes migrate between localities (viz. action go u); finally, communication is synchronous
(i.e., it blocks both the sending and the receiving process).

Since the main syntactic entity is the set of nets, evaluation contexts, reductions and structural
equivalence will be given for nets.

E(·) ::= ·
∣∣∣ E(·) |N

∣∣∣ N | E(·)
∣∣∣ (νn)E(·)

The structural axioms are:

l : P|0 ≡ l : P l : P1|P2 ≡ l : P1 | l : P2 l : !P ≡ l : P|!P (νl)N ≡ (νl)(N | l : 0) N |0 ≡ N

N1|N2 ≡ N2|N1 N1|(N2|N3) ≡ (N1|N2)|N3 (νu)(νw)N ≡ (νw)(νu)N (νn)0 ≡ 0

l : (νu)P ≡ (νu)l : P if u , l N1|(νu)N2 ≡ (νu)(N1|N2) if u < f n(N1)

The reduction axioms are:

l : a(x).P | l : ā〈b〉.Q 7−→ l : P{b/x} | l : Q l : go l′.P | l′ : 0 7−→ l : 0 | l′ : P

A computation step of a Dπ net can happen either because of a communication between co-located
processes, or because a migration to a remote locality. Notice that a migration at l′ is legal only if l′ is
an existing locality of the net. In the original paper [28], this check, among other tasks, is carried out
by the type system. We prefer the present formulation for the sake of simplicity; however, all what are
going to prove does not rely on this choice.

2.3 Mobile Ambients (MA)

We consider the Ambient calculus as presented in [15].

P ::= . . .
∣∣∣ (x).P

∣∣∣ 〈M〉 ∣∣∣ M.P
∣∣∣ u[P]

M ::= u
∣∣∣ in u

∣∣∣ out u
∣∣∣ open u

∣∣∣ M.M

MA is somewhat related to Dπ in the sense that processes are located within ambients (viz. u[P])
and only co-located processes can communicate via a monadic, asynchronous and anonymous com-
munication: (x).P represents the anonymous input prefix, whereas 〈M〉 represents the asynchronous
and anonymous output particle, where message M can be not only a raw name but also a sequence of
actions. However, differently from Dπ, entire ambients can move: an ambient n can enter into another
ambient m via the in m action or exit from another ambient m via the out m action. Moreover, an
ambient n can be opened via the open n action.

Evaluation contexts are defined as follows:

E(·) ::= ·
∣∣∣ E(·) | P

∣∣∣ P | E(·)
∣∣∣ (νn)E(·)

∣∣∣ n[E(·)]

9

The structural equivalence relation extends structural equivalence of πa with the following axioms:

(M.M′).P ≡ M.(M′.P) m[(νn)P] ≡ (νn)m[P] if n , m

The reduction axioms are:

n[in m.P1|P2] | m[P3] 7−→ m[P3 | n[P1|P2]] open n.P1 | n[P2] 7−→ P1 | P2

m[n[out m.P1|P2] | P3] 7−→ n[P1|P2] | m[P3] (x).P | 〈M〉 7−→ P{M/x}

2.4 Safe Ambients (SA) and Safe Ambients with Passwords (SAP)

Safe Ambients We consider the Safe Ambient calculus as presented in [33]. SA extends MA by
adding co-actions, through which ambient movements/openings must be authorized by the target am-
bient. Hence, the syntax of SA is the same as MA’s, with

M ::= . . .
∣∣∣ in u

∣∣∣ out u
∣∣∣ open u

Evaluation contexts and structural equivalence are the same as for MA; the reduction axioms are:

(x).P | 〈M〉 7−→ P{M/x} open n.P1 | n[open n.P2|P3] 7−→ P1 | P2 | P3

n[in m.P1|P2] | m[in m.P3|P4] 7−→ m[P3 | P4 | n[P1|P2]]

m[n[out m.P1|P2] | out m.P3 | P4] 7−→ n[P1|P2] | m[P3|P4]

Safe Ambients with Passwords In [35] SA has been enriched with passwords, thus yielding SAP.
In this calculus, an ambient n that aims at entering/exiting/opening another ambient m must not only be
authorized by m via a corresponding co-action (like in SA), but it must also exhibit some credential to
perform the action (credentials are simply names and are called passwords). Intuitively, passwords are
a way to better control ambient movements and openings: for example, in SA any ambient can open
an ambient m that performs a open m action; with passwords, the co-action becomes open (m, p) and
only the ambients knowing the password p can open m. Moreover, the language proposed in [35] differs
from SA in the semantics of the out action: in SAP, the co-action is not in the ambient left (like in SA)
but it is in the receiving ambient.

The introduction of passwords and of the different semantics for the out were needed in [35] to
coinductively characterize barbed equivalence in a SA-like language. Here, we analyze the expressive-
ness implications of these two modifications. Formally, let SAP be the language defined by the syntax
of SA, with

M ::= u
∣∣∣ in (u, v)

∣∣∣ out (u, v)
∣∣∣ open (u, v)

∣∣∣
in (u, v)

∣∣∣ out (u, v)
∣∣∣ open (u, v)

∣∣∣ M.M

and with the mobility and opening axioms modified as follows:

open (n, p).P1 | n[open (n, p).P2|P3] 7−→ P1 | P2 | P3

n[in (m, p).P1|P2] | m[in (m, p).P3|P4] 7−→ m[P3 | P4 | n[P1|P2]]

m[n[out (m, p).P1|P2] | P3] | out (m, p).P4 7−→ n[P1|P2] | m[P3] | P4

10

2.5 The Family of Boxed-like Ambients (BA, BAs, SBA, NBA)

Boxed Ambients We consider the original presentation of the Boxed Ambient calculus [7]. BA
evolves from MA by removing the open action. To let different ambients communicate, BA allows
a restricted form of non-local communication: in particular, every input/output action can be performed
locally (if tagged with direction ?), towards the enclosing ambient (if tagged with direction ↑) or
towards an enclosed ambient n (if tagged with direction n).

P ::= . . .
∣∣∣ (x)η.P

∣∣∣ 〈M〉η.P ∣∣∣ M.P
∣∣∣ u[P]

M ::= u
∣∣∣ in u

∣∣∣ out u
∣∣∣ M.M η ::= ?

∣∣∣ ↑ ∣∣∣ u

Evaluation contexts and structural equivalence are the same as for MA; the reduction axioms are:

n[in m.P1|P2] | m[P3] 7−→ m[P3 | n[P1|P2]]

m[n[out m.P1|P2] | P3] 7−→ n[P1|P2] | m[P3]

(x)?.P1 | 〈M〉?.P2 7−→ P1{M/x} | P2

(x)?.P1 | n[〈M〉↑.P2|P3] 7−→ P1{M/x} | n[P2|P3]

(x)n.P1 | n[〈M〉?.P2|P3] 7−→ P1{M/x} | n[P2|P3]

〈M〉?.P1 | n[(x)↑.P2|P3] 7−→ P1 | n[P2{M/x}|P3]

〈M〉n.P1 | n[(x)?.P2|P3] 7−→ P1 | n[P2{M/x}|P3]

Boxed Ambients with Shared Channels In BA the communication channel is localized, i.e. com-
munications can happen either within the same ambient or via a channel owned by either the parent or
the child. However, parent-child communications can be modeled in (at least) another way, i.e. by let-
ting the communication channel be shared. In this case, remote communications happen via a channel
shared by the parent and its child. The resulting calculus [7], that we call BAs, has the same syntax as
BA, but it has just two axioms for remote communications (instead of four):

(x)n.P1 | n[〈M〉↑.P2|P3] 7−→ P1{M/x} | n[P2|P3]

〈M〉n.P1 | n[(x)↑.P2|P3] 7−→ P1 | n[P2{M/x}|P3]

BAs provides a more controlled form of communication, since it rules out the interferences that can
arise, e.g., in the BA process

(x)n | n[〈M〉? | (y)? | m[(z)↑]]

where message M can be consumed by three different input actions placed in different ambients. By
contrast, in BAs this process can only perform the local communication.

Safe Boxed Ambients Another variant of BA is SBA (Safe BA, [36]): it is BA extended with co-
actions to better control ambient movements, in the same spirit as SA. The syntax of SBA is the same
as BA, with messages defined as follows:

M ::= u
∣∣∣ in u

∣∣∣ out u
∣∣∣ in δ

∣∣∣ out δ
∣∣∣ M.M δ ::= ∗

∣∣∣ v

11

The reduction axioms for ambient movements are:

n[in m.P1 | P2] | m[in δ.P3 | P4] 7−→ m[n[P1 | P2] | P3 | P4] for δ ∈ {n, ∗}

m[n[out m.P1 | P2] | P3] | out δ.P4 7−→ n[P1 | P2] | m[P3] | P4 for δ ∈ {n, ∗}

In SBA, like in SA, an ambient n can enter into (exit from) an ambient m only if authorized from a
co-action. However, differently from SA, the co-action either names the ambient that is allowed to enter
(exit), or it can specify that every ambient is allowed to do so, via the ‘∗’ tag. Moreover, notice that the
out action is placed outside the ambient left, like in SAP.

New Boxed Ambients [8] presents an evolution of BA, called NBA (New BA), that adopts the shared-
channel form of communication of BAs, it introduces passwords in mobility actions (similarly to SAP)
and let co-actions dynamically learn the name of the ambient that performed the corresponding action.
Formally, its syntax extends the one of BA, by adding co-actions as prefixes and with the introduction
of passwords:

P ::= . . .
∣∣∣ in (x, v).P

∣∣∣ out (x, v).P M ::= u
∣∣∣ in (u, v)

∣∣∣ out (u, v)
∣∣∣ M.M

The reduction axioms for ambient movements are:

n[in (m, p).P1 | P2] | m[in (x, p).P3 | P4] 7−→ m[n[P1 | P2] | P3{n/x} | P4]

m[n[out (m, p).P1 | P2] | P3] | out (x, p).P4 7−→ n[P1 | P2] | m[P3] | P4{n/x}

In NBA, like in SAP, an ambient n can enter into (exit from) an ambient m only if authorized from
a co-action and after the successful matching of a password p. However, differently from any other
ambient-based calculus seen so far, the co-action is used to also learn the name of the ambient that is
entering (exiting) and this name can be used in the continuation process.

3 Valid Encodings

An encoding of L1 = (P1, 7−→1,'1) into L2 = (P2, 7−→2,'2) is a pair (J · K, ϕJ K) where J · K : P1 → P2
is called translation and ϕJ K : N → Nk is called renaming policy and it is such that ϕJ K(u)∩ϕJ K(v) = ∅,
for all names u , v, where ϕJ K(·) is simply considered a set here. The translation turns every source
term into a target term; in doing this, it is possible that the translation fixes some names to play a precise
rôle or it can translate a single name into a tuple of names (in Section 4 we shall see examples of both
kinds of such encodings). This justifies the presence of ϕJ K. To simplify reading, we shall usually write
J · K instead of (J · K, ϕJ K), by leaving the renaming policy understood.

An encoding is valid if it satisfies the five properties we are going to present now. There, to simplify
reading, we let S range over processes of the source language (viz., L1) and T range over processes of
the target language (viz., L2).

3.1 Properties for Valid Encodings

As already said in the introduction, an encoding should be compositional. To formally define this
notion, we exploit the notion of k-ary context, written C(1; . . . ; k), that is a term where k occurrences
of 0 are linearly replaced by the k holes 1, . . . , k (a context is linear if every hole occurs exactly once;
see [52].)

12

Property 1. An encoding J · K : L1 → L2 is compositional if, for every k-ary L1-operator
op and finite subset of names N, there exists a k-ary L2-context CN

op(1; . . . ; k) such that
J op(S 1, . . . , S k) K = CN

op(J S 1 K; . . . ; J S k K), for every S 1, . . . , S k with f n(S 1, . . . , S k) = N.

Moreover, a good encoding should reflect in the encoded term all the name substitutions carried
out in the source term. A substitution (of names for names) σ is a function σ : N −→ N . We shall
usually specify only the non-trivial part of a substitution: for example, {b/a} denotes the (non-injective)
substitution that maps a to b and every other name to itself. Moreover, we shall also extend substitutions
to tuples of names in the expected way, i.e. component-wise.

Property 2. An encoding J · K : L1 → L2 is name invariant if, for every substitution σ, it
holds that

J Sσ K
{

= J S Kσ′ if σ is injective
'2 J S Kσ′ otherwise

where σ′ is the substitution such that ϕJ K(σ(a)) = σ′(ϕJ K(a)).

Injectivity of σ must be taken into account because non-injective substitutions map distinct names to
the same name, and this matters because compositionality also depends on the free names occurring in
the encoded terms. Indeed, assume that σmaps two (or more) different names to the same name. Then,
the set of free names of Sσ is smaller than the set of free names in S ; by compositionality, this fact leads
to different translations, in general. For example, if the translation introduces a name handler for every
free name, having sets of free names with different cardinality leads to inherently different translations.
However, non-injective substitutions are natural in name-passing calculi, where language contexts can
induce them. In this case, the formulation with ‘=’ is too demanding and the weaker formulation
(with ‘'2’) is needed. Thus, this formulation implies that two name handlers for the same name are
behaviourally equivalent to one handler for that name; this seems us a very reasonable requirement.

A source term and its encoding should have the same operational behaviour, i.e. all the computations
of the source term must be preserved by the encoding without introducing “new” computations. This
intuition is formalized as follows.

Property 3. An encoding J · K : L1 → L2 is operationally corresponding if

• Completeness: for every S and S ′ such that S Z=⇒1 S ′, it holds that J S K Z=⇒2'2 JS ′K;

• Soundness: for every S and T such that J S K Z=⇒2 T, there exists S ′ such that S Z=⇒1
S ′ and T Z=⇒2'2 J S ′ K.

An important semantic issue that an encoding should avoid is the introduction of infinite computa-
tions, written 7−→ω, when translating a terminating process. Of course, once we assume that divergence
is observable, it is natural to require that the encoding also preserves it (this is a slight difference w.r.t.
[25], where we only require divergence reflection).

Property 4. An encoding J · K : L1 → L2 is divergence sensitive whenever S 7−→ω
1 if and

only if J S K 7−→ω
2 , for every S .

13

Finally, we require that the source and the translated term behave in the same way with respect to
success, a notion that can be used to define semantic theories for processes [18, 51]. To formulate our
property in a simple way, we follow the approach in [51] and assume that all the languages contain the
same success process

√
; then, we define the predicate↘, meaning reducibility (in some modality, e.g.

may/must/fair-must) to a process containing a top-level unguarded occurrence of
√

(i.e., an occurrence
of
√

that does not occur underneath any prefix). Clearly, different modalities in general lead to different
results. In this paper, proofs will be carried out in a ‘may’ modality; so, P↘ means that there exists P′

such that P Z=⇒ P′ and P′ ≡ P′′ |
√

. For Dπ, this definition should be adapted to nets, by letting N ↘
mean ∃N′.N Z=⇒ N′ ∧ N′ ≡ (ν̃u)(N′ | l :

√
|P). Finally, for the sake of coherence, we require the notion

of success be caught by the semantic theory underlying the calculi, viz. '; in particular, we assume that
' never relates two processes P and Q such that P↘ and Q 6↘.

Property 5. An encoding J · K : L1 → L2 is success sensitive if, for every S , it holds that
S ↘1 iff J S K↘2.

3.2 Derived Properties

In [25] we have shown that some separation results can be proved in the general framework we have
just presented. However, to carry out more proofs, we have to slightly specialize the framework; this is
mainly done by making some assumptions on the behavioural equivalence of the target language, viz.
'2. In particular, in loc.cit. we have considered three alternative settings:

1. '2 is exact, i.e. T '2 T ′ and T performs an action µ imply that T ′ (weakly) performs µ as well;
moreover, parallel composition must be translated homomorphically, i.e. for every N ⊂ N it
holds that CN

|
(1; 2) = 1 | 2;

2. '2 is reduction sensitive, i.e. T '2 T ′ and T ′ 7−→2 imply that T 7−→2;

3. the occurrences of '2 in Property 3 are restricted to pairs of kind ((ν̃n)(T | T ′),T), for
(ν̃n)(T | T ′) '2 T .

All these assumptions are discussed and justified at length in [25]. In particular, the third setting seems
to us the most appropriate, since the purpose of '2 in Property 3 is exactly to garbage collect junk
processes left by the encoding. Moreover, as stressed also in [25], pairs of kind ((ν̃n)(T | T ′),T) yield
a reduction sensitive equivalence; so, every result proved in the second setting also holds in the third
one. Finally, the first setting is not adequate for this paper, since all the calculi we consider (with the
exception of Dπ) usually adopt behavioural equivalences that are not exact. To conclude, in this paper
we confine ourselves to the third setting, even though the second one could work as well.

We can now list a number of auxiliary results that will be useful in carrying out the main proofs of
this paper. Some of these results have been already proved in [25]; here, we adapt and prove them for
the calculi considered in this paper.

Proposition 3.1 (from [25]). Let J · K be a valid encoding; then, S 7−→/ 1 implies that J S K 7−→/ 2.

Proof. By contradiction. If J S K 7−→2 T then, by Property 3, S Z=⇒ S ′, for some S ′ such that T Z=⇒2'2
J S ′ K. But the only S ′ such that S Z=⇒1 S ′ is S itself; thus, J S K 7−→+

2'2 J S K, i.e. J S K diverges, against
Property 4. �

14

Proposition 3.2 (from [25]). Let J · K be a valid encoding; if there exist two source terms S 1 and S 2
such that S 1 | S 2 ↘1, S 1 6↘1 and S 2 6↘1, then J S 1 | S 2 K 7−→2.

Proof. By Properties 1 and 5, J S 1 | S 2 K = CN
|

(J S 1 K; J S 2 K) ↘2, for N = f n(S 1, S 2). If J S 1 | S 2 K did
not reduce, then it could only be that CN

|
(J S 1 K; J S ′2 K)↘2 or CN

|
(J S ′1 K; J S 2 K)↘2, where S ′i such that

f n(S i) = f n(S ′i) and S ′i '1 0.1 Property 5 would then imply that S 1 | S ′2 ↘1 or S ′1 | S 2 ↘1; this is not
possible, since S 1 | S ′2 '1 S 1 6↘1 and S ′1 | S 2 '1 S 2 6↘1. Indeed, we have assumed that '1 is sensitive
to successful termination, i.e. it cannot equate two processes different w.r.t. successful termination. �

Proposition 3.3. Let J · K : L1 → L2 be a valid encoding. If there exist two source terms S 1 and S 2
such that S 1 7−→/ 1, S 2 7−→/ 1 and J S 1 | S 2 K 7−→2, then

1. if L2 ∈ {πa, Dπ}, it can only be that J S 1 K | J S 2 K 7−→2;

2. if L2 ∈ {MA, SA, SAP, BA, BAs, SBA, NBA}, it can only be that C1(J S 1 K) | C2(J S 2 K) 7−→2,
where

• C
f n(S 1,S 2)
|

(1; 2), i.e. the context used to compositionally translate S 1 | S 2, is of the form
E(C1(1) | C2(2)) for some evaluation context E(·)

• Ci(i), for i ∈ {1, 2}, is either empty (viz., i) or a single top-level ambient containing a
top-level hole (viz., m[i | T], for some m and T).

Proof. By Property 1, J S 1 | S 2 K = C
f n(S 1,S 2)
|

(J S 1 K; J S 2 K). The reduction of J S 1 | S 2 K must be
originated with the contribution of both J S 1 K and J S 2 K; if it was not the case, we could always find S ′1
and S ′2 such that f n(S i) = f n(S ′i) and S ′i cannot act in any way (nor in isolation nor in any evaluation
context), and have that J S 1 | S ′2 K 7−→2 or J S ′1 | S 2 K 7−→2, in contradiction with Proposition 3.1.

1. If L2 ∈ {πa, Dπ}, then this can only happen when J S 1 K and J S 2 K are put in parallel at top-level
(i.e., Cf n(S 1,S 2)

|
(1 ; 2) = (ν̃n)(1 | 2 | T), for some ñ and T) and the reduction originates from

J S 1 K | J S 2 K.

2. If L2 ∈ {MA, SA, SAP, BA, BAs, SBA, NBA}, the situation is more complex: indeed, it can be
that

• either J S 1 K and J S 2 K are put in parallel (for example, to perform a communication);

• or J S 1 K is put in parallel with an ambient containing J S 2 K at top-level (for example, to
perform an open or a remote communication), or vice versa;

• or both J S 1 K and J S 2 K are placed at top-level within some ambients put in parallel (for
example, to perform an entrance of one into the other).

and all these cases may happen at every nesting level in the ambient hierarchy. This can be
expressed by saying that Cf n(S 1,S 2)

|
(1; 2) is of the form E(C1(1) | C2(2)), for some evaluation

context E(·) and contexts C1(1) and C2(2) that are either empty or a single ambient with a top-
level hole. Moreover, since both J S 1 K and J S 2 K must contribute to the reduction of J S 1 | S 2 K,
it must be that C1(J S 1 K) | C2(J S 2 K) 7−→2. �

1It is always possible to find such an S ′i : it suffices to place in front of S i a restricted blocking prefix without free names.
For example, in πa we could let S ′ , (νa)a(x).S , for any a < f n(S); similar tricks can be applied to MA, SA, BA and all the
other ambient-based calculi. The situation for Dπ is slightly more delicate: given a net S , we define S ′ to be the net (νa)N,
where a < f n(S) and N is obtained from S by placing the prefix a(x) in fron of every process at every locality.

15

Theorem 3.4 (Adapted from [25]). Let L2 ∈ {πa, Dπ}. Assume that there is a L1-process S such that
S 7−→/ 1, S 6↘1 and S | S ↘1; then, there cannot exist any valid encoding J · K : L1 −→ L2.

Proof. We first show that, in πa and Dπ, it holds that T | T 7−→2 entails T 7−→2, for every process/net
T .

• If T is a πa-process such that T | T 7−→2, then T ≡ (ν̃n)(a(x).T ′ | ā〈b〉 | T ′′) for some a < ñ. Thus,
trivially, T 7−→2.

• If T is a Dπ-process such that T | T 7−→2, then T ≡ (ν̃n)(l : a(x).P | l : ā〈b〉.Q | T ′) for {l, a}∩ñ = ∅,
or T ≡ (ν̃n)(l : go k.P | k : 0 | T ′) for k < ñ. Thus, trivially, T 7−→2.

Now, let us work by contradiction. Let S be such that S 7−→/ 1, S 6↘1 and S | S ↘1; by Propo-
sition 3.3, J S K | J S K 7−→2 that, as just shown, implies J S K 7−→2 , in contradiction with Proposi-
tion 3.1. �

To state the following proof-technique, let us define the matching degree of a language L, written
M(L), as the greatest number of names that must be matched to yield a reduction in L. Formally,

Definition 3.1 (Matching degree). We say that L atomically matches n names if, for every pair of
L-processes P and Q such that P 7−→/ , Q 7−→/ and P |Q 7−→, it holds that |f n(P) ∩ f n(Q)| ≥ n. We let

M(L) , sup{ n : L atomically matches n names}

The matching degree of πa is 1 because the axiom for communication only checks whether the
input and the output happen along the same channel. The matching degree of MA, BA, BAs and
SA is 1: for communicating, no name is matched in MA and SA, and at most one name in BA and
BAs (for communications towards a child); for ambient interactions, only the name of the ambient
entered/left/opened is checked. For Dπ the matching degree is 2: for communicating, two processes
must be co-located and perform an input and an output along the same channel. For SBA the matching
degree is 2: consider the reductions for in and out when δ = n. Finally, the matching degree of SAP
and NBA is 2: both the name of the ambient entered/left/opened and the password are checked.

Theorem 3.5 (Adapted from [25]). If M(L1) = 2 and M(L2) = 1, then there exists no valid encoding
J · K : L1 −→ L2.

Proof. By contradiction assume the existence of a valid encoding J · K. Pick up two L1-processes S 1
and S 2 that satisfy the hypothesis of Proposition 3.2 and that synchronize only once (before reporting
success) by matching exactly 2 names, viz. {n1, n2}. Let us also assume that S 1 and S 2 contain another
name m < {n1, n2}. By Proposition 3.3, their encodings must both contribute to the reduction: i.e.,

• IfL2 is πa, then J S 1 K must perform some action µ and J S 2 K must perform some complementary
action µ.

• If L2 ∈ {MA, SA, BA, BAs}, then C1(J S 1 K) must perform some action µ and C2(J S 2 K) must
perform some complementary action µ, where Ci(·) is defined in Proposition 3.3 and J S i K must
have contributed to the generation of the action.

16

Since M(L2) = 1, it must be that at most one name n ∈ f n(µ) ∩ f n(µ) is matched when synchronizing
µ and µ; this implies the existence of an ni such that n < ϕJ K(ni). Let us consider the substitution σ that
swaps m and ni. Trivially, S 1 | S 2σ 7−→/ 1 because, by construction, S 1 and S 2 can only synchronize by
matching 2 names; thus, also S 1 and S 2σ can only synchronize by matching 2 names and the match
now fails, since S 1 contains ni and S 2σ contains m in place of it.

If L2 is πa or at least one of the Ci(·) is empty (say, e.g., C2(·)), we can reason as follows. By
Property 2, J S 2σ K = J S 2 Kσ′ and so J S 2 Kσ′ performs action µσ′. Now, notice that µσ′ is still
synchronizable with µ because σ′ swaps component-wise ϕJ K(ni) and ϕJ K(m), and so it does not touch
n. Thus, J S 1 | S 2σ K 7−→2, in contradiction with Proposition 3.1.

If C1(·) , m1[· | T1] and C2(·) , m2[· | T2], then L2 must be SA, otherwise there would be no
way to have that both J S 1 K and J S 2 K have contributed to the generation of the reduction. Hence,
it must be that mi = n, J S i K has a top-level action in n and J S j K has a top-level action in n, for
{i, j} = {1, 2}. By repeating the reasoning for the case in which C j(·) is empty, we can conclude. Indeed,
C j(J S jσ K) exhibits a top-level ambient aiming at entering into n and Ci(J S i K) exhibits a top-level
ambient n containing the co-action enbling such an entrance. �

Proposition 3.6. Let J · K : L1 → L2 be an encoding that satisfies Property 2; for every S and n < f n(S),
it holds that ϕJ K(n) ∩ f n(J S K) = ∅.

Proof. By contradiction, let n′ ∈ ϕJ K(n) ∩ f n(J S K). Let m be such that m < f n(S) and ϕJ K(m) ∩
f n(J S K) = ∅; moreover, let σ be the permutation that swaps m and n. Trivially, S = Sσ and,
hence, J S K = J Sσ K. However, by Property 2, J Sσ K = J S Kσ′, for σ′ that swaps ϕJ K(m) and ϕJ K(n)
component-wise. The only possible way to have that J S K = J S Kσ′ (that holds because of transitivity)
is to have dom(σ′) ∩ f n(J S K) = ∅ that, however, does not hold, because dom(σ′) = ϕJ K(n) ∪ ϕJ K(m)
and n′ ∈ ϕJ K(n) ∩ f n(J S K): contradiction. �

4 The Taxonomy, bottom-up

For every pair of languages, we study whether one is more expressive than the other, or if they are
incomparable. In the first case, we provide a valid encoding of the less expressive language in the most
expressive one and prove that the converse is not possible. In the second case, we must prove that no
valid encoding of one in the other exists.

We now give the crucial results underlying the taxonomy in Figure 1. The remaining pairs of
languages can be compared by proving theorems similar to the ones we are going to prove. Full details
are given in Table 1 in Section 4.5.

4.1 Technical Preliminaries

For encodability results, we shall rely on the notion of barbed equivalence [41], that is a uniformly
defined notion of equivalence nowadays considered one of the reference equivalences in process calculi.
It relies on a notion of barb, that is something observable that a process exhibits; essentially, it relates
processes that exhibit the same barbs in any evaluation context and along any sequence of reductions.

Definition 4.1 (from [41]). A symmetric binary relation< on processes is a (strong) barbed bisimula-
tion if, for every (P,Q) ∈ <, it holds that P ↓b if and only if Q ↓b; moreover, for every P 7−→ P′ there
exists a Q′ such that Q 7−→ Q′ and (P′,Q′) ∈ <. Barbed bisimilarity, written

•
', is the largest barbed

17

bisimulation. Two processes P and Q are barbed equivalent, written P ' Q, if E(P)
•
' E(Q), for every

evaluation context E(·).

We now define the barb predicate ↓b only for those languages that will be the target of an encoding
where operational correspondence is formulated up-to '. These definitions are the standard notions of
barb for the given languages.

Definition 4.2 (Barbs). Predicate P ↓b is defined as follows:

MA, BA and BAs: ∃ ñ,Q,R such that b < ñ and P ≡ (ν̃n)(b[Q] | R);

SA: ∃ ñ,Q,R such that b < ñ and P ≡ (ν̃n)(b[M.Q] | R), for M ∈ {in b, open b};

SAP: ∃ ñ, p,Q,R such that {b, p} ∩ ñ = ∅ and P ≡ (ν̃n)(b[M.Q] | R), for M ∈

{in (b, p), open (b, p)};

SBA: ∃ ñ,Q,R such that b < ñ and either P ≡ (ν̃n)(b[in δ.Q] | R), for some δ such that
f n(δ) ∩ ñ = ∅, or P ≡ (ν̃n)(b[(x)η.Q] | R) or P ≡ (ν̃n)(b[〈M〉η.Q] | R), for some
η ∈ {?,↑ };

NBA: ∃ ñ,Q,R such that b < ñ and either P ≡ (ν̃n)(b[(x)↑.Q] | R) or P ≡

(ν̃n)(b[〈M〉↑.Q] | R) or P ≡ (ν̃n)(b[in (x, p).Q] | R), for some p < ñ.

To carry out proofs, we found it convenient to exploit the labeled transition systems developed for
the languages studied. For the sake of conciseness, we do not give here full details on this topic; thus,
we informally present only the technicalities strictly needed in our proofs.

Notation 4.1 (Labels for MA [37]).

• If P
〈−〉
−−−→ , then P ≡ (ν̃n)(〈M〉 | P′), for some ñ,M, P′;

• if P
(−)
−−−→ , then P ≡ (ν̃n)((x).P1| P2), for some ñ, x, P1, P2;

• if P
amb n
−−−−−−→ , then P ≡ (ν̃n)(n[P1] | P2), for some ñ, P1, P2 such that n < ñ;

• if P
enter n
−−−−−−→ , then P ≡ (ν̃n)(m[in n.P1 | P2] | P3), for some ñ,m, P1, P2, P3 such that n < ñ;

• if P
open n
−−−−−−→ , then P ≡ (ν̃n)(open n.P1 | P2), for some ñ, P1, P2 such that n < ñ.

Proposition 4.1 (Reductions in MA). In MA, it holds that P1 | P2 7−→ if and only if one of the following
conditions holds (possibly with P1 and P2 swapped):

1. P1 7−→ 3. P1
enter n
−−−−−−→ and P2

amb n
−−−−−−→

2. P1
〈−〉
−−−→ and P2

(−)
−−−→ 4. P1

open n
−−−−−−→ and P2

amb n
−−−−−−→

Notation 4.2 (Labels for SA [33] and SAP [35]). In SA:

• If P
µ
−−→ , for µ ∈ {〈−〉, (−), enter n, open n}: see Notation 4.1;

• if P
?enter n
−−−−−−−→ , then P ≡ (ν̃n)(n[in n.P1 | P2] | P3), for some ñ, P1, P2, P3 such that n < ñ;

18

• if P
?open n
−−−−−−−→ , then P ≡ (ν̃n)(n[open n.P1 | P2] | P3), for some ñ, P1, P2, P3 such that n < ñ.

In SAP, labels also contain the specified password, originating labels enter (n, p), ?enter (n, p),
open (n, p) and ?open (n, p) with the expected meaning; moreover, there are two more labels:

• if P
exit (n,p)
−−−−−−−−→ , then P ≡ (ν̃n)(n[m[out (n, p).P1 | P2] | P3] | P4), for some ñ,m, P1, P2, P3, P4

such that {n, p} ∩ ñ = ∅;

• if P
?exit (n,p)
−−−−−−−−−→ , then P ≡ (ν̃n)(out (n, p).P1 | P2), for some ñ, P1, P2 such that {n, p} ∩ ñ = ∅.

Proposition 4.2 (Reductions in SA and SAP). In SA, it holds that P1 | P2 7−→ if and only if one of the
following conditions holds (possibly with P1 and P2 swapped):

1., 2.: like the corresponding points in Proposition 4.1

3. P1
enter n
−−−−−−→ and P2

?enter n
−−−−−−−→

4. P1
open n
−−−−−−→ and P2

?open n
−−−−−−−→

For SAP, the previous transitions are also labeled with the password associated to the action fired;
moreover, there is one more possible interaction:

P1
exit (n,p)
−−−−−−−−→ and P2

?exit (n,p)
−−−−−−−−−→

Notation 4.3 (Labeled actions2 for BA, BAs, SBA and NBA [8]). In BA:

• If P
µ
−−→ , for µ ∈ {enter n, amb n}: see Notation 4.1;

• if P
〈−〉?

−−−−→ , then P ≡ (ν̃n)(〈M〉?.P1 | P2), for some ñ,M, P1, P2;

• if P
(−)?
−−−−→ , then P ≡ (ν̃n)((x)?.P1 | P2), for some ñ, x, P1, P2;

• if P
µ
−−→ , for µ ∈ {〈−〉n, (−)n}, we adapt the previous two cases by replacing 〈M〉? and (x)? with

〈M〉n and (x)n, and by also imposing that n < ñ;

• if P
up〈−〉
−−−−−→ , then P ≡ (ν̃n)(n[〈M〉↑.P1 | P2] | P3), for some ñ, n,M, P1, P2, P3;

• if P
up(−)
−−−−−→ , then P ≡ (ν̃n)(n[(x)↑.P1 | P2] | P3), for some ñ, n, x, P1, P2, P3;

• if P
µ
−−→ , for µ ∈ {n〈−〉, n(−)}, we adapt the previous two cases by replacing 〈M〉↑ and (x)↑ with

〈M〉? and (x)?, and by also imposing that n < ñ;

In BAs, labels up〈−〉 and up(−) are not exploited; moreover, if P
µ
−−→ , for µ ∈ {n〈−〉, n(−)}, then

P ≡ (ν̃n)(n[〈−〉↑.P1 | P2] | P3) or P ≡ (ν̃n)(n[(x)↑.P1 | P2] | P3), for some ñ, n,M, x, P1, P2, P3 such that
n < ñ.

In SBA, we have the same labels as in BA, but label amb n is not used anymore and label enter n
is defined as

2We are not aware of any LTS for BA, BAs and SBA in the literature. However, they can be formally defined by following
the philosophy underlying the LTS for NBA and for the other ambient-based calculi.

19

• if P
enter n
−−−−−−→ , then P ≡ (ν̃n)(m[in n.P1 | P2] | P3), for some ñ,m, P1, P2, P3 such that n < ñ and

m ∈ ñ;

Moreover, we also have the following new labels:

• if P
m:enter n
−−−−−−−−→ , then P ≡ (ν̃n)(m[in n.P1 | P2] | P3), for some ñ, P1, P2, P3 such that {m, n} ∩ ñ =

∅;

• if P
m:?enter
−−−−−−−−→ , then P ≡ (ν̃n)(m[in ∗ .P1 | P2] | P3), for some ñ, P1, P2, P3 such that m < ñ;

• if P
m:?enter n
−−−−−−−−−→ , then P ≡ (ν̃n)(m[in δ.P1 | P2] | P3), for some ñ, δ, P1, P2, P3 such that δ ∈ {∗, n}

and {m, n} ∩ ñ = ∅;

• if P
m:exit
−−−−−−→ , then P ≡ (ν̃n)(n[m[out n.P1 | P2] | P3] | P4), for some ñ, n, P1, P2, P3, P4 such that

m < ñ;

• if P
exit
−−−−→ , then P ≡ (ν̃n)(n[m[out n.P1 | P2] | P3] | P4), for some ñ, n, P1, P2, P3, P4 such that

m ∈ ñ;

• if P
?exit n
−−−−−−→ , then P ≡ (ν̃n)(out δ.P1 | P2), for some ñ, δ, P1, P2 such that δ ∈ {∗, n} and n < ñ.

• if P
?exit
−−−−−→ , then P ≡ (ν̃n)(out ∗ .P1 | P2), for some ñ, P1, P2.

In NBA we have labels 〈−〉?, (−)?, 〈−〉n, (−)n, n〈−〉 and n(−) that are defined like in BAs: moreover,
we also have the following labels:

• if P
m:enter (n,p)
−−−−−−−−−−−→ , then P ≡ (ν̃n)(m[in (n, p).P1 | P2] | P3), for some ñ, P1, P2, P3 such that

{n, p} ∩ ñ = ∅;

• if P
m:?enter (n,p)
−−−−−−−−−−−→ , then P ≡ (ν̃n)(m[in (x, p).P1 | P2] | P3), for some ñ, x, P1, P2, P3 such that

{m, n, p} ∩ ñ = ∅;

• if P
m:exit p
−−−−−−−→ , then P ≡ (ν̃n)(n[m[out (n, p).P1 | P2] | P3] | P4), for some ñ, n, P1, P2, P3, P4 such

that p < ñ;

• if P
?exit (n,p)
−−−−−−−−−→ , then P ≡ (ν̃n)(out (x, p).P1 | P2), for some ñ, x, P1, P2 such that {n, p} ∩ ñ = ∅.

Proposition 4.3 (Reductions in BA, BAs, SBA and NBA). In BA, it holds that P1 | P2 7−→ if and only
if one of the following conditions holds (possibly with P1 and P2 swapped):

1., 2., 3.: like the corresponding points in Proposition 4.1, with 〈−〉?/ (−)? in place of 〈−〉 / (−)

4. P1
〈−〉n

−−−−→ and P2
n(−)
−−−−→ 6. P1

〈−〉?

−−−−→ and P2
up(−)
−−−−−→

5. P1
(−)n

−−−−→ and P2
n〈−〉
−−−−→ 7. P1

(−)?
−−−−→ and P2

up〈−〉
−−−−−→

In BAs only the first five interactions are possible.

20

For SBA, we have cases 1, 2, 4, 5, 6 and 7 of BA; moreover, there are four further possible
interactions:

P1
n:enter m
−−−−−−−−→ and P2

m:?enter n
−−−−−−−−−→

P1
enter m
−−−−−−−→ and P2

m:?enter
−−−−−−−−→

P1
n:exit
−−−−−−→ and P2

?exit n
−−−−−−→

P1
exit
−−−−→ and P2

?exit
−−−−−→

For NBA, we have cases 1, 2, 4 and 5 of BAs; moreover, there are two further possible interactions:

P1
n:enter (m,p)
−−−−−−−−−−−→ and P2

m:?enter (n,p)
−−−−−−−−−−−→

P1
n:exit p
−−−−−−−→ and P2

?exit (n,p)
−−−−−−−−−→

4.2 Building up the first level of the Taxonomy

4.2.1 Dπ is more expressive than πa

It may seem that πa can be trivially encoded in Dπ: it suffices to locate the πa process in a reserved
locality hosting all the channels needed. Actually, this encoding is not valid, because compositionality
as defined in Property 1 fails. Indeed, we can easily prove the following result. However, this should
not be surprising, since the source language has a “one-level” syntax, whereas the target one has not.

Theorem 4.4. There exists no valid encoding of πa into Dπ.

Proof. By contradiction. Every J · K : πa → Dπ should map a source process into a target net. Now,
consider the process a(x).P; by compositionality, its encoding must be Cf n(P)

a(x) (J P K). Now, Cf n(P)
a(x) (·)

cannot be obtained from a Dπ-net by replacing an occurrence of 0 located at some locality with the hole,
otherwise Cf n(P)

a(x) (J P K) would locate a net (viz., J P K) at that locality. Thus, J a(x).P K ≡ (ν̃u)(J P K | N),
for some ũ and N. If we now choose a diverging P, we have that J a(x).P K diverges whereas a(x).P
does not, against Property 4. �

Nevertheless, the trivial encoding proposed before enjoys what [45] calls weak compositionality:
the encoding presented satisfies Properies 2/.../5 and J P K , l : P, i.e. the top-level encoding is defined
by a top-level context (viz., l :) and by a compositional process translation (i.e., the identity in this
case). Of course, this encodability result is not as strong as the other ones in this paper, but it is similar
to other encodings in the literature (e.g., [4, 5, 9]).

On the contrary, Dπ cannot be encoded in πa, as a corollary of Theorem 3.5, since M(Dπ) = 2 and
M(πa) = 1.

4.2.2 BA and BAs are more expressive than πa

A valid encoding of πa in BA is provided in [7]. It is a homomorphism w.r.t. all the operators, except
for

J u(x).P K , (x)u.J P K

J ū〈v〉 K , (νk)(u[〈v〉?.in k] | k[0]) for k < {u, v}

Moreover, it is easy to prove that it satisfies all the properties mentioned in Section 3.1, with operational
correspondence that holds up-to strong barbed equivalence.

21

The encoding of the πa in BAs is similar. It suffices to replace 〈v〉? with 〈v〉↑ in the encoding of the
output particle.

The fact that BA and BAs cannot be encoded in πa is proved in the following result.

Theorem 4.5. There exists no valid encoding of BA and BAs in πa.

Proof. This is a Corollary of Theorem 3.4: it suffices to prove that we can find in BA a process S such
that S 7−→/ 1, S 6↘1 and S | S ↘1. Let S be (νp)(n[in n.p[out n.out n.〈p〉?]] | (x)p.

√
). For BAs, it

suffices to replace 〈p〉? with 〈p〉↑. �

4.2.3 MA is more expressive than πa

First, notice that MA cannot be encoded in πa:

Theorem 4.6. There exists no valid encoding of MA in πa.

Proof. Similar to the proof of Theorem 4.5, by considering the MA process
(νp)(n[in n.p[out n.out n]] | open p.

√
). �

We are left with proving that πa can be encoded in MA; this is not a trivial task, if we want to satisfy
all the properties in Section 3.1. Indeed, in several papers [13, 14, 15] there are attempts to encode πa

in MA, but none of them satisfies operational soundness and divergence sensitiveness. What we have
proposed in [24] is, to the best of our knowledge, the first valid encoding of πa in MA. However, the
encoding that we proposed in loc.cit. is not very intuitive and its validity is quite difficult to prove. For
this reason, here we give a more intuitive encoding, whose validity will also be easier to prove. The
price to be paid concerns efficiency: a single reduction of πa requires more reductions here than in the
valid encoding of [24].

The encoding relies on a renaming policy that maps every name a to a pair of pairwise different
names (a1, a2), and fixes three reserved names poly, p and q. Such renaming policy can be obtained
by linearly ordering the set of names N as {n0, n1, n2, . . .}, by letting poly be n0, p be n1, q be n2 and
ϕJ K(ni) , (n3+2i, n3+2i+1), for every i. The translation is a homomorphism w.r.t. all the operators, except
for restrictions, inputs and outputs, that are translated as follows:

J (νa)P K , (ν a1, a2)J P K

J ā〈b〉 K , a1[p[!in a2 | open q.〈b1, b2〉]]

J a(x).P K , open a1.(νr, s, t, u)(open u | t[u[open a2.out t]]
| a2[q[in p.(x1, x2).in r.s[out p.out r.in t.in u.J P K]]

| r[] | open s])
for r, s, t, u < {x1, x2, a2, p, q} ∪ f n(J P K)

where (x1, x2) is a shortcut for (x1).open poly.(x2) and 〈b1, b2〉 is a shortcut for 〈b1〉 | poly[〈b2〉].
Let us now explain how the encoding works. First, to start a communication, we must check that

there are processes aiming at performing an output and an input along the same channel a; in doing this,
we must be sure that an output along a enables only one input from a. In MA this can be done only via
an open primitive that involves a name related to a (in particular, a1). Indeed, an in a1 is not suitable,
otherwise it could be used to introduce divergence. Consider, for example, the encoding of !a(x) | ā〈b〉:

22

by starting the encoding of the input via an in a1, we would have an infinite computation arising by
letting infinitely many copies of J a(x) K enter into the same a1 ambient corresponding to the encoding
of the output particle ā〈b〉.

Once a1 has been opened, we are sure that a communication can happen. To actually perform the
communication, we need to co-locate the input and the output actions of MA. This cannot happen
at top-level, otherwise it is easy to give examples where the encodings of parallel communications
along different channels can mix up. Thus, we need to co-locate the encoding of the input and of the
output within an ambient whose name must again be related to a (in particular, a2). Notice that a1
must be different from a2: they serve different purposes (the former is used for checking the possibility
of communicating along a, the latter for actually performing the communication) and so they must be
different (otherwise an open a1 could open the ambient where the communication happens, and this
can create interferences between different communications). So, we place the encoding of the input
within a2 and the let encoding of the output enter in a2 via the pilot ambient p.

If we have different possible communications along the same channel in parallel, it is possible that
the encodings of several outputs enter in the same copy of a2, thus aim at synchronizing with the same
input action. This is of course something that must be handled but, for the sake of presentation, let us
consider for a while the scenario where no conflict for the same input arises. In this ideal setting, the
encoding can be simpler:

J ā〈b〉 K , a1[p[in a2 | 〈b1, b2〉]]

J a(x).P K , open a1.(νr, s)(open s | r[]
| a2[open p.(x1, x2).in r.s[out a2.out r.J P K]])

The problem when different copies of p (say, n) enter into the same copy of a2 is that at the end of
the communication the unselected copies of p (and there are n − 1) cannot be used anymore in other
communications because they consumed their in a2 prefix and so cannot enter anymore into any other
a2. This would correspond to output particles of πa that are not consumed in a communication but
that are nomore available for communicating: this fact can be used to break operational soundness, by
introducing computations that do not correspond to any πa computation. This leads us to replicate the
in a2 action in the encoding of an output. However, this creates another problem: if we now open p, all
its content, including !in a2, will become part of a2: thus, a2 can enter within a sibling copy of a2, and
this again undermines operational soundness.

For this reason, we cannot select the output to consume by opening a p; this fact forces us to select
one p by letting another pilot ambient q enter into it. Now, q can be safely opened within p and the
communication can happen. Now, we are left with three tasks: (1) get rid of p[!in a2]; (2) lead J P{b/x} K
at top-level; and (3) unleash the possible copies of p[!in a2 | open q.〈b′1, b

′
2〉] entered into a2 and not

selected for communication. For (1), we lead p[!in a2] into the restricted ambient r where it will remain
for ever without affecting any other computation (actually, this is a junk that can be garbage collected).
Tasks (2) and (3) will be carried out at once, by first leading J P{b/x} K within a2, by then moving a2
within the restricted ambient u where it will be opened and by finally opening u, thus unleashing at top-
level J P{b/x} K and all the possible copies of p[!in a2 | open q.〈b′1, b

′
2〉]. The presence of the restricted

ambient t is justified by the fact that u must be opened after opening a2; if u was at top-level, this fact
would not be guaranteed.

Theorem 4.7. The encoding of πa into MA is valid, with operational correspondence that holds up-to
strong barbed equivalence.

23

The proof requires some ingenuity, mostly the part related to operational soundness and divergence
reflection. It is instructive but quite technical; for this reason, it is relegated to the appendix and left to
the interested reader.

4.3 Building the second level of the Taxonomy

4.3.1 SA is more expressive than MA

In [33] MA is translated into SA by mapping all the operators homomorphically, except for

J u[P] K , u[! in u | ! out u | ! open u | J P K]

However, such an encoding enjoys all the properties listed in Section 3.1 only under some cautions.
The problem is that the MA process open n | n[0] reduces to 0, whereas J open n | n[0] K can only
reduce to ! in n | ! out n | ! open n and the latter process is not barbed equivalent to the encoding of 0
(viz., 0 itself): context n[·] can distinguish the two processes in SA. Hence, we have to accept a weaker
formulation of operational correspondence, that only holds up to strong barbed equivalence restricted
to translated contexts (written 'tr).

Definition 4.3. Given an encoding J · K : L1 −→ L2, we say that two L2-processes T1 and T2 are
translated barbed equivalent, written T1 '

tr T2, if, for every L1-context E(·), it holds that JE K(T1)
•
'

JE K(T2).

Proposition 4.8. The encoding of MA in SA is valid, with operational correspondence that holds up-to
translated barbed equivalence.

Proof. It suffices to prove that Pu ,! in u | ! out u | ! open u 'tr 0. To prove such an equality, we first
notice that Pu behaves exactly as Pu | Pu (this is one of Milner’s replication laws [39] and can be easily
proved). We now show that C(Pu) and C(0) are barbed bisimilar, whenever C(·) is a translated context.
To this aim, we show that relation

< , {(C(Pu),C(0)) : C(·) is such that every ambient u contains Pu}

is a barbed bisimulation. We distinguish whether the hole is immediately contained in an ambient
u or not. In the first case, C(·) is of the form D(u[· | P]), for some context D(·) and process P; by
construction, P ≡ Pu | P′, for some P′. Hence, u[Pu | P] behaves like u[P]; so, C(Pu) and C(0) are
barbed bisimilar. If the hole is not immediately contained in an ambient u, then Pu does not contribute
to the production of any barb nor to any reduction; thus, C(Pu) exhibits a barb if and only if C(0) exhibits
a barb. Moreover, if C(Pu) 7−→ P′, P′ can only be C′(Pu), for some C′(·) such that C(·) 7−→ C′(·); then,
C(0) 7−→ C′(0) and (C′(Pu),C′(0)) ∈ <, as desired. Indeed, for any possible reduction, every ambient
u in C′(·) contains Pu, since C(·) satisfies this property, being a translated context. �

Thus, we have proved that the encoding in [33] is valid only when '2 is translated barbed equiva-
lence. This result is not as strong as an analogous one proved under (general) barbed equivalence, but
it is enjoys the same properties as the encoding of separated choice into πa in [43].

We now prove that SA cannot be encoded in MA; in particular, the effect of SA’s co-actions cannot
be properly rendered in MA.

Theorem 4.9. There exists no valid encoding of SA in MA.

24

Proof. By contradiction. Consider the pair of SA processes P , m[in n] and Q ,
n[in n.open n] | open n.

√
, for n , m; by Proposition 3.2, J P |Q K must reduce and, because of Propo-

sitions 3.3 and 4.1, it can only be

1. either C1(J P K)
amb n′
−−−−−−→ and C2(J Q K)

µ
−−→ , for µ ∈ {enter n′, open n′}

2. or C2(J Q K)
amb n′
−−−−−−→ and C1(J P K)

µ
−−→ , for µ ∈ {enter n′, open n′}.

for some context C1(·) and C2(·) that are empty or have a single top-level ambient containing a top-

level hole. Notice that the reduction cannot happen because of a communication, say J P K
〈−〉
−−−→ and

J Q K
(−)
−−−→ , otherwise, by Property 2, J n[in m] | Q K would reduce, against Proposition 3.1. For the

same reason, it must be that n′ ∈ ϕJ K(n).
We now prove that both cases are impossible and assume that we fall in case 1 (case 2 is similar).

First, notice that C1(·) must be empty: if it was not, we would have that J m[out n] | Q K 7−→ (recall
that C1(·) is part of C{n,m}

|
(1; 2), the context used to encode parallel composition of processes with

free names {n,m}; so, it only depends on parallel composition and on such names). Thus, we have

that J P K
amb n′
−−−−−−→ ; but also this leads to a contradiction. Indeed, by Property 1, it holds that J P K ,

C
{n}
m[](J in n K); so, the ambient named n′ can be exhibited either by C{n}m[](·) or by J in n K. In both cases,

we can contradict Proposition 3.1: in the first case, we would have that J m[out n] K
amb n′
−−−−−−→ and so

J m[out n] | Q K 7−→; in the second case, we would have that J in n | Q K 7−→. �

4.3.2 SBA is more expressive than BA

It is easy to prove that SBA can encode BA: it suffices to translate every operator homomorphically,
except for

J u[P] K , ! out ∗ | u[! in ∗ | J P K] J 0 K , ! out ∗

This encoding enjoys operational correspondence up-to strong barbed equivalence, thanks to Milner’s
replication law !P ' !P | !P.

The fact that SBA cannot be encoded in BA is a corollary of Theorem 3.5, since M(SBA) = 2 and
M(BA) = 1.

4.3.3 NBA is more expressive than BAs

NBA can encode BAs: it suffices to translate every operator homomorphically, except for

J 0 K , ! out (x, p) J u[P] K , ! out (x, p) | u[! in (x, p) | J P K]

J in u K , in (u′, p) J out u K , out (u′, p) J u K , u′

for some fixed (constant) password p. We let u′ denote ϕJ K(u).
The fact that NBA cannot be encoded in BAs is a corollary of Theorem 3.5, since M(NBA) = 2

and M(BAs) = 1.

25

4.3.4 SAP, SBA and NBA are more expressive than Dπ

Dπ cannot encode SAP/SBA/NBA, as proved in the following result.

Theorem 4.10. There exists no valid encoding of SAP, SBA and NBA in Dπ.

Proof. This is a Corollary of Theorem 3.4. Indeed, we can find in SAP, SBA and NBA a process S
such that S 7−→/ 1, S 6↘1 and S | S ↘1: it suffices to let S be

• in SAP: n[in (n, n) | in (n, n).open (n, n)] | open (n, n).
√

;

• in SBA: n[in (n, n) | in (n, n).〈n〉↑] | (x)?.
√

;

• in NBA: n[in (n, n) | in (x, n).〈n〉↑] | (x)n.
√

. �

On the contrary, Dπ can be encoded both in SAP, in SBA and in NBA. Indeed, thanks to passwords,
SAP, SBA and NBA can all atomically match two names: the name of the channel where the Dπ
processes communicate and the locality hosting them. In SAP the encoding is slightly more tedious
than in SBA and in NBA, where it is simpler, thanks to remote communications.

For SAP, the main idea is that an output over channel u located at w is represented as an occurrence
of ambient w that can be entered by a pilot ambient p by using u as password; once entered, the pilot
ambient must be opened, the communication takes place locally and the continuation processes are
activated (notice that the continuation of the output must be activated after consumption of the output
message; this is the aim of the synchronizing ambient go). Formally, the encoding acts homomorphi-
cally on all the operators, except for

J l : P K , J P Kl′ | ! l′[open (l′, l′)]

J ū〈v〉.P Kw , (νk)(w[in (w, u′).open (p, p).
(〈v′〉 | go[open (go, go).open (w, k)])] for k fresh

| open (w, k).J P Kw)

J u(x).P Kw , p[in (w, u′).open (p, p).(x′).open (go, go).J P Kw]

J go u.P Kw , open (u′, u′).J P Ku′

where p and go are reserved names and l′, u′, v′ and x′ are the renamings of l, u, v and x, respectively.
This encoding is valid. Most of the properties are easy to prove. We now just formally prove

operational correspondence and divergence sensitiveness. Just notice that, in the encoding of a go l,
existence of the target locality l is checked by opening an occurrence of an ambient named l′; such
ambients are replicated since localities in Dπ cannot disappear along computations and duplicates of
the same locality behave like a single copy of that locality (see the srucutural law l : P|Q ≡ l : P | l : Q).

Proposition 4.11. The encoding of Dπ in SAP is valid.

Proof. Let us start with operational completeness. It suffices to consider a single reduction of Dπ, since
sequences of reductions can be obtained by straightforward inductive arguments. Let S 7−→ S ′; the
proof is by induction on the inference of this reduction. The inductive step is easy. We only discuss the
base step (this will be needed for proving the remaining properties). There are two possible base cases:

26

one for S , l : go k.P | k : 0 and one for S , l : ā〈b〉.P | l : a(x).Q. The first case is trivial, since
J S K 7−→ J S ′ K. For the second case, it suffices to spell out the reductions:

J S K 7−→ T0 = (νk)(l′[p[open (p, p).(x′).open (go, go).J Q Kl′]
| open (p, p).(〈b′〉 | go[open (go, go).open (l′, k)])]

| open (l′, k).J P Kl′)
| ! l′[open (l′, l′)] | ! l′[open (l′, l′)]

7−→ T1 = (νk)(l′[(x′).open (go, go).J Q Kl′ | 〈b′〉 | go[open (go, go).open (l′, k)]]
| open (l′, k).J P Kl′)

| ! l′[open (l′, l′)] | ! l′[open (l′, l′)]

7−→ T2 = (νk)(l′[open (go, go).J Q{b/x} Kl′ | go[open (go, go).open (l′, k)]]
| open (l′, k).J P Kl′)

| ! l′[open (l′, l′)] | ! l′[open (l′, l′)]

7−→ T3 = (νk)(l′[J Q{b/x} Kl′ | open (l′, k)] | open (l′, k).J P Kl′)
| ! l′[open (l′, l′)] | ! l′[open (l′, l′)]

7−→ T4 = J l : Q{b/x} K | J l : P K , J S ′ K

Notice also that T0/ . . . /T3 (that we call intermediate states) can only interact with an outer context
by letting one of their replicated ambients be opened. Thanks to replication, this interaction does not
change the process at all.

Let us give names to the reductions in an encoded term: the reduction of the encoding of a go and
a reduction that creates a T0 are called of kind 0; a reduction that turns a Ti into a Ti+1 is called of kind
i + 1. Thus, any reduction of kind 0 corresponds to a reduction in the source term. Moreover, it is easy
to see that in any computation of an encoded term the number of reductions of kind i cannot be smaller
than the number of reductions of kind i + 1, for every i ∈ {0, . . . , 3}. This fact easily entails that the
encoding cannot introduce divergence: if J S K diverges, it must produce infinitely many reductions of
kind 0; thus, S can produce infinitely many reductions, i.e. it diverges.

We are left with operational soundness. Let J S K 7−→ n T and let ni be the number of reductions
of kind i in this computation. Since the intermediate states cannot significantly interact with any other
process, not even among themselves, it is easy to prove that S 7−→ n0 S ′ (by executing the n0 reductions
associated to the reductions of kind 0 in the encoding) and that T 7−→ 4n′0−n1−n2−n3−n4J S ′ K, where n′0 is
the number of reductions of kind 0 that have not not been originated by the encoding of a go. Indeed,
it suffices to turn every T0 (and there are n′0 − n1 copies of it in T) in an encoding; this requires 4
reductions for every copy of T0. Then we need to turn every T1 (and there are n1 − n2 copies of it
in T) in an encoding; this requires 3 reductions for every copy of T1. And so on. In total, we need
4(n′0 − n1) + 3(n1 − n2) + 2(n2 − n3) + (n3 − n4) = 4n′0 − n1 − n2 − n3 − n4 reductions and in this way we
exactly obtain the encoding of S ′. �

Let us now quickly give the encoding of Dπ in SBA and NBA. In the first case, it suffices to let

J ū〈v〉.P Kw , (νk)(w[in u.(y)u.(y[out w.〈v〉?] | k[out w])] | out k.J P Kw) for k and y fresh

J u(x).P Kw , (νh)(u[in w.〈h〉?] | out h.(x)h.J P Kw) for h fresh

In the second case, the encoding is very similar; just notice that, thanks to the dynamic learning of the

27

name of a moving ambient, the first communication becomes useless.

J ū〈v〉.P Kw , (νk)(w[in (y, u).(y[out (w, y).〈v〉↑] | k[out (w, k)])] | out (w, k).J P Kw) for y, k fresh

J u(x).P Kw , (νh)(h[in (w, u)] | out (y, h).(x)h.J P Kw) for y, h fresh

The fact that these encodings are valid can be proved in the same way as in Proposition 4.11 and is
left to the reader.

4.4 Further Impossibility Results

In this section, we prove some separation results that will allow us to complete the taxonomy in Fig-
ure 1. We start by showing that the remote communications typical of BA and BAs cannot be properly
rendered in SA and SAP, not even by exploiting the combination of open and local communications.

Theorem 4.12. There exists no valid encoding of BA and BAs in SA and SAP.

Proof. Let us first consider the non-encodability of BA in SAP. Consider the processes (x)n.
√

and
n[〈b〉?], for n , b. Because of Proposition 3.2, J (x)n.

√
| n[〈b〉?] K must reduce and, because of Propo-

sitions 3.3 and 4.2, this can only happen because:

1. either C1(J (x)n.
√

K)
enter (h,k)
−−−−−−−−−→ and C2(J n[〈b〉?] K)

?enter (h,k)
−−−−−−−−−→

2. or C1(J (x)n.
√

K)
?enter (h,k)
−−−−−−−−−→ and C2(J n[〈b〉?] K)

enter (h,k)
−−−−−−−−−→

3. or C1(J (x)n.
√

K)
open (h,k)
−−−−−−−−→ and C2(J n[〈b〉?] K)

?open (h,k)
−−−−−−−−−→

4. or C1(J (x)n.
√

K)
?open (h,k)
−−−−−−−−−→ and C2(J n[〈b〉?] K)

open (h,k)
−−−−−−−−→ .

5. or C1(J (x)n.
√

K)
exit (h,k)
−−−−−−−−→ and C2(J n[〈b〉?] K)

?exit (h,k)
−−−−−−−−→

6. or C1(J (x)n.
√

K)
?exit (h,k)
−−−−−−−−→ and C2(J n[〈b〉?] K)

exit (h,k)
−−−−−−−−→

Indeed, C1(J (x)n.
√

K) and C2(J n[〈b〉?] K) cannot perform a communication, otherwise, by Property 2,
J (x)n.

√
| b[〈n〉?] K would reduce; for the same reason, it must be that {h, k} ∩ ϕJ K(n) , ∅.

However, we now prove that all the cases depicted above lead
to contradict Proposition 3.1. Let C2(J n[〈b〉?] K)

µ
−−→ , for µ ∈

{?enter (h, k), enter (h, k), ?open (h, k), open (h, k), ?exit (h, k), exit (h, k)}. If C2(·) is empty
we can work as follows. First, observe that J n[〈b〉?] K , C{b}n[](J 〈b〉

? K). If µ is produced by C{b}n[](·), also
J n[in b] K would exhibit label µ; thus, J (x)n.

√
| n[in b] K 7−→, in contradiction with Proposition 3.1.

If the production of µ involves J 〈b〉? K, we would have that {h, k} ⊆ f n(J 〈b〉? K), in contradiction with
Proposition 3.6. So, assume that C2(·) is not empty; this rules out cases 4 and 5 above, and imposes

that J n[〈b〉?] K
µ′

−−→ , for µ′ ∈ {in (h, k), in (h, k), open (h, k), out (h, k)}. We then work like in the case
in which C2(·) is empty to prove that there is no way for J n[〈b〉?] K to produce µ′ without contradicting
Propositions 3.1 and 3.6.

The non-encodability of BA in SA can be proved in a similar way, but cases 5 and 6 are not possible
and no password is involved. For BAs the proof is formally identical, once replaced 〈b〉? with 〈b〉↑

within ambient n. �

28

We now show that the power of MA’s open primitive cannot be rendered in BA.

Theorem 4.13. There exists no valid encoding of MA in BA.

Proof. By contradiction. Consider the MA process open n.〈m〉 | n[
√
| P], for any P and n , m; by

Propositions 3.2 and 3.3, it must be that C1(J open n.〈m〉 K)
µ
−−→ and C2(J n[

√
| P] K)

µ′

−−→ where, by
Proposition 4.3, it can only be that

1. µ = 〈−〉n
′

and µ′ = n′(−);

2. µ = n′(−) and µ′ = 〈−〉n
′

;

3. µ = (−)n′ and µ′ = n′〈−〉;

4. µ = n′〈−〉 and µ′ = (−)n′ ;

5. µ = enter n′ and µ′ = amb n′;

6. µ = amb n′ and µ′ = enter n′.

In all cases, n′ ∈ ϕJ K(n), otherwise J open m.〈n〉 | n[
√
| P] K 7−→. Let us consider the cases in isolation.

1. In this case, C1(·) must be empty, so J open n.〈m〉 K
µ
−−→ . If C2(·) is empty, then it

must be that Cf n(P)
n[] (·) must either be of the form (νm̃)(n′[C(·) | (x)∗.Q1 | Q2] | Q3) or

(νm̃)(n′[(x)∗.Q1 | Q2] | n′′[C(·) | Q3] | Q4) or (νm̃)(n′[· | Q1] | Q2) with J
√
| P K

(−)?
−−−−→ . Indeed, the

hole cannot be at top-level, otherwise J n[open n.〈m〉] K would reduce. Moreover, in the first two
cases, C(·) must have the hole at top-level. Indeed, J (open m | n[in n.m[out n.out n.

√
]]) | n[P] K

must reduce and the reduction should be originated also with the contribution of
J in n.m[out n.out n.

√
] K. If the hole in Cf n(P)

n[] (·) was at a nesting depth greater than 1, this
would not be possible and, hence, also J (open m | n[out n.m[out n.out n.

√
]]) | n[P] K would

reduce. However, having the hole at nesting depth 1 makes it impossible to move J
√
| P K out

from its enclosing ambient (and this must happen because of operational completeness). Indeed,
ambients contained in n′/n′′ can somehow be forced to exit from n′/n′′; sequences of actions can
be transmitted via a child-to-parent communication; but it turns out impossible to move processes
like (x)∗.(〈m〉n | out k.h[. . .]). Notice that such processes can appear in an encoded term, and so
in J P K: as we have seen, local inputs, downward outputs, out actions and ambients are all needed
to encode process open n.〈m〉 | n[

√
| P].

If C2(·) is not empty, by Proposition 3.3 it must be an ambient containing a top-level hole,
and the ambient can only be named n′ (otherwise, action µ′ could not have been produced).
Thus, J n[

√
| P] K must exhibit a top-level local input; because of Property 2, also J m[

√
| P′] K

exhibits a top-level local input (where P′ is P with n and m swapped). But this would imply that
J open n.〈m〉 | m[

√
| P′] K 7−→, in contradiction with Proposition 3.1.

2. In this case, C2(·) must be empty and it must be that Cf n(P)
n[] (·)

µ′

−−→ ; indeed, by Proposition 3.6, it

cannot be that J
√
| P K

µ′

−−→ (to see this, it suffices to let P be a process whose free names do not

29

contain n, e.g. 0). Moreover, it must be that the hole of Cf n(P)
n[] (·) is not underneath the output pre-

fix that originates µ′, otherwise the reduction of J (open m | n[in n.m[out n.out n.
√

]]) | n[P] K
can only be originated without the contribution of J in n.m[out n.out n.

√
] K. Hence, Cf n(P)

n[] (·)

must be of the form (νm̃)(〈M〉n
′

.Q | C(·)), where C(·) cannot have the hole at top-level otherwise
J n[open n.〈m〉] K would reduce. However, it cannot either have the hole at nesting depth greater
than 1 otherwise the reduction of J (open m | n[in n.m[out n.out n.

√
]]) | n[P] K can only be

originated without the contribution of J in n.m[out n.out n.
√

] K. Then, like in case 1, we are in a
situation where we cannot move J

√
| P K out from its enclosing ambient; this suffices to conclude.

3. Similar to case 1.

4. Similar to case 2.

5. Similar to case 2.

6. If C2(·) is empty, the case is similar to case 1; just notice that here it cannot be that Cf n(P)
n[] (·) is

of the form (νm̃)(k[· | Q1] | Q2), since J
√
| P K cannot perform action in n′ whenever n < f n(P),

see Proposition 3.6. If C2(·) is not empty, the case is more delicate: indeed, nothing pre-
vents Cf n(P)

n[] (·) to perform action in n′. However, we can reason as follows. By composi-

tionality, J ! n[
√
| P] K = C

{n}∪f n(P)
! (J n[

√
| P] K). The hole of C{n}∪f n(P)

! (·) must be at top-level,
otherwise J open n.〈m〉 | ! open n.P K 7−→. Moreover, the hole cannot be replicated, other-
wise J open n.〈m〉 | ! n[

√
| P] K 7−→ω, against Property 4 whenever P does not diverge. Hence,

C
{n}∪f n(P)
! (·) must be of the form (νm̃)(· | Q).

Let us now consider J ! n[in n.P] K that must diverge (since ! n[in n.P] diverges) and, hence,
reduces. By what we have just proved, J ! n[in n.P] K ≡ (νm̃)(J n[in n.P] K | Q). Since neither
J n[in n.P] K nor Q can reduce in isolation (without contradicting Proposition 3.1), it must be that

J n[in n.P] K and Q interact: J n[in n.P] K
µ
−−→ and Q

µ̄
−−→ , for some µ produced by the contribu-

tion of both C{n}∪f n(P)
n[] (·) and J in n.P K; hence, µ ∈ {n′′(−), n′′〈−〉, enter n′′} and C{n}∪f n(P)

n[] (·) has
the hole at nesting depth 1 (i.e., occurring at top-level within some ambient).

• If µ ∈ {n′′(−), n′′〈−〉}, then C{n}∪f n(P)
n[] (·) is of the form (ν p̃)(n′′[· | Q1] | Q2) and

J in n.P K
µ′

−−→ , for µ′ ∈ {(−)?, 〈−〉?}. Let P be such that {b, n} ⊆ f n(P), and let P′ be P
with n and b swapped; then, J ! n[in b.P′] K ≡ (νm̃, p̃)(n′′[J in b.P′ K | Q1] | Q2 | Q) 7−→:

indeed, n′′[J in b.P K | Q1]
µ
−−→ and Q

µ̄
−−→ . This fact contradicts Proposition 3.1, since

! n[in b.P′] 7−→/ .

• If µ = enter n′′, we choose P such that {b, n} ⊆ f n(P) and consider ! b[in b.P′], where
P′ is P with n and b swapped. By Property 2, we have that Cf n(P)

b[] (·) has the hole at

nesting depth 1: say, Cf n(P)
b[] (·) is of the form (ν p̃)(p[· | Q1] | Q2). Thus, J ! b[in n.P] K ≡

(νm̃, p̃)(p[J in n.P K | Q1] | Q2 | Q) 7−→: indeed, p[J in n.P K | Q1]
µ
−−→ and Q

µ̄
−−→ . This

fact contradicts Proposition 3.1, since ! b[in n.P] 7−→/ . �

We now prove that the different position of the out primitive in SA and SAP makes a valid en-
coding of the former into the latter impossible. The converse is a trivial consequence of Theorem 3.5;

30

nevertheless, in [23] we have proved that also the different position of the out action would make the
converse encoding impossible. In particular, we defined SAp to be SA with passwords (hence, with the
out in the ambient left) and proved that SAP and SAp to be incomparable. Here we prefer avoiding the
introduction of SAp because it is an ad-hoc calculus, never appeared in the literature.

Theorem 4.14. There exists no valid encoding of SA in SAP.

Proof. Consider P , m[n[out m.open n] | out m] and Q , open n.
√

, for n , m. By Proposition 3.2,
we know that J P | Q K 7−→; if J P K 7−→/ , then, by Propositions 3.3 and 4.2, J P | Q K 7−→ can be produced
in six ways:

1. C1(J P K)
enter (h,k)
−−−−−−−−−→ and C2(J Q K)

?enter (h,k)
−−−−−−−−−→ ;

2. C1(J P K)
?enter (h,k)
−−−−−−−−−→ and C2(J Q K)

enter (h,k)
−−−−−−−−−→ ;

3. C1(J P K)
open (h,k)
−−−−−−−−→ and C2(J Q K)

?open (h,k)
−−−−−−−−−→ ;

4. C1(J P K)
?open (h,k)
−−−−−−−−−→ and C2(J Q K)

open (h,k)
−−−−−−−−→ ;

5. C1(J P K)
exit (h,k)
−−−−−−−−→ and C2(J Q K)

?exit (h,k)
−−−−−−−−→ ;

6. C1(J P K)
?exit (h,k)
−−−−−−−−→ and C2(J Q K)

exit (h,k)
−−−−−−−−→ .

We now prove that all these cases are not possible. In cases 3 and 6, it must be that C1(·) is empty;
so, J P K

µ
−−→ , for µ ∈ {open (h, k), ?exit (h, k)}. By Property 1, J P K , C{n,m}m[] (J P′ K), where P′ ,

n[out m.open n] | out m. However, it cannot be that C{n,m}m[] (·)
µ
−−→ , otherwise J m[in n.in m] | Q K 7−→,

nor that J P′ K
µ
−−→ , otherwise J m[out m.open n | out m] | Q K 7−→; thus, cases 3 and 6 are impossible.

In the remaining cases, we can work as follows. First, suppose that C1(·) is not empty; thus,

C1(·) , a[· | R] and J P K
µ′

−−→ , for µ′ ∈ {in (h, k), in (h, k), open (h, k), out (h, k)}. Like be-
fore, we can prove that there is no way for J P K to perform µ′ without contradicting Proposi-
tion 3.1. Hence, it must be that C1(·) is empty. Again, J P K , C{n,m}m[] (J P′ K)

µ
−−→ , for µ ∈

{enter (h, k), ?enter (h, k), ?open (h, k), exit (h, k)}. If C{n,m}m[] (·)
µ
−−→ or J P′ K

µ
−−→ , we can work like

for cases 3 and 6 above. So, it must be that C{n,m}m[] (·) is of the form (ν p̃)(a[· | R1] | R2) and

J P′ K
µ′

−−→ , for µ′ ∈ {in (h, k), in (h, k), open (h, k), out (h, k)}. Furthermore, by Property 1, J P′ K ,

C
{n,m}
|

(J n[out m.open n] K; J out m K); thus, J P′ K
µ′

−−→ can happen in three ways:

• C
{n,m}
|

(·)
µ′

−−→ ;

• J n[out m.open n] K
µ′

−−→ ;

• J out m K
µ′

−−→ .

31

All these cases lead to contradict Proposition 3.1: in the first two cases, it is easy to
prove that also J m[n[out m.open n] | in m] | Q K 7−→; in the third case, we would have that
J m[out m.open n | out m] | Q K 7−→.

Let us then consider the case in which J P K 7−→. By Property 1, J P K ,
C
{m,n}
m[] (J n[out m.open n] | out m K). Of course, the reduction of J P K cannot be generated by C{m,n}m[] (·)

nor by J n[out m.open n] | out m K in isolation. Thus, it must be that C{m,n}m[] (·) is of the form E(· | R),

with J n[out m.open n] | out m K
µ
−−→ and R

µ̄
−−→ . Again by Property 1, J n[out m.open n] | out m K ,

C
{m,n}
|

(J n[out m.open n] K ; J out m K). Thus, at least one between J n[out m.open n] K and J out m K
is excluded from the production of µ. This fact can be used to contradict Proposition 3.1: if
J n[out m.open n] K is excluded, we would have that J m[m[out n.open m]] | out m K 7−→; if J out m K
is excluded, we would have that J m[n[out m.open n]] | open m K 7−→. �

We now show that the shared and the localized versions of Boxed ambients are incomparable. This
means that shared channels cannot be properly simulated via localized ones (there is no way in BA to
restrict access to a channel by allowing, e.g., access to a parent process and not to a co-located process),
nor vice versa (there is no way in BAs to render the more liberal use of channels put forward by the
localized approach).

Theorem 4.15. BAs and BA are incomparable.

Proof. We start with the non-encodability of BA in BAs. Consider the following pair of BA processes:
P1 , (x)n.(b[0] |

√
) and P2 , n[〈b〉?]. By Proposition 3.2, J P1 | P2 K must reduce; this can only happen

in three possible ways:

a) Ci(J Pi K)
enter n′
−−−−−−−→ and C j(J P j K)

amb n′
−−−−−−→ , for {i, j} = {1, 2};

b) Ci(J Pi K)
〈−〉n

′

−−−−→ and C j(J P j K)
n′(−)
−−−−→ , for {i, j} = {1, 2};

c) Ci(J Pi K)
(−)n′

−−−−→ and C j(J P j K)
n′〈−〉
−−−−−→ , for {i, j} = {1, 2}.

Indeed, by Property 2, no other form of interaction can take place; moreover, it must be that n′ = ϕJ K(n).
We now prove that only cases (b) and (c) with i = 1 and j = 2 do not contradict Proposition 3.1.

• Concerning case (a), if i = 1 and j = 2, then C2(·) must be empty and either C{b}n (·)
amb n′
−−−−−−→

or J 〈b〉? K
amb n′
−−−−−−→ ; the former could be used to contradict Proposition 3.1, the latter Propo-

sition 3.6. If j = 1 and i = 2, we can prove that both C1(·) and C2(·) must be empty, that

C
{b}
(x)n′ (·)

amb n′
−−−−−−→ , C{b}n[](·) is of the form (ν̃h)(h[· | Q1] | Q2) and J b[0] |

√
K

in n′
−−−−→ ; but the latter

fact is not possible, thanks to Proposition 3.6.

• Concerning cases (b) and (c), with i = 2 and j = 1, we have that µ (that is 〈−〉n
′

in case
(b) and (−)n′ in case (c)) cannot be produced: indeed, if C1(·)

µ
−−→ , then C1(b[〈n〉?])

µ
−−→ and

J P1 | b[〈n〉?] K 7−→; if C{b}n[](·)
µ
−−→ , then C1(n[〈b〉↑])

µ
−−→ and J P1 | n[〈b〉↑] K 7−→; finally,

J 〈b〉? K
µ
−−→ is not possible because of Proposition 3.6.

32

Hence, it must be that C2(J P2 K)
µ
−−→ , for µ ∈ {n′(−), n′〈−〉}. Again, the only way to respect Propo-

sition 3.1 is when C2(·) is empty, C{b}n[](·) is of the form (ν̃n)(n′[· | Q1] | Q2) and J 〈b〉? K
µ1
−−→ , for

µ1 ∈ {(−)↑, 〈−〉↑}.
Now, consider processes P3 , 〈b〉n.

√
and P4 , n[(x)?]. With a similar reasoning, we have that

J (x)? K
µ2
−−→ , for µ2 ∈ {(−)↑, 〈−〉↑}. Moreover, µ2 must be of a different kind from µ1: indeed, if they

were both inputs (outputs), then we would have that J P3 | P2 K 7−→.
Now, consider processes P5 , (x)?.

√
and P6 ,! n[〈b〉↑]; it must be that J P5 | P6 K reduces but

it cannot diverge. The possible interactions between their encodings are J P5 K
µ3
−−→ and J P6 K

µ̄3
−−→ ,

for µ3 ∈ {amb m, 〈−〉m, (−)m} and, correspondingly, µ̄3 ∈ {enter m,m(−),m〈−〉}. Indeed, both C1(·)
and C2(·) must be empty; moreover, J P6 K cannot perform µ3, otherwise at least one between C{b}n (·)
and J 〈b〉↑ K would be excluded from the production of µ3. Moreover, it must be that C{n,b}! (·) has the
hole at top-level, otherwise either J P5 | ! n[〈b〉?] K 7−→ or J P5 | ! (〈b〉↑ | 〈n〉?) K 7−→. If the hole was
underneath a ‘!’, then we would have that J P5 | P6 K 7−→ω, against Property 4; so, it must be that C{n,b}! (·)
is of the form (νm̃)(· | Q). We then consider J ! n[in n.〈b〉?] K and work like in point 6 of the proof of
Theorem 4.13.

The non-encodability of BAs in BA is similar, but simpler. First, consider the BAs processes P1 ,

(x)n.
√

and P2 , n[〈b〉↑]. Like in the non-encodability of BA in BAs, we have that J 〈b〉↑ K
µ1
−−→ ,

for µ1 ∈ {(−)?, 〈−〉?}. Second, consider P3 , 〈b〉n.
√

and P4 , n[(x)↑.〈b〉?]; again, we have that
J (x)↑ K

µ2
−−→ , for µ2 ∈ {(−)?, 〈−〉?}. We are now ready to violate Proposition 3.1: if µ1 and µ2 are of the

same kind, then J P1 | P4 K 7−→; otherwise, J (x)↑ | 〈b〉↑ K 7−→. �

We now prove that the separation between BA and BAs still holds, even if the target language is
enhanced with the more powerful features of NBA.

Theorem 4.16. There is no valid encoding of BA in NBA.

Proof. The proof is similar to the separation between BA and BAs. Let us again consider the BA
processes P1 , (x)n.(b[0] |

√
) and P2 , n[〈b〉?]. Now, there is a further possible interaction in NBA:

d) Ci(J Pi K)
h:exit n′
−−−−−−−→ and C j(J P j K)

?exit (h,n′)
−−−−−−−−−→ , for {i, j} = {1, 2} and n′ ∈ ϕJ K(n).

We now prove that this form of interaction is not possible and then the proof proceeds like in Theo-
rem 4.15, by just using the richer labels of NBA in place of those of BAs. First of all, C j(·) must be
empty (and the same holds for Ci(·) if we consider J P2 | P1 K). Moreover, it must be that j = 1; indeed,
if it were j = 2, either J P1 | n[〈b〉↑] K 7−→ or J P1 | 〈b〉? K 7−→, according to whether ?exit (h, n′) is

performed by C{b}n[](·) or by J 〈b〉? K. Hence, it must be that J P2 K
h:exit n′
−−−−−−−→ . It must be that both C{b}n[](·)

and J 〈b〉? K contribute to the production of h : exit n′, otherwise we can easily violate Proposition 3.1
like before. Thus, C{b}n[](·) must be of the form (νm̃)(k[· | R1] | R2) or (νm̃)(k[h[· | R1] | R2] | R3). In
any case, action out (k, n′) must appear within J 〈b〉? K, in contradiction with Proposition 3.6 because
n′ ∈ ϕJ K(n) and n , b. �

Similarly, we now prove that the separation between BAs and BA still holds, even if the target
language is enhanced with the more powerful features of SBA.

Theorem 4.17. There is no valid encoding of BAs in SBA.

33

Proof. The proof is similar to the separation between BAs and BA. Let us consider the BAs processes
P1 , (x)n.

√
and P2 , n[〈b〉↑]. Now there is three further possible interactions in SBA; we just

consider one of them, since the other ones are similar and can be obtained by adapting this case and the
corresponding ones in the proof of Theorem 4.15.

d) Ci(J Pi K)
n′:exit
−−−−−−→ and C j(J P j K)

?exit n′
−−−−−−−→ , for {i, j} = {1, 2} and n′ ∈ ϕJ K(n).

Like in the proof of Theorem 4.16, we can prove that J P2 K
n′:exit
−−−−−−→ , with both C{b}n[](·) and J 〈b〉↑ K

that contribute to the production of n′ : exit . This is possible only if C{b}n[](·) is of the form

(ν̃k)(m[n′[· | R1] | R2] | R3) and J 〈b〉↑ K performs an out m.
Let us then consider P3 , 〈b〉n.

√
and P4 , n[(x)↑.〈b〉?]. By what we have just said, it must

be that J P4 K is of the form (ν̃k)(m[n′[J (x)↑.〈b〉? K | R1] | R2] | R3). Hence, the only way for J P4 K to
interact with J P3 K by checking a name of ϕJ K(n) and by involving in this both C{b}n[](·) and J (x)↑.〈b〉? K

is by having J P3 K
?exit n′
−−−−−−−→ and J P4 K

n′:exit
−−−−−−→ . But then we would have that J P1 | P4 K 7−→, against

Proposition 3.1. �

4.5 Completing the Taxonomy and Composing Valid Encodings

We have just given several encodability and separation results for the considered process calculi. How-
ever, to fully define the taxonomy of Figure 1, we have to consider every pair of calculi and establish
an encodability or a separation result. We can now proceed in two ways: either we prove every encod-
ability/separation result, or we can work by composing encodings. The second way may seem much
better than the first one. However, as we shall now show, it has strong drawbacks, and indeed we shall
adopt the first way. Actually, several results can be proved similarly to theorems we have just proved.
In Table 1 we exhaustively compare all our calculi and say how a result relating them can be proved.

Let us discuss the other approach, i.e. the one based on composing encodings. Let us consider an
example. The encodability of πa in SAP can be proved by composing the encoding of πa in Dπ and the
encoding of Dπ in SAP. Similarly, the non-encodability of SAP into πa can be proved by contradiction:
if SAP were encodable in πa it would also been encodable in Dπ, by composing the two encodings,
against what we have proved in Theorem 4.10. However, both these arguments rely on the fact that the
composition of valid encodings is still a valid encoding. Actually, this is not always the case. We now
prove that all properties hold in general, except for Property 3 that only holds under some assumptions
on the encodings and on the behavioural equivalences considered.

Definition 4.4. An encoding J · K : L1 → L2 preserves equivalences if, for every S '1 S ′, it holds that
J S K '2 J S ′ K.

Definition 4.5. An equivalence ' is reduction closed if, for every P ' Q and P Z=⇒ P′, there exists Q′

such that Q Z=⇒ Q′ and P′ ' Q′.

Proposition 4.18. Let J · K : L1 → L2 and L · M : L2 → L3 be valid encodings; let {[·]} : L1 → L3
be their composition (i.e., {[·]} , L J · K M). Then, {[·]} enjoys Properties 1, 2, 4 and 5; moreover, if L · M
preserves equivalences and '3 is reduction closed, then {[·]} also enjoys Property 3.

Proof. Trivially, {[·]} enjoys Properties 4 and 5. Let us now consider the remaining properties. To this
aim, we shall denote with P, P′, . . . processes of L1, with Q,Q′, . . . processes of L2 and with R,R′, . . .
processes of L3.

34

Fr
om

To
π

a
D
π

M
A

SA
SA

P
B

A
B

A
s

SB
A

N
B

A

π
a

Id
Se

c.
4.

2.
1

Se
c.

4.
2.

3
[3

3]
lik

e
[3

3]
[7

]
lik

e
[7

]
lik

e
[7

]
lik

e
[7

]
D
π

C
or

ol
la

ry
Id

C
or

ol
la

ry
C

or
ol

la
ry

Se
c.

4.
3.

4
C

or
ol

la
ry

C
or

ol
la

ry
Se

c.
4.

3.
4

Se
c.

4.
3.

4
of

T
h.

3.
5

of
T

h.
3.

5
of

T
h.

3.
5

of
T

h.
3.

5
of

T
h.

3.
5

M
A

C
or

ol
la

ry
C

or
ol

la
ry

Id
Se

c.
4.

3.
1

Si
m

ila
r

T
h.

4.
13

Si
m

ila
r

Si
m

ila
r

Si
m

ila
r

of
T

h.
3.

4
of

T
h.

3.
4

to
Se

c.
4.

3.
1

to
T

h.
4.

13
to

T
h.

4.
13

to
T

h.
4.

13
SA

C
or

ol
la

ry
C

or
ol

la
ry

T
h.

4.
9

Id
T

h.
4.

14
Si

m
ila

r
Si

m
ila

r
Si

m
ila

r
Si

m
ila

r
of

T
h.

3.
4

of
T

h.
3.

4
to

T
h.

4.
13

to
T

h.
4.

13
to

T
h.

4.
13

to
T

h.
4.

13
SA

P
C

or
ol

la
ry

T
h.

4.
10

C
or

ol
la

ry
C

or
ol

la
ry

Id
C

or
ol

la
ry

C
or

ol
la

ry
Si

m
ila

r
Si

m
ila

r
of

T
h.

3.
4

of
T

h.
3.

5
of

T
h.

3.
5

of
T

h.
3.

5
of

T
h.

3.
5

to
T

h.
4.

13
to

T
h.

4.
13

B
A

T
h.

4.
5

C
or

ol
la

ry
Si

m
ila

r
T

h.
4.

12
T

h.
4.

12
Id

T
h.

4.
15

Se
c.

4.
3.

2
T

h.
4.

16
of

T
h.

3.
4

to
T

h.
4.

12
B

A
s

T
h.

4.
5

C
or

ol
la

ry
Si

m
ila

r
T

h.
4.

12
T

h.
4.

12
T

h.
4.

15
Id

T
h.

4.
17

Se
c.

4.
3.

3
of

T
h.

3.
4

to
T

h.
4.

12
SB

A
C

or
ol

la
ry

T
h.

4.
10

C
or

ol
la

ry
C

or
ol

la
ry

Si
m

ila
r

C
or

ol
la

ry
C

or
ol

la
ry

Id
Si

m
ila

r
of

T
h.

3.
4

of
T

h.
3.

5
of

T
h.

3.
5

to
T

h.
4.

12
of

T
h.

3.
5

of
T

h.
3.

5
to

T
h.

4.
16

N
B

A
C

or
ol

la
ry

T
h.

4.
10

C
or

ol
la

ry
C

or
ol

la
ry

Si
m

ila
r

C
or

ol
la

ry
C

or
ol

la
ry

Si
m

ila
r

Id
of

T
h.

3.
4

of
T

h.
3.

5
of

T
h.

3.
5

to
T

h.
4.

12
of

T
h.

3.
5

of
T

h.
3.

5
to

T
h.

4.
17

Ta
bl

e
1:

C
om

pa
ri

ng
ev

er
y

pa
ir

of
la

ng
ua

ge
s.

(T
he

ce
ll

at
ro

w
L

1
an

d
co

lu
m

n
L

2
de

sc
ri

be
s

th
e

po
ss

ib
ili

ty
fo

r
a

va
lid

en
co

di
ng

of
L

1
in

to
L

2.
A

hi
gh

lig
ht

ed
ce

ll
m

ea
ns

th
at

a
va

lid
en

co
di

ng
ex

is
ts

;a
pl

ai
n

ce
ll

m
ea

ns
th

at
it

do
es

no
t.

‘I
d’

st
an

ds
fo

rt
he

id
en

tit
y,

i.e
.

th
e

en
co

di
ng

m
ap

pi
ng

ev
er

y
te

rm
to

its
el

f.)

35

Property 1: By hypothesis, J op(P1, . . . , Pk) K = C
f n(P1,...,Pk)
op (J P1 K; . . . ; J Pk K). By induction on

C
f n(P1,...,Pk)
op (1; . . . ; k), we prove that there exists a k-ary L3-context D(1; . . . ; k) that only

depends on op and f n(P1, . . . , Pk) such that LCf n(P1,...,Pk)
op (J P1 K; . . . ; J Pk K) M = D({[P1]}; . . . ; {[Pk]}).

The simplest possible context is when k = 0 and so Cf n(P1,...,Pk)
op (1; . . . ; k) is a normal process

(i.e., a context without holes); thus, op is a 0-ary operator (i.e., a constant) and also for {[·]} we
need a 0-ary context, that can be defined to be LC∅op() M. Another base case is when CN

op(·) = · .
In this case, J op(P) K = J P K and, hence, {[op(P)]} = {[P]}; also in this case we conclude, by letting
D(·) be ‘ · ’.

For the inductive step, let op′ be the outermost operator of Cf n(P1,...,Pk)
op (1; . . . ; k),

i.e. J op(P1, . . . , Pk) K = op′(C1(J P11 K; . . . ; J P1h1
K); . . . ;Cm(J Pm1 K; . . . ; J Pmhm

K)), with
{P1, . . . , Pk} = {P11 , . . . , P1h1

, . . . , Pm1 , . . . , Pmhm
}. Now, every Ci(J Pi1 K; . . . ; J Pihi

K) is a

L2-process Qi; thus, L op′(Q1, . . . ,Qm) M = D
f n(Q1,...,Qm)
op′ (L Q1 M; . . . ; L Qm M). Since every

Ci(i1 ; . . . ; ihi
) is smaller than Cf n(P1,...,Pk)

op (1; . . . ; k), by inductive hypothesis there ex-
ists Di(i1 ; . . . ; ihi

) depending only on the outermost operator of Ci and on f n(Ci) ∪
(f n(Pi1 , . . . , Pihi

) \ bn(Ci)) such that LCi(J Pi1 K; . . . ; J Pihi
K) M = Di({[Pi1]}; . . . ; {[Pihi

]}). Then,
notice that f n(Qi) = f n(Ci) ∪ (f n(Pi1 , . . . , Pihi

) \ bn(Ci)). Then, the desired D(1; . . . ; k)

is Df n(Q1,...,Qm)
op′ (D1(11 ; . . . ; 1h1

); . . . ;Dm(m1 ; . . . ; mhm
)): it only depends on op and

f n(P1, . . . , Pk) since op′, f n(Q1, . . . ,Qm) and all theDi’s depend only on them.

Property 2: Let ϕJ K : N → Nk and ϕL M : N → Nh be the renaming policies of J · K and of L · M. We
let ϕ{[]} : N → Nkh be defined by composing ϕJ K and ϕL M, i.e. ϕ{[]}(a) = ϕL M(a1) . . . ϕL M(ak),
whenever ϕJ K(a) = a1 . . . ak. Let σ be any injective name substitution (the case for non-injective
substitutions is similar: just replace ‘=’ with ‘'’); by hypothesis, J Pσ K = J P Kσ′, for σ′ =

{ϕJ K(a)/ϕJ K(b) : σ(b) = a}. Now consider {[Pσ]} = L J P Kσ′ M; by hypothesis, L J P Kσ′ M = {[P]}σ′′,
with σ′′ = {ϕL M(a′)/ϕL M(b′) : σ′(b′) = a′} = {ϕ{[]}(a)/ϕ{[]}(b) : σ(b) = a}. This suffices to conclude.

Property 3: Let P Z=⇒1 P′; by hypothesis, there exists Q such that J P K Z=⇒2 Q '2 J P′ K and there
exists R such that {[P]} Z=⇒3 R '3 L Q M. Since L · M preserves equivalences, this entails that R '3
{[P′]}, and this suffices to conclude the completeness part. For soundness, let {[P]} , L J P K M Z=⇒3 R.
By hypothesis, J P K Z=⇒2 Q and R Z=⇒3 R′ '3 L Q M; moreover, P Z=⇒1 P′ and Q Z=⇒2 Q′ '2
J P′ K. This entails that L Q M Z=⇒3'3 L Q′ M '3 L J P′ K M , {[P′]}, since L · M preserves equivalences.
By reduction closure of '3, we also have that R′ Z=⇒3'3 {[P′]}, as desired. �

It has to be said that the two hypotheses needed for proving transitivity of operational correspon-
dence are too demanding. In particular, preservation of equivalences is one direction of full abstraction,
a criterion that we prefer not to use; actually, it is the most demanding implication of full abstraction
and several well-known encodings ([6, 30, 38, 39], just to cite the most notable examples) do not enjoy
it. Moreover, also reduction closure can be criticized: there are several behavioural equivalences that
do not enjoy it. For this reason, let us now consider another set of properties that are sufficient for
ensuring transitivity of operational correspondence. Let us consider the following formulation of the
latter property.

Definition 4.6 (Operational Correspondence, revised).

36

• Completeness: for every S and S ′ such that S Z=⇒1 S ′, it holds that J S K Z=⇒2 JS ′K | T, for some
T '2 0;

• Soundness: for every S and T such that J S K Z=⇒2 T, there exists S ′ such that S Z=⇒1 S ′ and
T Z=⇒2 J S ′ K | T, for some T '2 0.

This formulation of our property is a specialization of the third setting presented in Section 3.2. We
believe that it is not too demanding, since all the encodings we are aware of satisfy it. Another property,
much less demanding than equivalence preservation, is the following one.

Definition 4.7. An encoding J · K : L1 → L2 preserves the equivalence class of 0 if, for every S '1 0, it
holds that J S K '2 0.

Proposition 4.19. Let J · K : L1 → L2 and L · M : L2 → L3 be valid encodings (with Property 3
formulated as in Definition 4.6); let {[·]} : L1 → L3 be their composition (i.e., {[·]} , L J · K M). Then,
{[·]} enjoys Properties 1, 2, 4 and 5; moreover, if L · M preserves the equivalence class of 0 and is
homomorphic w.r.t. ‘|’, then also {[·]} enjoys Property 3 (formulated as in Definition 4.6).

Proof. Properties 1, 2, 4 and 5 for {[·]} can be proved like in Proposition 4.18. Let us consider Property 3
formulated as in Definition 4.6.

Completeness: Let P Z=⇒1 P′; by hypothesis, there exists Q '2 0 such that J P K Z=⇒2 J P′ K | Q and
there exists R '3 0 such that {[P]} Z=⇒3 L J P′ K | Q M | R , {[P′]} | L Q M | R, where the latter equality
holds by homomorphism of L · M. Since L · M preserves the equivalence class of 0 and Q '2 0, this
entails that L Q M | R '3 0, and this suffices to conclude the completeness part.

Soundness: Let {[P]} = L J P K M Z=⇒3 R. By hypothesis, J P K Z=⇒2 Q and R Z=⇒3 L Q M | R′, for some
R′ '3 0; moreover, P Z=⇒1 P′ and Q Z=⇒2 J P′ K | Q′, for some Q′ '2 0. By completeness, this en-
tails that L Q M Z=⇒3 L J P′ K | Q′ M | R′′, for some R′′ '2 0, and, hence, R Z=⇒3 L J P′ K | Q′ M | R′′ | R′.
Since L · M translates ‘|’ homomorphically and preserves of the equivalence class of 0, we have that
L J P′ K | Q′ M | R′′ | R′ , {[P′]} | L Q′ M | R′′ | R′ and L Q′ M | R′′ | R′ '3 0, as desired. �

To conclude, the fact that the encodability relation put forward by valid encodings is not transitive
is annoying. The idea of having composable encodings could be seen as a basic issue in a “modular”
metatheory for expressiveness, where independent results can be combined to yield new results. A
simple way to solve this problem is to assume an “exact” formulation of operational correspondence,
i.e. by removing the occurrences of '2 from Property 3 (or, equivalently, to assume '2 to be the iden-
tity) or to let them be structural equivalences. Indeed, both the identity and the structural equivalence
are reduction closed and every encoding usually preserves them. However, as we have discussed in
the Introduction, such formulations of operational correspondence are too demanding: with them, the
encodings of MA in πa and of MA in SA would not be acceptable anymore, to focus only on some
encodings of this paper. We prefer to adopt a more generous notion of validity, even if the price to be
paid is the loss of a more elegant metatheory. The development of better notions of validity, that also
require less demanding conditions for transitivity, is a challenging direction for future research.

37

5 Conclusions and Related Work

We have comparatively studied several mainstream calculi for mobility and distribution, together with
some of their variants, namely the asynchronous π-calculus, a distributed π-calculus, Mobile Ambients,
Safe Ambients (and its dialect with passwords) and Boxed Ambients (and some variations of its primi-
tives). We have organized all these languages in a clear hierarchy based on their relative expressiveness.
To this aim, we have exploited the criteria presented and discussed in [25].

It is now worth discussing the notion of expressiveness we have considered when comparing these
languages. One might intuitively consider a language more expressive than another one if the former
allows more sophisticated inter-process interactions than the latter; moreover, it could also be expected
that systems in the former language should be expressible with a more compact syntax and simpler
operational semantics than in the latter one. Quite surprisingly, the notion of expressiveness put forward
by our results in some cases clashes with this intuition. For example, SA and SAP, defined to limit the
possible computations of MA, turned out to be more expressive than MA (a similar situation holds for
SBA and NBA w.r.t. BA and BAs). This apparent contradiction is related to operational soundness, viz.
the second item of Property 3. Not incidentally, by ignoring it, more and simpler encodability results
do hold.

Finally, the throughout comparison between the different dialects of ambient-based calculi has also
clarified some important issues. In some cases, we have discovered that the dialect proposed is compa-
rable, in terms of expressive power, with the language it comes from: for example, SA and SBA/NBA
enhance the expressiveness of MA and BA/BAs, respectively. In other cases, we have discovered that
the dialect and its original language are incomparable, i.e. no relative encoding exists: the most no-
table cases are BAs vs BA and SAP vs SA. In these cases, we must be aware that the dialect is not an
enhancement of the original language nor a minor variation on it, as it is sometimes believed.

Related work. To conclude, we want to mention some strictly related results. First, [54] provides
an encoding of the synchronous π-calculus in ‘pure’ SA (i.e. SA without communications) and claims
that the same cannot be done in ‘pure’ MA (i.e. MA without communications). Second, [32] provides
an encoding of BAs in a variant of SA that exploits mobility primitives similar to those in SBA. The
encoding respects all our criteria but the target language is still another variant of the languages we
have presented. Third, the results in [11] entail that Dπ cannot be encoded in πa, under properties
similar to ours; notably, they need homomorphism w.r.t. parallel composition whereas we just rely on
compositionality. Fourth, [47, 48] are inspired by Palamidessi’s work on electoral systems [44] and
separate several calculi for mobility according to the possibility of solving the problem of leader elec-
tion. Though their approach is different from ours, our results confirm theirs. However, our approach
is more informative than theirs, since we are also able to compare pairs of languages in which leader
election is possible/impossible (e.g., SA and MA, or πa and Dπ).

Finally, calculi for mobility have been a workbench for investigations on the expressiveness of
operators like restriction, communication primitives, non-deterministic choice and replication ([10, 17,
22, 34, 44], just to cite some examples). These works are quite orthogonal to ours, since they compare
different sub-calculi of the same language, whereas we aimed at comparing different programming
paradigms.

Acknowledgments. Thanks to Iain Phillips that introduced me to [47, 48]; thanks also to Rosario
Pugliese, Ivano Salvo and Maria Grazia Vigliotti that read a preliminary version of this work. I am also

38

very grateful to the anonymous reviewers for their constructive attitude and for several suggestions that
improved the presentation of this work.

Appendix: Validity of the Encoding of πa into MA

Properties 1 and 2 hold by construction. Let us prove the remaining properties. In the rest of this
section, ' will denote strong barbed equivalence for MA.

Operational Completeness We shall only prove the following claim:

If P 7−→ P′ then J P K Z=⇒' J P′ K

since the more general case with ‘ Z=⇒’ in place of ‘7−→’ in the premise can be obtained by straightfor-
ward inductive arguments. The proof is by induction on the inference for ‘ 7−→’ and only the base case
is interesting. Thus, we have that P , ā〈b〉 | a(x).Q and P′ , Q{b/x}. To make the following proofs
easier, let us spell out the reductions of J P K and give them a number, to better refer them later on. For
the sake of simplicity, we shall use biadic communications, with the caution that this is just a notational
shortcut that can be rendered via monadic communications and opening of the reserved ambient poly.
Moreover, to ease reading, we highlight the parts of the process that are involved in the generation of

39

the next transition.

J ā〈b〉 | a(x).Q K
, a1 [p[!in a2 | open q.〈b1, b2〉]]
| open a1 .(νr, s, t, u)(open u | t[u[open a2.out t]]

| a2[q[in p.(x1, x2).in r.s[out p.out r.in t.in u.J Q K]] | r[] | open s])

7−→@1A PR
@1A
a,b,x,Q , p[! in a2 | open q.〈b1, b2〉]

| (νr, s, t, u)(open u | t[u[· · ·]] | a2 [q[· · ·] | r[] | open s])

7−→@2A PR
@2A
a,b,x,Q , (νr, s, t, u)(open u | t[u[· · ·]]

| a2[p [!in a2 | open q.〈b1, b2〉] | q[in p .(x1, x2). · · ·] | r[] | open s])

7−→@3A PR
@3A
a,b,x,Q , (νr, s, t, u)(open u | t[u[· · ·]]

| a2[p[!in a2 | open q .〈b1, b2〉 | q [(x1, x2). · · ·]] | r[] | open s])

7−→@4A PR
@4A
a,b,x,Q , (νr, s, t, u)(open u | t[u[· · ·]]

| a2[p[!in a2 | 〈b1, b2〉 | (x1, x2) .in r. · · ·] | r[] | open s])

7−→@5A PR
@5A
a,b,x,Q , (νr, s, t, u)(open u | t[u[· · ·]]

| a2[p[!in a2 | in r .s[out p.out r.in t.in u.J Q{b/x} K]] | r [] | open s])

7−→@6A PR
@6A
a,b,x,Q , (νr, s, t, u)(open u | t[u[· · ·]]

| a2[r[p [!in a2 | s[out p .out r.in t.in u.J Q{b/x} K]]] | open s])

7−→@7A PR
@7A
a,b,x,Q , (νr, s, t, u)(open u | t[u[· · ·]]

| a2[r [p[!in a2]] | s[out r .in t.in u.J Q{b/x} K] | open s])

7−→@8A PR
@8A
a,b,x,Q , (νr, s, t, u)(open u | t[u[· · ·]]

| a2[r[p[!in a2]] | s [in t.in u.J Q{b/x} K] | open s])

7−→@9A PR
@9A
a,b,x,Q , (νr, t, u)(open u | t [u[· · ·]]

| a2[r[p[!in a2]] | in t .in u.J Q{b/x} K])

7−→@10A PR
@10A
a,b,x,Q , (νr, t, u)(open u | t[u [· · ·] | a2[r[p[!in a2]] | in u .J Q{b/x} K]])

7−→@11A PR
@11A
a,b,x,Q , (νr, t, u)(open u | t[u[open a2 .out t | a2 [r[p[!in a2]] | J Q{b/x} K]]])

7−→@12A PR
@12A
a,b,x,Q , (νr, t, u)(open u | t [u[out t | r[p[!in a2]] | J Q{b/x} K]])

7−→@13A PR
@13A
a,b,x,Q , (νr, t, u)(open u | t[] | u [r[p[!in a2]] | J Q{b/x} K])

7−→@14A PR
@14A
a,b,x,Q (νr, t)(t[] | r[p[!in a2]]) | J Q{b/x} K

To conclude, ti suffices to notice that

Garba , (νr, t)(t[] | r[p[!in a2]]) ' 0

Operational Soundness We now have to explicitly take care of the possible interferences between the
encodings of different communications along the same channel. In such a case, some new reductions
arise, i.e. those leading a copy of p within an a2 already entered by at least another ambient p. Of
course, such an ambient can still be within a2 (i.e., the communication is not yet finished), or it is

40

within r. However, such reductions are spurious, in the sense that they do not correspond to original
reductions in πa. Formally:

p[!in a2 | open q.〈b1, b2〉] | a2 [p[· · ·] | · · ·]
7−→@2sA a2 [p[!in a2 | open q.〈b1, b2〉] | p[· · ·] | · · ·]

p[!in a2 | open q.〈b1, b2〉] | a2 [r[p[· · ·]] | · · ·]
7−→@2sA a2 [p[!in a2 | open q.〈b1, b2〉] | r[p[· · ·]] | · · ·]

In these cases, we denote the step with @2sA to emphasize that it is of kind @2A while stressing
its spurious nature. A process of kind PR@kAa,b,x,Q can undergo a reduction of kind @2sA whenever
k ∈ {1, . . . , 9}. It then becomes a new process, very similar to PR@kAa,b,x,Q but with the new parallel compo-

nent p[!in a2 | open q.〈b′1, b
′
2〉] within a2. Let us denote with PR@kA,sa,b,x,Q process PR@kAa,b,x,Q with s parallel

components of kind p[!in a2 | open q.〈· · ·〉] within a2, if k ∈ {1, . . . , 11}, or within u, otherwise.
Let us use metavariable ` to range over {1, . . . , 14, 2s}. Then, the numbered reductions defined so

far are closed under addition of spurious parallel components:

PR@
kA,s

a,b,x,Q 7−→@k+1A PR
@k+1A,s
a,b,x,Q for k ∈ {1, . . . , 12}

PR@
13A,s

a,b,x,Q 7−→@14A,s PR
@14A
a,b,x,Q |

s∏
i=1
p[!in a2 | open q.〈bi1 , bi2〉]

Indeed, after a reduction of kind @14A , all the s parallel components of kind p[· · ·] reappear at top-level,
and it is necessary to know how many they are for carrying out proofs. Labeled reductions are then
closed under evaluation contexts and structural congruence:

P 7−→@̀A P′

E(P) 7−→@̀A E(P′)

P ≡ Q 7−→@̀A Q′ ≡ P′

P 7−→@̀A P′

P 7−→@14A,s P′

E(P) 7−→@14A,s E(P′)

P ≡ Q 7−→@14A,s Q′ ≡ P′

P 7−→@14A,s P′

Given a sequence of reductions of an encoded term, let us denote with s(a) the sum of all the s
labeling a reduction of kind @14A originating from a communication along a. Moreover, we denote
with na

@̀A the number of reductions of kind ` derived from a communication along a; n@̀A stands for∑
a∈N na
@̀A. We also let

n̂a
@kA ,

 na
@1A − na

@2A − na
@2sA + s(a) if k = 1

na
@kA − na

@k+1A if k ∈ {2, . . . , 13}

Finally, we let PRa,x,Q denote J a(x).Q K without the starting open a1 prefix. We are now ready to prove
the following lemma, that will easily entail operational soundness.

Lemma 5.1. Let P be a πa-process and Q be an MA process such that J P K 7−→n Q, for n =∑
`∈{1,...,14,2s} n@̀A . Then,

Q ≡ (νm̃)
(
J R K |

∏
a∈N

 na
@2sA−s(a)∏

i=1
PRa,xi,Pi |

13∏
k=1

n̂a
@kA∏

i=1
PR
@kA, si
a,bi,xi,Pi

|

na
@14A∏
i=1
Garba


)

41

where J R K has no top-level restrictions, si = 0 whenever k = 1 and na
@2sA =

∑13
k=1

∑n̂a
@kA

i=1 si.

Proof. By induction on n. The base step is trivial; for the inductive step, let J P K 7−→n Q 7−→ Q′. By
induction,

Q ≡ (νm̃)
(
J R K |

∏
a∈N

 na
@2sA−s(a)∏

i=1
PRa,xi,Pi |

13∏
k=1

n̂a
@kA∏

i=1
PR
@kA, si
a,bi,xi,Pi

|

na
@14A∏
i=1
Garba


)

Let us now consider all the possible cases for the reduction Q 7−→ Q′:

• J R K can only evolve in isolation by performing a reduction of kind @1A ;

• PR
@kA, si
a,xi,bi,Pi

, for k > 1, can only evolve in isolation by performing a reduction of kind @k+1A;

• PR
@1A, si
a,xi,bi,Pi

can evolve in isolation by performing a reduction of kind @2A , or it can perform a

reduction of kind @2sA by interacting with some PR@
hA, s j

a,x j,b j,P j
, for h ∈ {2, . . . , 9}.

Let us consider all these cases in isolation.

1. The reduction has been originated by J R K. In this case, the reduction must be of kind @1A and,
hence, R ≡ ā〈b〉 | a(x).R′ | R′′. The thesis easily follows by noting that, after the reduction
Q 7−→ Q′, the new value of n̂a

@1A is the old value plus one: the new process is PR@1A, 0a,b,x,R′ . Finally,
J R′′ K has no top-level restrictions, since J R K has none.

2. The reduction has been originated by PR@kA, si
a,bi,xi,Pi

, for some k ∈ {2, . . . , 12} and i ∈ {1, . . . , n̂a
@kA}.

Then, the reduction is PR@kA, si
a,bi,xi,Pi

7−→@k+1A PR
@k+1A, si
a,bi,xi,Pi

and we can easily conclude, since the new

value of n̂a
@kA is the old value minus one (corresponding to the fact that PR@1A, 0a,bi,xi,Pi

has evolved) and

the new value of n̂a
@k+1A is the old value plus one (corresponding to the fact that PRa,xi,Pi is added to

the first product).

3. The reduction has been originated by PR@1A, 0a,bi,xi,Pi
, for some i ∈ {1, . . . , n̂a

@1A}. If it is of kind @2A , we

reason like in case 2; if it is of kind @2sA , there exist h ∈ {2, . . . , 9} and j ∈ {1, . . . , n̂a
@hA} such that

PR@
1A, 0

a,bi,xi,Pi
| PR
@hA, s j

a,b j,x j,P j
7−→@2sA PRa,xi,Pi | PR

@hA, s j+1
a,b j,x j,P j

. Also in this case we can conclude by letting

the new value of s j be the old value plus one, by noting that the new value of n̂a
@1A is the old value

minus one and that the new value of na
@2sA is the old value plus one.

4. The reduction has been originated by PR@13A, si
a,bi,xi,Pi

, for some i ∈ {1, . . . , n̂a
@13A}, and it is of kind @14A .

Such a reduction produces a new copy of Garba (that is collected in the last product and, indeed,
the new value of na

@14A is the old value plus one) and si copies of processes p[· · ·]. By taking si

processes of kind PRa,xi,Pi from the first product, we create si new components of kind PR@1A, 0a,bi,xi,Pi
.

Indeed, the new value of s(a) is the old value plus si; this leads the new value of na
@2sA − s(a) to the

old one minus si and the new value of n̂a
@1A to the old one plus si. �

Proposition 5.2 (Operational soundness). Let P be a πa-process and Q be an MA process such that
J P K 7−→n Q. Then, P 7−→n@1A P′, for some πa-process P′ such that Q Z=⇒' J P′ K.

42

Proof. By Lemma 5.1,

Q ≡ (νm̃)
(
J R K |

∏
a∈N

 na
@2sA−s(a)∏

i=1
PRa,xi,Pi |

13∏
k=1

n̂a
@kA∏

i=1
PR
@kA, si
a,bi,xi,Pi

|

na
@14A∏
i=1
Garba


)

Then, reduce every PR@kA, si
a,bi,xi,Pi

for k > 1; we now obtain a process structurally equivalent to

(νm̃)
(
J R′ K |

∏
a∈N

(∏
i
PR@

1A, 0
a,bi,xi,Pi

|
∏

i
Garba

))
(we have omitted the indexes of the products for the sake of simplicity). Now reduce every PR@1A, 0a,bi,xi,Pi
and obtain a process of the form

J P′ K |
∏
a∈N

∏
i

Garba

that is strongly barbed equivalent to J P′ K, where P′ is the πa-process obtained from P by performing
the n@1A communications whose encodings have lead to the production of the reductions of kind n@1A in
J P K 7−→n Q. �

Divergence sensitiveness The fact that the encoding preserves divergence is a trivial corollary of
operational completeness. For proving that the encoding does not introduce divergence, let us first
prove the following lemma.

Lemma 5.3. Let J P K 7−→n; then the number of spurious reductions is at most n@1A(n@1A−1)
2 .

Proof. The worst case is when all the n@1A reductions are on the same channel, say a, and can be
obtained as follows. Put all the n@1A p ambients in the same a2 ambient; this introduces n@1A −1 spurious
reductions. Then, complete the first communication; this will let all the remaining n@1A − 1 p ambients
reappear at top-level. Now, put all of them in the same a2 ambient; this introduces n@1A − 2 spurious
reductions. And so on. Thus, the overall number of spurious reductions is at most

n@1A∑
k=1

(k − 1) =
n@1A(n@1A − 1)

2 �

Proposition 5.4 (Divergence reflection). If J P K 7−→ω, then P 7−→ω.

Proof. Let J P K 7−→n and observe that n > 0 implies that n@1A > 0. Moreover, for every k ∈ {2, . . . , 14},
it holds that n@kA ≤ n@1A ; indeed, by construction of the encoding, it is not possible to produce a reduction
of kind @kA without having produced a corresponding reduction of kind @1A . By Lemma 5.3, n → ∞
implies that n@1A → ∞; by Proposition 5.2, we easily conclude. �

Success sensitiveness Let P ↘, i.e. P Z=⇒ P′ ≡ P′′ |
√

. Since reductions are closed under structural
equivalence, P Z=⇒ P′′ |

√
. By operational completeness, J P K Z=⇒ T ' J P′′ |

√
K , J P′′ K |

√
. Since

we have assumed that ' is sensible to success, this imples that T ↘; thus, J P K↘.
Conversely, let J P K ↘, i.e. J P K Z=⇒ T |

√
. By what we have shown in Proposition 5.2, it holds

that T |
√

Z=⇒ J P′ K |
∏

a∈N

∏
i
Garba, for some P′ such that P Z=⇒ P′. Since

√
cannot disappear along

reductions, it must be that J P′ K ≡ J P′′ K |
√
, J P′′ |

√
K. Thus, P↘.

43

References
[1] R. Amadio. On modelling mobility. Theoretical Computer Science, 240(1):147–176, 2000.

[2] R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous π-calculus. Theoret-
ical Computer Science, 195(2):291–324, 1998.

[3] S. Arun-Kumar and M. Hennessy. An efficiency preorder for processes. Acta Informatica, 29(8):737–760,
1992.

[4] M. Baldamus, J. Parrow, and B. Victor. Spi-calculus translated to pi-calculus preserving may-tests. In Proc.
of LICS, pages 22–31. IEEE Computer Society, 2004.

[5] M. Baldamus, J. Parrow, and B. Victor. A fully abstract encoding of the i-calculus with data terms. In Proc.
of ICALP, volume 3580 of LNCS, pages 1202–1213. Springer, 2005.

[6] G. Boudol. Asynchrony and the π-calculus (note). Rapport de Recherche 1702, INRIA Sophia-Antipolis,
May 1992.

[7] M. Bugliesi, G. Castagna, and S. Crafa. Access Control for Mobile Agents: the Calculus of Boxed Ambi-
ents. ACM Trans. on Programming Languages and Systems, 26(1):57–124, 2004.

[8] M. Bugliesi, S. Crafa, M. Merro, and V. Sassone. Communication and Mobility Control in Boxed Ambients.
Information and Computation, 202(1):39–86, 2005.

[9] M. Bugliesi and M. Giunti. Secure implementations of typed channel abstractions. In Proc. of POPL, pages
251–262. ACM, 2007.

[10] N. Busi and G. Zavattaro. On the expressive power of movement and restriction in pure mobile ambients.
Theoretical Computer Science, 322(3):477–515, 2004.

[11] M. Carbone and S. Maffeis. On the expressive power of polyadic synchronisation in π-calculus. Nordic
Journal of Computing, 10(2):70–98, 2003.

[12] L. Cardelli. Abstractions for Mobile Computation. In Secure Internet Programming, volume 1603 of LNCS,
pages 51-94. Springer, 1999.

[13] L. Cardelli, G. Ghelli, and A. D. Gordon. Mobility types for mobile ambients. In Proc. of ICALP, vol. 1644
of LNCS, pages 230–239. Springer, 1999.

[14] L. Cardelli and A. D. Gordon. Types for mobile ambients. In Proc. of POPL, pages 79–92. ACM, 1999.

[15] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science, 240(1):177–213, 2000.

[16] S. Dal Zilio. Mobile Processes: A Commented Bibliography. Proceedings of the 4th Summer School on
Modeling and Verification of Parallel Processes, volume 2067 of LNCS, pages 206–222. Springer, 2001.

[17] R. De Nicola, D. Gorla, and R. Pugliese. On the Expressive Power of KLAIM-based Calculi. Theoretical
Computer Science, 356(3):387–421, 2006.

[18] R. De Nicola and M. Hennessy. Testing equivalence for processes. Theoretical Computer Science, 34:83–
133, 1984.

[19] C. Fournet, G. Gonthier, J.J. Lévy, L. Maranget and D. Rémy. A Calculus of Mobile Agents. Proc. of
CONCUR, volume 1119 of LNCS, pages 406–421. Springer, 1996.

[20] C. Fournet, J.-J. Lévy, and A. Schmitt. An asynchronous, distributed implementation of mobile ambients.
In Proc. of IFIP TCS, volume 1872 of LNCS, pages 348–364. Springer, 2000.

[21] P. Giannini, D. Sangiorgi, and A. Valente. Safe ambients: Abstract machine and distributed implementation.
Science of Computer Programming, 59(3):209–249, 2006.

44

[22] D. Gorla. Comparing communication primitives via their relative expressive power. Information and Com-
putation, 206(8):931–952. Elsevier, 2008.

[23] D. Gorla. On the relative expressive power of ambient-based calculi. Proc. of TGC’08, volume 5474 of
LNCS, pages 141–156. Springer, 2009.

[24] D. Gorla. On the relative expressive power of calculi for mobility. Proc. of MFPS, ENTCS 249:269–286.
Elsevier, 2009.

[25] D. Gorla. Towards a Unified Approach to Encodability and Separation Results. Proc. of CONCUR’08,
volume 5201 of LNCS, pages 492–507. Springer, 2008.

[26] M. Hennessy. A Distributed Pi-calculus. Cambridge University Press, 2007.

[27] M. Hennessy, M. Merro, and J. Rathke. Towards a behavioural theory of access and mobility control in
distributed systems. Theoretical Computer Science, 322(3):615–669, 2004.

[28] M. Hennessy and J. Riely. Resource Access Control in Systems of Mobile Agents. Information and
Computation, 173:82–120, 2002.

[29] M. Herlihy. Impossibility and universality results for wait-free synchronization. In Proc. of PODC, pages
276–290. ACM Press, 1988.

[30] K. Honda and M. Tokoro. An Object Calculus for Asynchronous Communication. In Proc. of ECOOP,
volume 512 of LNCS, pages 133–147. Springer, 1991.

[31] A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus. In Proc. of POPL, pages 128–141.
ACM, 2001.

[32] F. Levi. A Typed Encoding of Boxed into Safe Ambients. Acta Informatica, 42(6):429–500, 2006.

[33] F. Levi and D. Sangiorgi. Mobile safe ambients. ACM Transactions on Programming Languages and
Systems, 25(1):1–69, 2003.

[34] S. Maffeis and I. Phillips. On the computational strength of pure ambient calculi. Theoretical Computer
Science, 330(3):501–551, 2005.

[35] M. Merro and M. Hennessy. A Bisimulation-based Semantic Theory of Safe Ambients. ACM Transactions
on Programming Languages and Systems, 28(2):290–330, 2006.

[36] M. Merro and V. Sassone. Typing and subtyping mobility in boxed ambients. Proc. CONCUR, vol. 2421
of LNCS, pages 304-320. Springer, 2002.

[37] M. Merro and F. Zappa Nardelli. Behavioural theory for mobile ambients. Journal of the ACM, 52(6):961–
1023, 2005.

[38] R. Milner. Functions as processes. Mathematical Structures in Computer Science, 2(2):119–141, 1992.

[39] R. Milner. The polyadic π-calculus: A tutorial. In Logic and Algebra of Specification, volume 94 of Series
F. NATO ASI, Springer, 1993.

[40] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, part I/II. Information and Computation,
100:1–77, 1992.

[41] R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. of ICALP, volume 623 of LNCS, pages 685–695.
Springer, 1992.

[42] U. Nestmann and B. C. Pierce. Decoding choice encodings. Information and Computation, 163:1–59, 2000.

[43] U. Nestmann. What is a ‘good’ encoding of guarded choice? Information and Computation, 156:287–319,
2000.

45

[44] C. Palamidessi. Comparing the expressive power of the synchronous and the asynchronous π-calculi. Math-
ematical Structures in Computer Science, 13(5):685–719, 2003.

[45] J. Parrow. Expressiveness of process algebras. In Emerging Trends in Concurrency, ENTCS 209:173–186,
2008.

[46] A. T. Phillips, N. Yoshida, and S. Eisenbach. A distributed abstract machine for boxed ambient calculi. In
Proc. of ESOP, volume 2986 of LNCS, pages 155–170. Springer, 2004.

[47] I. Phillips and M. Vigliotti. Electoral systems in ambient calculi. Information and Computation, 206(1):34–
72, 2008.

[48] I.C.C. Phillips and M.G. Vigliotti. Leader election in rings of ambient processes. Theoretical Computer
Science, 356(3):468–494, 2006.

[49] B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes. Mathematical Structures in
Computer Science, 6(5):409–454, 1996.

[50] B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-calculus. In Proof, Language
and Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.

[51] J. Rathke, V. Sassone and P. Sobocinski. Semantic Barbs and Biorthogonality. In Proc. of FoSSaCS, volume
4423 of LNCS, pages 302–316. Springer, 2007.

[52] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge University Press,
2001.

[53] P. Sewell. Global/Local Subtyping and Capability Inference for a Distributed pi-calculus. Proc. of ICALP,
volume 1443 of LNCS, pages 695–706. Springer, 1998.

[54] P. Zimmer. On the Expressiveness of Pure Safe Ambients. Mathematical Structures in Computer Science,
13:721–770, 2003.

46

