
Comparing Communication Primitives
via their Relative Expressive Power

Daniele Gorla
Dipartimento di Informatica

Università di Roma “La Sapienza”

Information and Computation, 206(8):931–952. c© Elsevier, 2008.

Abstract

In this paper, we study sixteen communication primitives, arising from the combination of
four useful programming features: synchronism (synchronous vs asynchronous primitives), arity
(monadic vs polyadic data), communication medium (message passing vs shared dataspaces) and
pattern-matching. Some of these primitives have already been used in at least one language
which has appeared in the literature; however, to reason uniformly on such primitives, we plug
them into a common framework based on the π-calculus. By means of possibility/impossibility
of ‘reasonable’ encodings, we compare every pair of primitives to obtain a hierarchy of languages
based on their relative expressive power.

Contents
1 Introduction 2

2 A Family of Process Calculi 5
2.1 Syntax . 6
2.2 Operational semantics . 7
2.3 Behavioural semantics . 9

3 Quality of an Encoding and Overview of our Results 10
3.1 Reasonable Encodings . 10
3.2 Technical Preliminaries . 12
3.3 Overview of the Results and Structure of our Proofs 14

4 On the Relative Expressive Power of Synchronous Communication Primitives 16

5 Adding Asynchronous Communications 22
5.1 When Synchrony does not Matter . 23
5.2 When Synchrony Matters . 26
5.3 Completing the Hierarchy . 27

6 Conclusions and Related Work 31

1

1 Introduction
In the last 25 years, several languages and formalisms for distributed and concurrent systems have
appeared in the literature. Some of them (e.g., CCS [28] and the π-calculus [45]) are mostly math-
ematical models, mainly used to rigorously reason on concurrent systems; other ones (e.g., L
[22]) are closer to actual programming languages and are mainly focused on issues like usability and
flexibility. As a consequence, the former ones are usually minimal, whereas the latter ones provide
more sophisticated and powerful programming constructs.

Despite their differences, there are, however, some basic features that are implemented to some
extent in all these languages. Roughly speaking, these features can be described as the possibil-
ity of having different execution threads (or processes) that run concurrently by interacting via
some form of communication. At least at a first glance, the last feature (i.e., inter-process com-
munication) has yielded the highest variety of proposals. These arose from the possibility of
having synchronous/asynchronous primitives, monadic/polyadic data, first-order/higher-order val-
ues, dataspace-based/channel-based communication media, local/remote exchanges (whenever pro-
cesses are explicitly distributed, like in [14, 17]), built-in pattern-matching mechanisms, point-to-
point/broadcasting primitives, and so on. The aim of this work is to rigorously study some of these
proposals and to organize them in a clear hierarchy, based on their expressive power. Hopefully,
our results should help to understand the peculiarities of every communication primitive and, as a
consequence, they could be exploited to choose the ‘right’ primitive when designing new languages
and formalisms.

Among the features mentioned above, we focus on synchronism, arity of data, communication
medium and possibility of pattern-matching. The expressiveness of the omitted features has been
already dealt with elsewhere [17, 19, 43]; we leave as future work the integration of these results
in our framework. Notice that we studied pattern-matching because it is nowadays becoming more
and more important, especially in languages that deal with complex data like XML [1, 6, 15]. How-
ever, for the sake of simplicity, we consider here a very basic form of pattern-matching, that only
checks for name equality while retrieving a datum; the rigorous study of more flexible and powerful
mechanisms (e.g., those in [18]) is left for future work.

By combining the four features chosen, we obtain sixteen communication primitives, some of
which have already been used elsewhere, e.g. in [5, 14, 15, 17, 22, 26, 30]. However, to reason
uniformly on such primitives, we plug them in a common framework based on the π-calculus; we
choose the π-calculus because nowadays it is one of the best-established workbenches for theoretical
reasoning on concurrent systems.

Assessing language expressiveness. Several techniques can be exploited to study the expressive
power of a programming language; of course, different techniques have different merits and yield
different results. A possible approach is based on the absolute expressive power of a language and it
consists in studying which problems can be solved in the language. For example, if one is interested
in the computational power of a language, the natural problem is the implementability of any Turing
complete formalism; however, since most languages allow such an implementation, this problem is
not adequate to compare different languages. In particular, all the languages we are going to consider
are Turing complete (it is easy to encode the Turing complete language L0 from [9] into the bottom
element of our hierarchy). Thus, the crucial aspect of this approach is the identification of more
sophisticated problems that can be solved in a language under some conditions that cannot be met

2

by any solution in another language. For example, in [13, 35] several variants of the π-calculus have
been compared by showing a problem (namely, leader election in [35] and matching systems in [13])
that can be solved in one variant and not in another one.

However, the identification of a problem solvable in a language but not in another one is usually
very difficult. Thus, another interesting approach to comparing two languages L1 and L2 consists
in studying their relative expressive power, by trying to encode one in the other and studying the
properties of the encoding function. This is the approach we shall follow in this paper and it is very
appealing for at least two reasons. Firstly, it is a natural way to show how the key features of a
language can be rendered in the other one, or why this is not possible. Secondly, it would allow us to
also carry out quantitative measures of language expressiveness: we could consider aspects like the
size and the complexity of the encoding of a term with respect to the source term and, consequently,
quantitatively assess the encoding proposed.

Of course, the encoding function must preserve the ‘essence’ of the translated term, i.e. to be
meaningful an encoding should not change the functionalities and the behaviours of source terms.
This requirement can be formalized in different ways (see [34, 37] for a good discussion). A first
possibility (usually called semantical equivalence) is to fix an equivalence, say ∼, and require that
the encoding maps every source term into a ∼-equivalent target term. The main problem behind
this property is that it can only be investigated when the considered languages are very similar, i.e.
whenever they share some notion of equivalence. This property can be weakened by choosing an
abstract semantic theory S and considering the equivalences generated by S in L1 and L2, say ∼S1
and ∼S2 . Then, the so called full abstraction property requires that the encoding respects S, i.e. it
maps ∼S1 -equivalent terms into ∼S2 -equivalent terms and vice versa.

Semantical equivalence and full abstraction are both defined with respect to a fixed notion of
equivalence (viz., ∼ or S). In concurrency, we have an incredibly wide range of equivalences;
thus, fixing one or another is highly debatable. Moreover, full abstraction is mostly focused on
the discriminating power of the equivalences; this can be useful, e.g., if one uses the encoding to
exploit powerful proof-techniques for ∼S2 to prove ∼S1 -equivalences, but it is not deeply related to
expressiveness issues.

Indeed, if one is interested in comparing what different languages can implement, we think that
it is more natural to fix a set of ‘reasonable’ properties that every encoding should satisfy; in this
way, we can prove that L1 is strictly more powerful than L2 by showing that L1 can reasonably
encode L2, whereas no such encoding of L1 in L2 exists. This is a well-established approach
to proving impossibility results in concurrency theory [12, 13, 16, 19, 35, 39, 46, 49], though no
common agreement has yet been reached on which properties make an encoding ‘reasonable’ [33].
Moreover, the requirements identified for every impossibility result are intentionally minimal, in
the sense that each requirement is strictly needed to prove the result. This makes the impossibility
result very strong and informative, but makes the requirements not suitable for properly evaluating
encodability results.

For this reason, we identify a set of criteria suitable for both encodability and impossibility
results, by finding a compromise between ‘minimality’ (typical of impossibility results) and ‘maxi-
mality’ (typical of encodability results, where one wants to show that the encoding satisfies as many
properties as possible). In particular, we require that a reasonable encoding is compositional (i.e.,
the encoding of a compound term is defined by combining the encoding of its sub-terms) and name
invariant (i.e., it translates source terms that only differ in their names into target terms with the
same property). Moreover, it must preserve and reflect divergence and the possibility of interacting

3

with an external observer. Finally, it must be operationally corresponding, in the sense that source
and target computations must correspond. Notice that formulations of all these requirements have
already appeared in the literature when developing encodings or proving impossibility results. How-
ever, to the best of our knowledge, they have never been grouped together to uniformly build up a
hierarchy of languages.

Main contributions. A first contribution of this paper is the definition of a set of criteria that
allows both the evaluation of encodings and of proving impossibility results; moreover, the proof-
technique developed for our impossibility results is new, relatively simple and usable in frameworks
different from the present one. A second contribution consists in giving a number of statements on
communication primitives; some of them are common sense, but here we can rigorously state and
prove them; some other ones are more surprising and, to the best of our knowledge, this is the first
work that points them out. We now briefly sum up the ones which, in our opinion, are the most
important achievements (for a full picture, see Figure 1 in Section 3).

1. Our results show that the communication paradigm underlying L [22] (asynchronous,
polyadic, dataspace-based and with pattern-matching) is at the top of the hierarchy; not in-
cidentally, L’s paradigm has been used in actual programming languages [3, 20]. On
the opposite extreme, we have the communication paradigm used in Mobile Ambients [14]
(asynchronous, monadic, dataspace-based but without pattern-matching); such a paradigm is
very simple but also very poor and, not incidentally, the expressive power of Mobile Am-
bients mostly arises from the mobility primitives [10]. Strictly in the middle, we find the
π-calculus (channel-based and without pattern-matching), in its synchronous/asynchronous
and monadic/polyadic versions. This result stresses the fact that the π-calculus is a good com-
promise between expressiveness and simplicity.

2. As a further contribution, we prove that the untyped polyadic π-calculus is strictly more ex-
pressive than the monadic one; thus, the introduction of types in the polyadic π-calculus
reduces its expressive power. A posteriori, this fact justifies the use of type-systems
[29, 42, 47, 48] to obtain a fragment of the polyadic π-calculus that can be reasonably trans-
lated in the monadic π-calculus.

3. We also discuss the interplay between synchrony and channels: in particular, we show that,
when communications exploit channels (or features that can encode them), the impact of syn-
chrony is irrelevant, in the sense that synchronous primitives can be reasonably encoded via
their asynchronous counterpart. This result allows us to freely implement the primitives asyn-
chronously, that usually poses fewer implementation problems.

4. Our results show that, among the four features studied (synchrony, polyadicity, channels and
pattern matching), the most powerful one is the use of channels: by exploiting only (possibly
restricted) channels, we can encode every other feature in isolation. This result further sup-
ports the choice of the asynchronous π-calculus as the reference calculus for mobility: it is
‘small’, quite powerful and easily implementable [40].

5. Finally, we also show that the introduction of pattern-matching always increases the expressive
power of a language. Indeed, a language with pattern-matching can always atomically check
more names than the corresponding language without pattern-matching; as already pointed

4

out in [13], the possibility of checking more names cannot be rendered without changing the
behaviour of the term (more specifically, without introducing divergence).

Of course, all our results strongly rely on the reasonableness criteria mentioned above. By
changing the set of criteria, also the lattice of languages is likely to change. However, we believe that
our results are meaningful because we think that our criteria are natural and acceptable. It has also
to be said that our investigation is not the first one that compares different forms of communication
in the π-calculus: almost every variant present in the literature comes equipped with a comparison
against the original formulation of [30]. The problem is that (almost) every paper assumes a different
criterion for evaluating its results. For example, in [29] the encoding of the polyadic π-calculus in its
monadic version is given by only arguing on its correctness; in [42, 48] it has been shown that such an
encoding enjoys full abstraction with respect to typed barbed congruence. Similarly, in [5, 26] there
are encodings of the synchronous in the asynchronous π-calculus. The former one is proved correct
by showing a full abstraction result with respect to some notion of weak bisimulation. The second
one is proved correct by showing an adequacy result with respect to a Morris-like equivalence;
moreover, such result is also proved sound with respect to weak barbed congruence, may testing
and fair testing restricted to encoded contexts [11] and with respect to typed barbed congruence
[41]. However, [12] proves that there exists no compositional and must preserving encoding of the
synchronous in the asynchronous π-calculus. This fact emphasizes the difficulties behind the choice
of the equivalence when trying to establish full abstraction properties.

Overview of the paper. In Section 2, we present the family of sixteen concurrent languages arising
from the combination of the four features studied. In Section 3, we present the criteria that, in our
opinion, an encoding should satisfy to be a reasonable means for language comparison; there, we
also sum up in detail the results of the paper, that are proved in Sections 4 and 5. For the sake of
presentation, we start in Section 4 by restricting our study to synchronous communication primitives;
then, in Section 5, we include in the resulting hierarchy also the asynchronous versions of these
primitives. Section 6 concludes the paper by also touching upon related work.

This paper merges together the results contained in [23, 24] to obtain a full hierarchy of the
sixteen languages studied. With respect to [23], we improve some of the encodings and we also
consider synchronous primitives; with respect to [24], we place in the right place of the hierarchy
the synchronous primitives and rectify some wrong results. In both cases, we give more details on
some technical proofs and consider more liberal encodability criteria (that strengthen our impossi-
bility results). For the sake of uniformity, we formulate both the encodability and the impossibility
results in terms of reasonableness. Full abstraction results are only hinted at here; some of them are
rigorously proved in [24].

2 A Family of Process Calculi
We now define the syntax, the operational and the behavioural semantics of our calculi. In doing this,
we shall strongly rely on well-known notions developed for the π-calculus, our reference framework,
and simply adapt them (whenever needed) to cope with the different features of our languages.

5

2.1 Syntax
We assume a countable set of names, N , ranged over by a, b, x, y, n,m, · · · . Notationally, when
a name is used as a channel, we shall prefer letters a, b, c, · · · ; when a name is used as an input
variable, we shall prefer letters x, y, z, · · · ; to denote a generic name, we shall use letters n,m, · · · .
The (parametric) syntax of our languages is

P,Q,R ::= 0
∣∣∣ OutProc

∣∣∣ IN.P
∣∣∣ (νn)P

∣∣∣ P|Q
∣∣∣ if n = m then P else Q

∣∣∣ ∗ P

The different languages will be obtained by plugging into this basic syntax a proper definition for
input prefixes (IN) and output processes (OutProc). As usual, P|Q denotes the parallel composition
of processes; (νn)P restricts to P the visibility of n; finally, if n = m then P else Q and ∗P are the
standard constructs for conditional evolution and process replication. Notationally, if n = m then P
denotes a conditional construct with a terminated else-branch; moreover, trailing occurrences of
0 will be systematically omitted. We have intentionally chosen a very simple form of recursive
construct, i.e. process replication; more sophisticated constructs can be exploited without changing
our results (that do not crucially rely on this aspect).

In this paper, we study the possible combinations of four features for communications: syn-
chronism (synchronous vs. asynchronous communication primitives), arity (monadic vs. polyadic
data), communication medium (channels vs. shared dataspaces) and pattern-matching. As a result,
we have a family of sixteen languages, denoted as Λs,a,m,p, whose generic element is denoted as
Lβ1β2β3β4 , where

• β1 = , if we have synchronous communications, and β1 = , otherwise;

• β2 = , if we have polyadic data, and β2 = , otherwise;

• β3 = , if we have channel-based communications, and β3 = , otherwise;

• β4 = , if we have pattern-matching, and β4 = , otherwise.

Thus, the full syntax of every language is obtained from the following productions:

L : OutProc ::= OUT

L : OutProc ::= OUT.P

L ,,, : P,Q,R ::= . . . IN ::= (x) OUT ::= 〈b〉

L ,,, : P,Q,R ::= . . . IN ::= (T) OUT ::= 〈b〉

L ,,, : P,Q,R ::= . . . IN ::= a(x) OUT ::= a〈b〉

L ,,, : P,Q,R ::= . . . IN ::= a(T) OUT ::= a〈b〉

L ,,, : P,Q,R ::= . . . IN ::= (x̃) OUT ::= 〈̃b〉

L ,,, : P,Q,R ::= . . . IN ::= (T̃) OUT ::= 〈̃b〉

L ,,, : P,Q,R ::= . . . IN ::= a(x̃) OUT ::= a〈̃b〉

L ,,, : P,Q,R ::= . . . IN ::= a(T̃) OUT ::= a〈̃b〉

where
T ::= x

∣∣∣ pnq (Template)

6

Here and in what follows, ˜ denotes a (possibly empty) sequence of elements of kind ; whenever
useful, we shall write a tuple ˜ as the sequence of its elements separated by a comma, or consider
it just as a set. Templates of kind x are called formal and can be instantiated by every name in a
communication; templates of kind pnq are called actual and impose that the datum received contains
exactly name n. As usual, a(· · · , x, · · ·).P and (νx)P bind x in P. The corresponding notions of free
and bound names of a process, F(P) and B(P), and of alpha-conversion, =α, are assumed. We let
N(P) denote F(P) ∪ B(P).

Notice that L ,,,, L ,,,, L ,,,, L ,,, exploit the communication paradigm of the
monadic/polyadic asynchronous/synchronous π-calculus [5, 26, 29, 30]; L ,,, relies on the com-
munication paradigm adopted in L [22]; L ,,, and L ,,, rely on the communication
paradigm adopted in (monadic/polyadic) Mobile Ambients [14]; finally, L ,,, relies on the com-
munication paradigm adopted, e.g., in µK [17] or in semantic-π [15].

Remark 2.1 Λs,a,m,p can be easily ordered; in particular, Lβ1β2β3β4 can be encoded in Lβ′1β′2β′3β′4 if and
only if, for every i ∈ {1, 2, 3, 4}, it holds that βi ≤ β

′
i , where ‘≤’ is the least reflexive relation satisfying

the following axioms:

 ≤   ≤   ≤   ≤ 

As an extremal example, consider L ,,, and L ,,,: asynchrony is a particular case of syn-
chrony (all output prefixes are followed by 0); monadic data are a particular case of polyadic data
(all of length one); a shared dataspace can be modeled by letting all k-ary communications happen
on the same fixed channel (e.g., mnemonically named k); finally, absence of pattern-matching can
be obtained by only considering formal templates.

Remark 2.2 The polyadic versions of channel-based languages are usually typed to ensure that
every channel always carries data of the same length [29, 40, 42, 45, 47]. This choice is justified
by the fact that channel-based interaction is similar to port-based access to services and, usually,
ports are accessed by respecting some predefined message format; accessing a port by using a wrong
message format is clearly a programming error and should be avoided. Unless stated otherwise, from
now on we shall only consider well-typed L ,, , processes (under any type system that ensures arity
matching); thus, L ,, , will denote the set of all (and only) such processes.

2.2 Operational semantics
We shall give the operational semantics of the languages by means of a labeled transition system
(LTS) describing the actions a process can perform to evolve. This is just one of the possibilities
developed in the last decades to describe the operational semantics of a concurrent language; another
successful style is via reductions [27, 29]. Moreover, there are several possible formulations of a
LTS (early vs late, including structural equivalence or not, ...) [36]. Here, the particular LTS we are
going to develop is the one that will allow us to carry out our proofs in the simplest possible way.
All the results we are going to present do not depend on this choice and can be rephrased under any
‘compatible’ operational semantics.

Judgments in the operational semantics take the form P
α
−−→ P′, meaning that P can become P′

upon exhibition of label α. Labels take the form

α ::= τ
∣∣∣ a?̃b

∣∣∣ (ν̃c)a!̃b
∣∣∣ ?̃b

∣∣∣ (ν̃c)!̃b

7

Traditionally, τ denotes an internal computation; a?̃b and (ν̃c)a!̃b denote the reception/sending of a
sequence of names b̃ along channel a; similarly, in dataspace-based languages ?̃b and (ν̃c)!̃b denote
the withdrawal/emission of b̃ from/in the shared dataspace. In (ν̃c)a!̃b and (ν̃c)!̃b, some of the sent
names, viz. c̃ (⊆ b̃), are restricted. Notationally, (ν̃c) !̃b stands for either (ν̃c)a!̃b or (ν̃c)!̃b; similarly,
?̃b stands for either a?̃b or ?̃b. As usual, B((ν̃c) !̃b) , c̃; F(α) and N(α) are defined accordingly.

The LTS provides some rules shared by all the languages; the different semantics are obtained
from the axioms for input/output actions. The common rules, reported below, are an easy adaptation
of an early-style LTS for the π-calculus; thus, we do not comment on them and refer the interested
reader to [30, 36, 45].

P
?̃b
−−→ P′ Q

!̃b
−−→ Q′

P | Q
τ
−→ P′ | Q′

P
a?̃b
−−−→ P′ Q

a!̃b
−−−→ Q′

P | Q
τ
−→ P′ | Q′

P
(ν̃c) !̃b
−−−−−→ P′ n ∈ b̃ \ { , c̃}

(νn)P
(νn,̃c) !̃b
−−−−−−−→ P′

P
α
−−→ P′ n < N(α)

(νn)P
α
−−→ (νn)P′

P ≡ P1
α
−−→ P2 ≡ P′

P
α
−−→ P′

P
α
−−→ P′ B(α) ∩ F(Q) = ∅

P | Q
α
−−→ P′ | Q

Structural equivalence, ≡, rearranges a process to let it evolve according to the rules of the LTS. Its
defining axioms are the standard π-calculus ones:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

if n = n then P else Q ≡ P if n = m then P else Q ≡ Q if n , m

P ≡ P′ if P =α P′ (νn)0 ≡ 0 (νn)(νm)P ≡ (νm)(νn)P

P | (νn)Q ≡ (νn)(P |Q) if n< F(P) ∗ P ≡ P | ∗ P

We are left with the key rules of every language, i.e. those for process actions. The rules for
output actions in languages L , ,, , L , ,, , L , ,, and L , ,, are, respectively

〈̃b〉
!̃b
−−→ 0 a〈̃b〉

a!̃b
−−−→ 0 〈̃b〉.P

!̃b
−−→ P a〈̃b〉.P

a!̃b
−−−→ P

To define the semantics for the input actions, we must specify when a template matches a datum.
Intuitively, this happens whenever both have the same length and corresponding fields match: pnq
matches n and x matches every name. This can be formalized via a partial function, called pattern-
matching and written M, that also returns a substitution σ; the latter will be applied to the
process that performed the input to replace formal templates with the corresponding names of the
datum retrieved. These intuitions are formalized by the following rules:

M(;) = ε M(pnq; n) = ε M(x; n) = {n/x}

M(T ; b) = σ1 M(T̃ ; b̃) = σ2

M(T, T̃ ; b, b̃) = σ1] σ2

8

where ‘ε’ denotes the empty substitution and ‘]’ denotes union of partial functions with disjoint
domains. Now, the operational rules for input actions in languages L , ,, and L , ,, are

(T̃).P
?̃b
−−→ Pσ

a(T̃).P
a?̃b
−−−→ Pσ

if M(T̃ ; b̃) = σ

Notation A substitution σ is a finite partial mapping of names for names; Pσ denotes the (capture
avoiding) application of σ to P. As usual, we let =⇒ stand for the reflexive and transitive closure
of

τ
−→ ,

α
==⇒ stand for =⇒

α
−−→=⇒ and

τ
−→k denote a sequence of k τ-steps. We shall write P

α
−−→

to mean that there exists a process P′ such that P
α
−−→ P′; a similar notation is adopted for P =⇒

and P
α

==⇒ . Moreover, we let φ range over visible actions (i.e. labels different from τ) and ρ range
over (possibly empty) sequences of visible actions. Formally, ρ ::= ε | φ · ρ, where ‘ε’ denotes
the empty sequence of actions and ‘·’ represents concatenation; then, N

ε
=⇒ is defined as N =⇒ and

N
φ·ρ

===⇒ is defined as N
φ

==⇒
ρ

==⇒ .

We conclude this part with a proposition that collects together some properties of the LTSs we
have just defined; the proof of these results easily follows from the definition of the LTSs.

Proposition 2.1 The following facts hold:

1. if P ∈ L , , , and P
?̃b
−−−→ , then P

?̃c
−−−→ for every c̃ of the same length as b̃;

2. if P
τ
−→ P′ then P ≡ (ν̃c)(P1 | P2) and P′ ≡ (ν̃c)(P′1 | P′2), where either P1

?̃b
−−→ P′1 and

P2
!̃b
−−→ P′2, or P1

a?̃b
−−−→ P′1 and P2

a!̃b
−−−→ P′2;

3. if P ∈ L  , , , and P
(ν̃c) !̃b
−−−−−→

α
−−→ P′, for c̃ ∩ N(α) = ∅, then P

α
−−→

(ν̃c) !̃b
−−−−−→ P′; moreover, if

α = ?̃b, then P
τ
−→ (ν̃c)P′.

2.3 Behavioural semantics
To conclude the presentation of the languages, we now define a very natural notion of equivalence
that equates terms that behave in the same way. There are several possible notions of behaviour
and, correspondingly, several possible equivalences. Here, we present the most basic one, namely
(strong) barbed congruence [31]; such an equivalence provides the minimum abstraction level from
the operational semantics of processes.

Intuitively, barbed congruence requires that, in any execution context, two equivalent processes
offer the same observable behaviour along every possible computation. To formally define this
requirement, we need to fix two notions: what is a context and what is observable in a process.

Definition 2.1 (Context) A context C[] is a process with one occurrence of 0 replaced with the
hole ; the hole can be filled with any process P and the resulting process is denoted as C[P].

Definition 2.2 (Barbs) P offers the barb (ν̃c) !̃b iff P
(ν̃c) !̃b
−−−−−→ .

9

Usually, in a π-calculus-based framework, observables (usually called barbs) are visible actions
[31]; however, as argued in [2, 7], in an asynchronous setting only output actions are observable.
Moreover, in π-calculus only the channel where the output happens is relevant, since the argument
can be checked by the execution context; however, this feature is not straightforwardly adaptable to
dataspace-based languages. So, to uniformly define equivalences in Λs,a,m,p, we consider as a barb
any (full-fledged) output action; it is easy to prove that, in frameworks like the π-calculus (where
weaker forms of barb are usually assumed), the congruences resulting from these barbs and from
more traditional barbs do coincide.

Definition 2.3 (Barbed bisimulation and congruence) A symmetric relation< between processes
is a barbed bisimulation if, whenever (P,Q) ∈ <, it holds that

• every barb in P is also a barb in Q; and

• if P
τ
−→ P′ then there exists a Q′ such that Q

τ
−→ Q′ and (P′,Q′) ∈ <.

Barbed bisimilarity, written •

', is the largest barbed bisimulation.
Two processes P and Q are barbed congruent, written P ' Q, whenever C[P] •

' C[Q], for every
context C[].

Proposition 2.2 Barbed congruence is an equivalence relation.

3 Quality of an Encoding and Overview of our Results

3.1 Reasonable Encodings
We now study the relative expressive power of the languages in Λs,a,m,p by trying to encode one in
another. Formally, an encoding [[·]] is a function mapping terms of the source language into terms
of the target language. Associated to every encoding, there is a renaming policy that establishes how
names are translated. For example, it is possible that an encoding fixes some names to play a precise
role (see, e.g., the simple encoding of dataspaces via channels described in Remark 2.1) or it can
translate a single name into a tuple of names (a sample of this kind of encoding will be given at the
end of Section 5.1). This fact can be obtained either by assuming that the target language has more
names than the source one, or by relying on renaming policies, that we now formally define.

Definition 3.1 (Renaming policy) Given an encoding [[·]], its underlying renaming policy is a
function ϕ[[]] : N 7→ Nk, for some constant k > 0, such that ∀a, b ∈ N with a , b, it holds
that ϕ[[]](a) ∩ ϕ[[]](b) = ∅ (where ϕ[[]](·) is simply considered a set here).

The disjointness requirement we put on ϕ[[]] states that the renaming policy is, in some sense,
‘minimal’. Indeed, if two different names are associated to non-disjoint tuples, then any pair of
names should satisfy this property (names are all at the same level); but then, the names present in
every tuple can be considered ‘reserved’ and every name could be mapped to a shorter tuple.

We now define reasonable encodings.

Definition 3.2 (Reasonable Encoding) An encoding [[·]] is reasonable if it enjoys the following
properties:

10

1. (compositionality): for every unary operator op there exists a context Cop[] such that, for
every P, it holds that [[op(P)]] , Cop[[[P]]]; for every binary operator op there exists a
two-holes context Cop[1; 2] such that, for every P1 and P2, it holds that [[op(P1, P2)]] ,
Cop[[[P1]]; [[P2]]].

2. (name invariance): for every name substitution σ, it holds that [[Pσ]] = [[P]]σ′, where σ′

ordinately replaces ϕ[[]](a) with ϕ[[]](b), for every a replaced with b in σ.

3. (faithfulness): P ⇓ iff [[P]] ⇓, where P ⇓ means that P
α

==⇒ , for any α , τ; P ⇑ iff [[P]] ⇑,
where P ⇑ means that P

τ
−→ω.

4. (operational correspondence):

(a) if P =⇒ P′ then [[P]] =⇒' [[P′]];
(b) if [[P]] =⇒ Q then there exists a P′ such that P =⇒ P′ and Q =⇒' [[P′]].

Let us now briefly discuss the properties just defined. The encoding should be compositional, i.e.
the encoding of a compound process must be defined by plugging the encoding of its components
in a context that only depend on the operator under translation; of course, we must generalize in the
expected way the notion of context to deal with binary operators of Λs,a,m,p. Notice that some form
compositionality has been assumed for specific operators in [12, 13, 16, 35, 39]: mainly, it is required
that the parallel composition must be mapped homomorphically. By giving minimality up, here
we assume that every operator must be translated compositionally, since every concrete encoding
satisfies this property. Moreover, we do not assume any form of homomorphism, to strengthen our
impossibility results; notice that this does not undermine our encodability results, since we usually
map language operators different from input and output prefixes homomorphically.

A good encoding cannot depend on the particular names involved in the source process, since we
are dealing with a family of name-passing languages; for this reason, we required name invariance,
that is related to a similar property in [13, 35, 39]. Their formulation could be considered more
liberal (because no constraint is posed on σ′), but in practice our formulation is just more detailed,
since it fully describes the way in which σ′ must be chosen.

The idea behind faithfulness is that the encoding must not change the semantics of a source
term, i.e. it must preserve the observable behaviour of the term without introducing new behaviours.
There are several ways to formalize this idea. We decided to be quite liberal and consider only
the possibility of interacting with an external observer and of having non-terminating computations;
similar notions can also be found, e.g., in [13, 35, 39, 49]. Interaction is one of the key aspects in
concurrency theory; thus, mapping a process able (resp., unable) to interact with an observer into a
process unable (resp., able) to do the same is clearly a radical change in the semantics of the process
translated. Notice that our formulation of this property is really minimal: it only tests the possibility
of performing any visible action. This fact strengthens our impossibility results, but our encodability
results are not undermined by this choice: they would also enjoy properties expressed in terms of
more significant observables, such as those in [2, 7, 31] (see [24]). Concerning divergence, one
may argue that it does not matter if it arises with negligible probability or in unfair computations.
However, suppose that every encoding of L2 in L1 introduces some kind of divergence; this can
be used as an evidence of the fact that the constructs of L1 are not powerful enough to mimic the
constructs of L2: to preserve all the functionalities of a terminating source term, every encoding has
to add further behaviours to the encoded term. Thus, L1 cannot be as expressive as L2. A similar
property is crucial in [25] to prove that the test and set primitive is strictly more expressive than
read and write.

11

Finally, operational correspondence is traditionally not included among the criteria used to prove
impossibility results, whereas it is (almost) always present to prove soundness of encodings (see,
e.g., [41, 42, 43, 48]) or of implementations (see, e.g., [21, 38, 44]). We decided to include it as a
reasonableness criterion for two reasons: first, we want to use reasonableness also for encodability
results; second, if (almost) every known encoding is designed to enjoy it, we pragmatically argue
that it is one of the properties that every encoding should satisfy to be acceptable.

On the Formulation of Operational Correspondence. In Definition 3.2(4), we have adopted (a
slight generalization of) the most general formulation of operational correspondence put forward in
[34]. One of the main advantages of defining the latter property up to strong barbed congruence is
that such an equivalence allows us to get rid of dead code (possibly arising from the encoding) by also
keeping divergence into account. As we have argued, divergence is a key aspect when dealing with
expressiveness issues; thus, any equivalence (like weak barbed congruence) that equates a divergent
and a non-divergent process would not be appropriate in this setting.

Of course, our impossibility results would be stronger if operational correspondence were for-
mulated up to a coarser relation. However, all our impossibility results are proved by relying on the
fact that operational correspondence is formulated up to a τ-sensitive relation (where a relation< is
τ-sensitive whenever P< Q and Q

τ
−→ imply that P

τ
−→); indeed, we could replace strong barbed

congruence with any other such a relation (e.g., the expansion preorder [4]) without breaking our
proofs. On the contrary, we do not know how to prove such results without this assumption, though
we strongly conjecture that they all hold under any ‘meaningful’ behavioural relation.

It has to be said that all encodability results we are aware of (e.g., [21, 38, 41, 42, 43, 44, 48])
enjoy operational correspondence up to a τ-sensitive relation; the only notable exceptions are the
encodings of separate and of input-guarded choice π-calculus into the asynchronous π-calculus [32,
34]. We now sketch and discuss a different formulation of operational correspondence that covers
all the encodings we know. Since the need for ‘'’ in Definition 3.2(4) is usually to get rid of dead
processes left by the encoding, we could define such a property as

(a) if P =⇒ P′ then [[P]] =⇒∝ [[P′]];

(b) if [[P]] =⇒ Q then there exists a P′ such that P =⇒ P′ and Q =⇒∝ [[P′]]

where
K′ ∝ K whenever K′ ≡ (ν̃n)(K | H), for some H and ñ such that (ν̃n)H < 0

and< is an arbitrary behavioural relation (in particular, notice that we do not need< be τ-sensitive).
Under this formulation of operational correspondence, we would have that all the best known en-
codings appearing in the literature (including those in [32, 34]) are deemed reasonable; moreover,
all the impossibility proofs we are going to develop still hold, since ‘∝’ is τ-sensitive. However, the
definition of ‘∝’ is ad hoc and so more debatable, even if it exactly captures the intuition that we
want to express via operational correspondence; for this reason, we prefer to work with the more
standard formulation of operational correspondence presented in Definition 3.2(4).

3.2 Technical Preliminaries
One of the most critical things to prove in our encodability results will be Definition 3.2(4b) and that
the encoding does not introduce divergence. In several cases, we shall prove the following property

12

that, as we now show, implies both Definition 3.2(4b) and divergence reflection:

If [[P]]
τ
−→ Q then there exists a P′ such that P

τ
−→ P′ and Q % [[P′]] (1)

Intuitively, Q % [[P′]] means that Q can only reduce to a process barbed congruent to [[P′]]. Relation
‘%’, that we call confluence, resembles the expansion preorder [4] and is formally defined as follows:

Definition 3.3 (Confluence) We write P % Q whenever there exist P0, P1, . . . , Pk such that

• P , P0
τ
−→ P1

τ
−→ . . .

τ
−→ Pk ' Q; and

• for every i = 0, . . . , k − 1 it holds that Pi
τ
−→ P′ implies P′ ' Pi+1.

Lemma 3.1 If P ' Q and Q % R, then P % R.

Proof: Let Q , Q0
τ
−→ . . .

τ
−→ Qk ' R. Since P ' Q, we can find P0, . . . , Pk such that P , P0

τ
−→

P1
τ
−→ . . .

τ
−→ Pk and Pi ' Qi, for every i = 0, . . . , k. The thesis follows by transitivity of '.

Lemma 3.2 Let P % Q; then, P ⇑ if and only if Q ⇑.

Proof: Let P , P0
τ
−→ P1

τ
−→ . . .

τ
−→ Pk ' Q. If Q ⇑, then also Pk diverges (since ' is sensitive

to divergence) and, trivially, P ⇑. Vice versa, let P ⇑, i.e. P
τ
−→ P′1

τ
−→ . . .

τ
−→ P′k

τ
−→ By

definition, P′i ' Pi, for every i = 1, . . . , k; this implies that Pk and Q diverge.

Proposition 3.3 If [[·]] satisfies (1), then it does not introduce divergence and it satisfies Defini-
tion 3.2(4b).

Proof: Assume that [[P]] ⇑, i.e. [[P]]
τ
−→ Q

τ
−→ω; by (1), there exists a P

τ
−→ P′ such that Q %

[[P′]]. By Lemma 3.2, [[P′]] ⇑, i.e. [[P′]]
τ
−→ Q′

τ
−→ω; again by (1), there exists a P′

τ
−→ P′′ such

that Q′ % [[P′′]]. By iterating this reasoning, we can build up a divergent computation from P; thus,
[[·]] does not introduce divergence.

We now prove that [[·]] satisfies the following property:

If [[P]]
τ
−→n Q, for n ≥ 1, then P

τ
−→+ P′ for some P′ such that Q % [[P′]] (2)

Then, (2) and Definition 3.3 imply Definition 3.2(4b). The proof of (2) is by induction on n. The
base case is (1). For the inductive case, let [[P]]

τ
−→n Q′

τ
−→ Q; the inductive hypothesis states that

P
τ
−→+ P′ and Q′ % [[P′]], i.e. Q′

τ
−→k ' [[P′]]. If k > 0, then Q is barbed congruent to a process

Q′′ % [[P′]]; by Lemma 3.1, Q % [[P′]]. If k = 0, then [[P′]]
τ
−→ Q′′ such that Q′′ ' Q. By (1),

there exists a P′′ such that P′
τ
−→ P′′ and Q′′ % [[P′′]]. By Lemma 3.1, Q % [[P′′]], for P

τ
−→+ P′′;

this suffices to conclude.

To prove our impossibility results, we shall exploit the following property of any reasonable
encoding.

Proposition 3.4 Let P be a process such that P
τ
−→/ but [[P]]

τ
−→ ; then, [[·]] is not reasonable.

13

Proof: By contradiction. Since [[·]] is reasonable, it is operationally corresponding. Then,
[[P]]

τ
−→ Q implies that P =⇒ P′, for some P′ such that Q =⇒' [[P′]]. But the only P′ such that

P =⇒ P′ is P itself; thus, [[P]]
τ
−→+' [[P]] and this implies that [[P]] diverges.

The previous proposition shows that our notion of reasonableness implies promptness of our
encodings, as defined in [34]. This is due to the fact that we have formulated operational correspon-
dence up to a τ-sensitive relation, viz. strong barbed congruence. Indeed, if ‘'’ were not τ-sensitive,
then [[P]]

τ
−→+' [[P]] would not imply that [[P]] diverges. Nevertheless, given any non-prompt but

confluent encoding (i.e., where the preliminary ‘administrative’ τ-actions form a confluent reduc-
tion, as defined in Definition 3.3), we can easily define a corresponding prompt encoding. Thus, if
we prove the impossibility for a prompt encoding of L1 into L2, we can also conclude the impos-
sibility for a non-prompt but confluent encoding. On the contrary, our proofs do not formally state
anything about existence/non-existence of encodings that are both non-prompt and non-confluent.
We strongly conjecture that all the impossibility results we are going to prove hold also for such
encodings, but we have still not been able to prove them.

A simple corollary of the previous result that we shall extensively exploit in our proofs is the
following proposition, that regulates the possible evolutions of the encoding of a compound parallel
process.

Proposition 3.5 Let [[·]] be reasonable, P1
τ
−→/ and P2

τ
−→/ ; then [[P1 | P2]]

τ
−→ is possible only if

[[P1]] and [[P2]] communicate.

Proof: By compositionality, [[P1 | P2]] = C | [[[P1]]; [[P2]]]; then, [[P1 | P2]]
τ
−→ can be generated

only in four ways:

1. either by [[Pi]], for i ∈ {1, 2};

2. or by C | [1; 2];

3. or by a communication between C | [1; 2] and [[Pi]], for i ∈ {1, 2};

4. or by a communication between [[P1]] and [[P2]].

We now prove that only the last possibility does not lead to a contradiction; this suffices to conclude.
The first possibility is directly ruled out by Proposition 3.4; the second possibility is ruled out by
the fact that otherwise [[0 | 0]] would reduce (and, again by Proposition 3.4, [[·]] would not be
reasonable); similarly, the third possibility is ruled out by that fact that otherwise either [[P1 | 0]] or
[[0 | P2]] would reduce, according to whether i = 1 or i = 2.

3.3 Overview of the Results and Structure of our Proofs
The results of our paper are summarized in Figure 1. There, we write L1 ↔ L2 whenever L1 can be
reasonably encoded in L2 and vice versa. On the contrary, we write L2 → L1 whenever L2 can be
reasonably encoded in L1 but not vice versa. We shall say that L1 and L2 have the same expressive
power if L1 ↔ · · · ↔ L2; similarly, we shall say that L1 is (strictly) more expressive than L2 if
L2 � · · · � → � · · · � L1, for � ∈ {↔,→}. We shall say that L1 and L2 are incomparable if neither
L1 and L2 have the same expressive power, nor one is more expressive than the other. Finally, the
dashed arrow placed between L ,,, and L ,,, denotes existence of an ‘almost’ reasonable
encoding of the former in the latter; indeed, the encoding we are going to present does not satisfy

14

L ,,, oo // L ,,, oo // L ,,, oo // L ,,,

L ,,, oo // L ,,,

OO

L ,,, oo // L ,,,

OO

oo // L ,,, oo // L ,,,

L ,,,

88q
q

q
q

q
L ,,,

ffLLLLLLLLLL

L ,,,

OO

L ,,,

ffMMMMMMMMMM

88rrrrrrrrrr
L ,,,

OO

L ,,,

ffMMMMMMMMMM

88rrrrrrrrrr

OO

Figure 1: Overview of the Results

operational correspondence as formulated in Definition 3.2, but a slightly weaker form, akin to the
one satisfied by the encodings in [32, 34]. We have not been able to define a reasonable encoding
(as defined in Definition 3.2) nor to prove the impossibility of such a result.

For impossibility results, we shall work by contradiction and prove that existence of a reason-
able encoding [[·]] leads to contradict some reasonableness property, usually Proposition 3.4 or
divergence reflection. In particular, we shall find a non-evolving (or terminating) source process
whose encoding turns out to be evolving (or divergent). This way of working is somehow similar to
[12, 16, 49] but different from [13, 35, 39], where non-encodability is proved as a corollary of the
fact that the source language can solve a problem that the target cannot solve.

For encodability results, we shall recall Remark 2.1 whenever the encoding is trivial. Other-
wise, we shall present an encoding by only describing the translation of the key operators, usually
input and output prefixes; the remaining operators will be translated homomorphically (this trivially
satisfies Definition 3.2(1)). Then, we are going to explicitly prove only some of the reasonable-
ness conditions, usually that the encoding does not introduce divergence and Definition 3.2(4b).
Definition 3.2(2) and the first part of Definition 3.2(3) hold by construction of the encoding. Def-
inition 3.2(4a) can be routinely proved by a double induction: the first one is over the number of
τ-steps in the =⇒ of the premise; the second one is used to prove the claim

if P
τ
−→ P′ then [[P]]

τ
=⇒' [[P′]] (3)

and it is carried out over the shortest inference for
τ
−→ . Finally, preservation of divergence is a

trivial consequence of (3).

15

L ,,, oo // L ,,,

L ,,,

OO

L ,,,

OO

oo // L ,,,

L ,,,

88r
r

r
r

r
L ,,,

eeLLLLLLLLLL

L ,,,

ffLLLLLLLLLL

99rrrrrrrrrr

Figure 2: The Hierarchy of Synchronous Communication Primitives

4 On the Relative Expressive Power of Synchronous Communi-
cation Primitives

In this section, for the sake of presentation, we first restrict our attention to synchronous communi-
cation primitives and rigorously prove the relationships depicted in Figure 2.

L ,,, and L ,,, have the same expressive power

To prove this claim, it suffices to prove that L ,,, can be reasonably encoded in L ,,,, since
the latter can be encoded in the former (see Remark 2.1). The only feature of L ,,, not present
in L ,,, is the possibility of specifying the name of a channel where the exchange happens.
However, thanks to polyadicity and pattern-matching, this feature can be very easily encoded in
L ,,,: it suffices to impose that the first name of every datum represents the name of the channel
where the interaction is scheduled and that every input argument starts with the corresponding actual
template. This discipline is rendered by the following encoding:

[[a〈̃b〉.P]] , 〈a, b̃〉.[[P]] [[a(T̃).P]] , (paq, T̃).[[P]]

It is interesting to notice that this discipline is assumed in the original presentation of L [22].

Proposition 4.1 There exists a reasonable encoding of L ,,, into L ,,,.

Proof: For the encoding we have presented, Definition 3.2(4b) can be proved in the following
formulation (that strengthens (1)): if [[P]]

τ
−→ Q, then Q = [[P′]] for some P′ such that P

τ
−→ P′.

This result1 is proved by an easy induction over the shortest inference for
τ
−→ and it entails that the

encoding cannot introduce divergence. The remaining reasonableness requirements are routinely
proved.

1Such a formulation of Definition 3.2(4b) would also enable us to prove full abstraction with respect to strong barbed
congruence.

16

L ,,, is more expressive than L ,,,

To prove this claim, it suffices to prove that there exists no reasonable encoding of L ,,, in
L ,,,, since the latter is a sub-language of the former.

Theorem 4.2 There exists no reasonable encoding of L ,,, in L ,,,.

Proof: Assume that [[·]] is reasonable and consider the process a(pbq, pcq) | a〈b, c〉, for a, b and c
pairwise distinct; such a process evolves into 0. By operational correspondence and faithfulness,
[[a(pbq, pcq) | a〈b, c〉]]

τ
=⇒' [[0]]. By Proposition 3.5, [[a(pbq, pcq)]] and [[a〈b, c〉]] must communi-

cate; thus, we have that [[a(pbq, pcq)]]
n?m
−−−→ and [[a〈b, c〉]]

(νm̃)n!m
−−−−−−→ (or vice versa – and this case is

handled similarly), for some n, m̃ and m.
If the input of [[a(pbq, pcq)]] has been generated by relying on a formal template, then

[[a(pbq, pcq)]]
n?l
−−−→ , for every l. Hence, [[a(pbq, pcq) | a〈c, b〉]]

τ
−→ , if n < ϕ[[]](b) ∪ ϕ[[]](c); else,

[[a(pbq, pcq) | b〈a, c〉]]
τ
−→ , if n ∈ ϕ[[]](c), and [[a(pbq, pcq) | c〈b, a〉]]

τ
−→ , otherwise. So, assume that

the input of [[a(pbq, pcq)]] relies on an actual template (thus, m̃ must be ∅); we then consider the
following possibilities for n and m:

1. {n,m} ∩ ϕ[[]](c) = ∅: let d , c and ϕ[[]](d) ∩ {n,m} = ∅. Then, consider the permutation that

swaps c and d; thus, [[a〈b, d〉]]
n!m
−−−→ and [[a(pbq, pcq) | a〈b, d〉]]

τ
−→ .

2. n ∈ ϕ[[]](c), m < ϕ[[]](b): let d , b and ϕ[[]](d) ∩ {n,m} = ∅. Now, consider the permutation
that swaps b and d; like before, [[a(pbq, pcq) | a〈d, c〉]]

τ
−→ .

3. n ∈ ϕ[[]](c), m ∈ ϕ[[]](b): let d , a and ϕ[[]](d) ∩ {n,m} = ∅. Consider the permutation that
swaps a and d, and conclude that [[a(pbq, pcq) | d〈b, c〉]]

τ
−→ .

4. m ∈ ϕ[[]](c), n < ϕ[[]](b): like case 2.

5. m ∈ ϕ[[]](c), n ∈ ϕ[[]](b): like case 3.

In all these cases, we have that [[·]] is not reasonable because of Proposition 3.4.

L ,,, is more expressive than L ,,,

To prove this claim, it suffices to prove that there exists no reasonable encoding of L ,,, in
L ,,,, since the latter is a sub-language of the former.

Theorem 4.3 There exists no reasonable encoding of L ,,, in L ,,,.

Proof: Consider the process [[a(pbq) | a〈b〉]], for a , b. Like in Theorem 4.2, it must be that

[[a(pbq)]]
n?m
−−−→ and [[a〈b〉]]

(νm̃)n!m
−−−−−−→ (or vice versa, that is handled similarly), for some n, m̃ and m;

by Proposition 2.1(1), this fact implies that [[a(pbq)]]
n?l
−−−→, for every l.

If n < ϕ[[]](b), then choose any c , b such that n < ϕ[[]](c) and the permutation of names

that swaps b and c; by name invariance, it holds that [[a〈c〉]]
(νm̃′)n!m′
−−−−−−−−→, where m′ and m̃′ are the

renamings of m and m̃. Then, [[a(pbq) | a〈c〉]]
τ
−→ , whereas a(pbq) | a〈c〉

τ
−→/ . By Proposition 3.4,

[[·]] is not reasonable.
If n ∈ ϕ[[]](b), then choose c , a such that n < ϕ[[]](c), the permutation of names that swaps a

and c, and work like before, with process [[a(pbq) | c〈b〉]].

17

L ,,, and L ,,, have the same expressive power

Clearly, L ,,, is a sub-language of L ,,, and can be reasonably encoded in it. Also the
converse holds, by exploiting, e.g., Milner’s encoding of polyadic communications in monadic ones
(see [29]). Notice that, for the latter encoding, it is crucial that L ,,, is typed. Without this
assumption we can break reasonableness, as shown below.

Theorem 4.4 There exists no reasonable encoding of the untyped L ,,, in L ,,,.

Proof: Consider the process a(x, y) | a〈b, c〉; again, [[a〈b, c〉]]
(νd̃)n!d
−−−−−−→ and [[a(x, y)]]

n?d
−−−→ (or vice

versa, that is handled similarly), for some n, d and d̃. We consider the following sub-cases:

1. If n < ϕ[[]](a), choose e , a with n < ϕ[[]](e); by name invariance, [[e〈b, c〉]]
(νd̃′)n!d′
−−−−−−−→ and

[[a(x, y) | e〈b, c〉]]
τ
−→ , whereas a(x, y) | e〈b, c〉

τ
−→/ .

2. If n ∈ ϕ[[]](a), consider a(x, y, z) | a〈b, c, c〉; like before, [[a〈b, c, c〉]]
(νẽ′)m!e
−−−−−−→ and

[[a(x, y, z)]]
m?e
−−−→ . Now,

(a) if m < ϕ[[]](a), we work like in case 1 above;

(b) if m = n, we have that [[a(x, y) | a〈b, c, c〉]]
τ
−→ ;

(c) otherwise, sequentially consider a(x1, . . . , xh) | a〈b1, . . . , bh〉, for h > 3, until either
[[a〈b1, . . . , bh〉]] outputs on a name not in ϕ[[]](a) or it outputs on a name already used by
a [[a〈b1, . . . , bh′〉]], for h′ < h (this surely happens since ϕ[[]] associates to every name a
k-tuple of names, for k fixed). In the first case, we fall in a situation similar to 2(a); in
the second case, we fall in a situation similar to 2(b).

L ,,, is more expressive than L ,,,

To prove this result, we should show that L ,,, can be reasonably encoded in L ,,, and prove
that the converse cannot hold. We start with the second task.

Theorem 4.5 There exists no reasonable encoding of L ,,, in L ,,,.

Proof: By contradiction, assume that there exists a reasonable encoding [[·]]. Let a, b, c and d
be pairwise distinct names, let Ω denote a divergent process and define P , if x = d then Ω.
Operational correspondence and faithfulness imply that [[a(x).P | a〈b〉]] must perform at least one
τ-step and reduce to (a process equivalent to) [[P{b/x}]]. Clearly, in such a computation at least one
name in ϕ[[]](b) must be transmitted, otherwise [[a(x).P | a〈d〉]] would reduce to [[P{b/x}]]. To make
the proof lighter, we shall assume that |ϕ[[]](·)| = 1 and let ϕ[[]](n) = n′, for every name n; the general
case can be obtained by adapting what follows to every component of ϕ[[]](b) transmitted in the
computation leading [[a(x).P | a〈b〉]] to [[P{b/x}]].

By Proposition 3.5, it must be that [[a(x).P]] and [[a〈d〉]] communicate; thus, since [[·]] is com-
positional, C | [1; 2], the context used to compositionally translate the parallel composition opera-
tor, must be structurally equivalent to (ν̃r)(1 | 2 | P̂), thanks to Proposition 3.5. By exploiting Propo-

sition 2.1(2), we have that [[a(x).P]]
ρ1

==⇒ R1
?b′
−−−→ R2

ρ2
==⇒ R and [[a〈b〉]] | P̂

ρ1
==⇒ R3

!b′
−−−→ R4

ρ2
==⇒ R′,

18

for b′ not occurring in ρ1, ?b′ generated by an input action with a formal template and
(ν r̃, s̃1, s̃2)(R | R′) ' [[P{b/x}]], with s̃i = B(ρi)∪ B(ρi) for i ∈ {1, 2}. In particular, ρ2 , φ1 ·. . .·φk,
for φi ∈ {?ni, (νñi)!ni}, and ρ2 , φ1 · . . . · φk, for φi = (νñi)!ni, if φi =?ni, and φi =?ni, otherwise.

Let σ be the permutation that swaps a with c and b with d. By name invariance,

[[c(x).Pσ]]
ρ′1

==⇒ R1σ
′

?d′
−−−→ R2σ

ρ′2
==⇒ Rσ′ and [[c〈d〉]] | P̂

ρ′1
==⇒ R3σ

′
!d′
−−−→ R4σ

ρ′2
==⇒ R′σ′, for ρ′1 =

ρ1σ
′ and ρ′2 = ρ2σ

′; here σ′ denotes the permutation of names induced by σ, as defined in Defini-
tion 3.2(2) (in the simplified case where |ϕ[[]](·)| = 1, σ′ only swaps a′ with c′ and b′ with d′). More
precisely, ρ′2 , φ′1 · . . . · φ

′
k and ρ′2 , φ′1 · . . . · φ

′
k, for φ′i , φiσ

′ and φ′i , φiσ
′.

Now, consider Q , (a(x).P | a〈b〉) | (c〈d〉 | c(x).Pσ); trivially, Q 6⇑ whereas, as we shall see,
[[Q]] ⇑. This yields the desired contradiction. By compositionality, [[Q]] is structurally equivalent
to

(ν̃r)((ν̃r)([[a(x).P]] | [[a〈b〉]] | P̂) | (ν̃r)([[c(x).Pσ]] | ([[c〈d〉]] | P̂) | P̂)

Then, consider

[[Q]] =⇒ (ν̃r)((ν r̃, s̃1)(R1 | R3) | (ν r̃, s̃1)(R1σ
′ | R3σ

′) | P̂)

−→−→ (ν̃r)((ν r̃, s̃1)(R2{d
′
/b′} | R4) | (ν r̃, s̃1)((R2σ

′){b′/d′} | R4σ
′) | P̂)

where R1 received d′ in place of b′ and R1σ
′ received b′ in place of d′ (this is possible since

these inputs do not rely on actual templates). Now, R2{d
′
/b′}

φ′′1 ·...·φ
′′
k

=======⇒ , where φ′′i , φ′i{
d′/b′}, and

(R2σ){b′/d′}
φ′′1 ·...·φ

′′
k

=======⇒ , where φ′′i , φ
′
i{

b′/d′}. Finally, consider the computation

(ν̃r)((ν r̃, s̃1)(R2{d
′
/b′} | R4) | (ν r̃, s̃1)((R2σ

′){b′/d′} | R4σ
′) | P̂)

=⇒ (ν̃r)((ν̃r, s̃1, s̃2)(R{d′/b′} | R′{d′/b′}) | (ν̃r, s̃1, s̃2)((Rσ′){b′/d′} | (R′σ′){b′/d′}) | P̂)

obtained by synchronizing

• φ′′i with φi and φ′′i with φ′i , if b′ < N(φi) (and hence d′ < N(φ′i)), or

• φ′′i with φ′i and φ′′i with φi, otherwise.

Now, (ν r̃, s̃1, s̃2)((Rσ′){b′/d′} | (R′σ′){b′/d′}) , ((ν r̃, s̃1, s̃2)(R | R′))({b′/d′} ◦ σ′) '

[[P{b/x}]]{b′/d′, b′/b′, a′/c′, c′/a′} = [[if b = b then Ω]], that is a divergent process.

Let us now consider the possibility of reasonably encoding L ,,, in L ,,,; this task is
more problematic and, indeed, we have still not been able to develop a reasonable encoding, nor to
prove an impossibility result. We now present two possible (but not fully satisfactory) encodings
that should give a feeling of the encodability of L ,,, in L ,,,.

If we had assumed non-deterministic choice in our languages, a reasonable encoding could have
been obtained by translating all the operators homomorphically, except for

• 〈b〉.P, that is translated into ether〈b〉.[[P]] + b〈b〉.[[P]];

• (x).P, that is translated into ether(x).[[P]]; and

• (pbq).P, that is translated into b(y).[[P]].

19

Here, ether is a reserved name and ‘+’ denotes non-deterministic choice between two processes.
Intuitively, [[〈b〉.P]] must enable two different kinds of input: a ‘generic’ input, viz. (x).P, that
receives b (via the channel ether, that models the shared dataspace), and an ‘exact’ input, viz.
(pbq).P, in which b is only used for testing purposes. This latter kind of interaction can be naturally
implemented via the channel-based communication of L ,,, in which the exchanged datum is
useless. If we extend Λs,a,m,p with (guarded) choice, the encoding just described is reasonable (this
is easy to prove, by exploiting Proposition 3.3 and the fact that (νc)(c〈b〉 | c(x).P) % P{b/x} holds in
L ,,,). However, non-deterministic choice in an asynchronous setting is usually omitted; hence,
for the sake of uniformity, we prefer to leave Λs,a,m,p without it.

Let us now try to adapt the philosophy underlying the encoding just described to a setting with-
out non-deterministic choice; to this aim, we shall exploit ideas from [32, 34]. Let ether be a
reserved name that can be isolated in the following way: (1) linearly order the set of names N as
{n0, n1, n2, . . .}; (2) let ϕ[[]] map ni to ni+1, for every i; (3) the reserved name ether is n0. For the sake
of presentation, we shall not explicitly use this renaming policy in the presentation of the encoding,
but it implicitly holds. The encoding translates all the operators homomorphically, except for:

[[〈b〉.P]] , (νc, d1, d2, g)(c〈b〉 | ether〈c, d1, d2, g〉
| b〈c, d1, d2, g〉 | g().[[P]]) for c, d1, d2, g fresh

[[(x).P]] , ether(y, z1, z2,w).(y(x).(z2〈〉 | w〈〉.[[P]])
| z1().[[(x).P]]) for y, z1, z2,w fresh

[[(pbq).P]] , b(y, z1, z2,w).(y(x).(z1〈〉 | w〈〉.[[P]]) | z2().[[(pbq).P]]) for x, y, z1, z2,w fresh

For the sake of presentation, we have used polyadic communications and recursive process defini-
tions that, however, can be easily implemented in L ,,,. Intuitively, the output along c is used for
choosing whether the encoding of an output interacts with the encoding of a formal or of an actual
input; in the former case, the datum is used for replacing x with b; in the latter case, the datum is
useless. Channels d1 and d2 are used to properly activate a continuation process: if there is an output
available along d1, then a formal input has succeeded and any other actual input must be restored;
the situation is symmetric whenever there is an output along d2. Finally, channel g is used to unleash
the continuation of the output process.

The problem of this encoding is that it does not enjoy operational correspondence as formulated
in Definition 3.2. Indeed, we have that (the case with an actual input is symmetric):

[[〈b〉 | (x)]] =⇒ (νc, d1, d2, g)(d2〈〉 | b〈c, d1, d2, g〉 | d1().[[(x)]]) , R

and R is not barbed congruent to [[〈b〉 | (x)]] nor to [[0]] (of course, a similar problem also arises in
the converse direction of operational correspondence, viz. Definition 3.2(4a)). However, R does not
affect the behaviour of any encoded term. Indeed, whenever put in parallel with [[P]], its presence
is either transparent to [[P]] or, if R interacts with [[P]], then P evolves to a process with a parallel
component starting with (pbq); but in that case, R annihilates itself in two τ-steps and restores the
encoding of (pbq). It is worth noting that also the encodings of the separate and of the input-guarded
choice π-calculus into the asynchronous π-calculus [32, 34] suffer from similar problems. For these
reasons, we believe that the encoding we have just presented testifies to the fact that L ,,, can be
encoded in L ,,, (for this reason we put a dashed arrow from the former to the latter in Figures 1
and 2); however, a definitive answer to the possibility of reasonably encoding the former in the latter
is still missing.

20

L ,,, is more expressive than L ,,,

We start with a reasonable encoding of L ,,, in L ,,,. The only feature of L ,,, is that
it can check the arity of a datum before retrieving it (see the definition of function M). This,
however, can be mimicked by the channel-based communication of L ,,, by assuming a reserved
channel for every possible arity: a datum of arity k will be represented as an output over channel
k; an input of arity k will be represented as an input from k; a communication over k in L ,,,
can happen if and only if pattern-matching succeeds in L ,,,; finally, the exchanged datum is a
restricted name that will be used for the actual data exchange.

The encoding assumes that 0, 1, . . . , k, . . . are reserved names, that can be obtained as expected:
(1) linearly order the set of names N as {n0, n1, n2, . . .}; (2) let ϕ[[]] map ni to n2i+1, for every i; (3)
the generic reserved name k is n2k.

[[〈b1, · · · , bk〉.P]] , (νn) k〈n〉.n〈b1〉.n〈b2〉. · · · .n〈bk〉.[[P]] for n fresh

[[(x1, · · · , xk).P]] , k(x).x(x1).x(x2). · · · .x(xk).[[P]] for x fresh

Also here, for the sake of simplicity, the renaming policy is kept implicit in the presentation of the
encoding.

Reasonableness of this encoding2 can be easily proved, by exploiting Proposition 3.3 and the
fact that (νc)(c〈b〉 | c(x).P) % P{b/x} holds in L ,,,. We now have to prove that the converse is
not possible.

Theorem 4.6 There exists no reasonable encoding of L ,,, in L ,,,.

Proof: We start with process a〈b〉 | a(x), for a , b; it holds that [[a〈b〉]]
(νc̃′)!̃c
−−−−−→ and [[a(x)]]

?̃c
−−→

(or vice versa, that is similar), for some c̃′ and c̃. By name invariance, [[b〈a〉]]
(νd̃′)!d̃
−−−−−→ , where d̃

and d̃′ are obtained by ordinately swapping ϕ[[]](a) and ϕ[[]](b) in c̃ and c̃′; thus, |d̃| = |̃c|. Now, by

Proposition 2.1(1), [[a(x)]]
?d̃
−−→ ; hence, [[b〈a〉 | a(x)]]

τ
−→ , whereas b〈a〉 | a(x)

τ
−→/ . This suffices to

conclude.

L ,,, and L ,,, are incomparable

To prove this claim, we must show the impossibility of a reasonable encoding of L ,,, in
L ,,, and vice versa.

Theorem 4.7 There exists no reasonable encoding of L ,,, in L ,,,.

Proof: Easily derivable from the proof of Theorem 4.6, by using process 〈a〉 | (paq).

Theorem 4.8 There exists no reasonable encoding of L ,,, in L ,,,.

2This encoding enjoys full abstraction with respect to barbed congruence restricted to the translation of L ,,,-
contexts. This is quite an expectable property because it states that contexts abiding by the protocol put forward by the
encoding cannot distinguish the translation of equivalent source language terms. A more liberal property consists in defining
a type system that characterizes the contexts abiding by the protocol of the encoding and proving a typed full abstraction
result, in the same vein as, e.g., [41]; we believe that such a result holds for this encoding, though we have not spelled the
details out.

21

M, D, N
M, D, P
P, D, N

 a→ s

M, C, N
M, C, P
P, D, P
P, C, N
P, C, P


a↔ s

Figure 3: The Expressiveness of Synchrony

Proof: The proof is similar to that of Theorem 4.5. Assume that [[·]] is reasonable; consider the
process P , (x, y).if x = a then if y = d then Ω; choose c , a and b , d; consider the permutation
of names σ swapping a with c and b with d; finally, show that Q , (P | 〈a, b〉) | (Pσ | 〈c, d〉) is not
divergent, whereas [[Q]] ⇑.

L ,,, and L ,,, are more expressive than L ,,,

Clearly, L ,,, is a sub-language of both L ,,, and L ,,,; of course, it can be reasonably
encoded into them. The converse does not hold, as proved in the following theorem.

Theorem 4.9 There exist no reasonable encodings of L ,,, and L ,,, in L ,,,.

Proof: Easy consequence of Theorems 4.7 and 4.8.

5 Adding Asynchronous Communications
We now extend the hierarchy in Figure 2 by adding asynchronous communication primitives. We
start by considering those languages in which synchrony does not play a crucial role (i.e., the asyn-
chronous versions of the primitives have the same expressive power as the synchronous ones). We
then move to analyze those primitives in which the presence of synchrony matters (i.e., the asyn-
chronous versions of the primitives are less expressive than the synchronous ones). Finally, we give
some more results needed to properly place all the asynchronous primitives in the hierarchy.

Our results are summarized in Figure 3. There, a → s means that the asynchronous version of
the primitive can be reasonably encoded in its synchronous counterpart but not vice versa, whereas
a ↔ s means that the two versions have the same expressive power (i.e., one can be encoded in the
other).

It is evident that channels are the only features that ensure reasonable encodings of synchrony
in asynchrony: reserved channels can be used for synchronization purposes. The only exception
seems to be L ,,,, that can be reasonably encoded in L ,,,: however, L ,,, can encode
channels (since it is more expressive than L ,,,). On the contrary, the remaining dataspace-based
languages are too weak to ensure any reasonable encoding: the problem is that there is no way to
associate a datum with the process that emitted it. The latter fact entails that those languages that
exploit such primitives (e.g., Mobile Ambients [14] or CCS [28]) cannot freely interchange their
synchronous and asynchronous versions.

22

5.1 When Synchrony does not Matter
L ,,, and L ,,, have the same expressive power

Clearly, L ,,, can be seen as a sub-language of L ,,,, see Remark 2.1; we now prove that
L ,,, can be reasonably encoded in L ,,,. It suffices to let the first name of every datum be a
restricted channel used to unleash the continuation of the output prefix; conversely, every template
starts with a new variable over which an acknowledgment is sent upon reception of the datum. This
discipline is rendered by the following encoding:

[[a〈̃b〉.P]] , (νc)(a〈c, b̃〉 | c().[[P]]) for c fresh

[[a(T̃).P]] , a(x, T̃).(x〈〉 | [[P]]) for x fresh

The proof of reasonableness3 relies on Proposition 3.3 and on the fact that in L ,,, it holds that
(νc)(c〈〉 | c().P) % P.

L ,,, and L ,,, have the same expressive power

Again, L ,,, can be seen as a sub-language of L ,,,, see Remark 2.1; we now prove that
L ,,, can be reasonably encoded in L ,,,. Consider the following translation:

[[〈b1, . . . , bk〉.P]] , (νc)(〈c, c, b1, . . . , bk〉 | (pcq).[[P]]) for c fresh

[[(T1, . . . ,Tk).P]] , (x, y,T1, . . . ,Tk).(〈x〉 | [[P]]) for x, y fresh

Intuitively, data of length one in a translated term are ‘auxiliary’ messages used as acknowledgments
that activate the continuation of an output action. The translation of output prefixes guarantees that
‘actual’ data in the source term are translated to data whose length is at least two; this clear distinction
ensures that no interference between an ‘actual’ data exchange and an ‘auxiliary’ acknowledgment
exchange can ever happen. Moreover, the fact that acknowledgments rely on restricted names rules
out interferences between them.

Also for this encoding, the proof of reasonableness4 relies on Proposition 3.3 and on the fact that
in L ,,, it holds that (νc)(〈c〉 | (pcq).P) % P.

L ,,, and L ,,, have the same expressive power

This fact is an easy corollary of the encodability of L ,,, in L ,,,: it suffices to restrict both
the domain and the range of the encoding function to the sub-calculi of L ,,, and L ,,, with
formal templates only.

L ,,, and L ,,, have the same expressive power

On one hand, L ,,, can be seen as a sub-language of L ,,,; on the other hand, L ,,, can
be reasonably encoded in L ,,,, see [5, 26].5

3In [24], we proved full abstraction with respect to barbed congruence restricted to the translation of L ,,,-contexts;
moreover, we conjecture that such a result can be extended to full abstraction with respect to typed barbed congruence.

4In [24] we proved that it enjoys full abstraction with respect to barbed congruence restricted to the translation of
L ,,,-contexts; a similar result should hold also in terms of typed barbed congruence.

5The first encoding also enjoys full abstraction with respect to barbed congruence restricted to translated L ,,,-
contexts and typed barbed congruence, as proved in [11, 41].

23

L ,,, and L ,,, have the same expressive power

Trivially, L ,,, can be encoded in L ,,,. The converse can be proved by means of the
following encoding. First, assume the renaming policy ϕ[[]] that maps every name a to a triple of
names that we symbolically denote aN , a0, a1: aN represents the ‘name’ of the channel, whereas
a0 and a1 are used for synchronization purposes. Then, encode all the operators homomorphically,
except for

[[a〈b〉.P]] , a0〈bN〉 | a1(pbNq).(bN〈b0, b1〉 | [[P]])

[[a(x).P]] , a0(xN).(a1〈xN〉 | xN(x0, x1).[[P]])

[[a(pbq).P]] , a0(pbNq).(a1〈bN〉 | bN(x0, x1).[[P]]) for x0, x1 fresh

[[(νa)P]] , (ν aN , a0, a1) [[P]]

[[if a = b then P else Q]] , if aN = bN then [[P]] else [[Q]]

Notice that polyadic communications are just a shortcut: Honda and Tokoro’s [26] encoding of
polyadic asynchronous channel-based communication (without pattern matching) into monadic ex-
changes can be exploited here.

Intuitively, the output on a0 signals the existence of an output, that can be consumed either by (the
encoding of) a formal input or by (the encoding of) an actual input. In the first case, the argument of
the action is used to (partially) instantiate the input variable; in the second case, the argument is used
for matching purposes. The following two communications are used to activate the continuation
processes; moreover, the last one is also needed to complete the instantiation of the input variable,
when a formal input is involved. Notice the similarities between this encoding and the one in [5];
we just want to remark that restricted channels are not needed here, thanks to pattern-matching.

To prove reasonableness of this encoding, we cannot rely on Proposition 3.3 because the encod-
ing we have just presented does not satisfy (1); this will require more work for proving operational
correspondence and divergence reflection. To this aim, let us fix a simplifying notation: A0 and A0
will denote the starting input and output of the encoding of a communication (i.e., the transmission
of bN along a0, for some a and b); A1 and A1 will denote the successive input and output (viz., along
a1); and BN and BN will denote the final input and output (viz., along bN). To be precise, BN and BN

are sequences of message exchanges but, since they are confluent, we can be sloppy on this point.
Moreover, let us denote with #0 the number of synchronizations between some actions of kind A0
and A0 in a given computation; #1 and #N are defined in a similar way. The crucial lemma that will
enable us to prove reasonableness now follows.

Lemma 5.1 Let [[P]]
τ
−→h Q, then:

1. Q ≡ (ν̃u)([[P0]] |
∏m

i=1 Ai
1.(B

i
N | [[Pi

1]]) |
∏m+n

j=1 B j
N .R

j
2 |

∏m
p=1 A

p
1 |

∏n
q=1 B

q
N)

where
∏n

r=1 · · · denotes the parallel composition of n processes ‘· · · ’; moreover, we let R j
2 ,

[[P j
2]]{bN/xN} whenever B j

N = bN(x0, x1) and x ∈ F(P j
2), and we let R j

2 , [[P j
2]], otherwise.

2. P
τ
−→#0 (ν̃v)(P0 |

∏m
i=1 Pi

1 |
∏m+n

j=1 P j
2σ j), for ũ = ϕ[[]] (̃v); moreover, σ j = {b/x}, whenever

B j
N = bN(x0, x1) and x ∈ F(P j

2), and σ j = ε, otherwise.

24

Proof: Let us call Q1 the sub-process
∏m

i=1, Q2 the sub-process
∏m+n

j=1 , Q3 the sub-process
∏m

p=1
and Q4 the sub-process

∏n
q=1. Both claims are proved by induction on h. The base case (h = 0) is

trivial. For the inductive case, let [[P]]
τ
−→h−1 Q′

τ
−→ Q; by induction,

Q′ ≡ (ν̃u)([[P0]] |
m∏

i=1

Ai
1.(B

i
N | [[Pi

1]]) |
m+n∏
j=1

B j
N .R

j
2 |

m∏
p=1

A
p
1 |

n∏
q=1

B
q
N)

Moreover, P
τ
−→k (ν̃v)(P0 |

∏m
i=1 Pi

1 |
∏m+n

j=1 P j
2σ j), where k is #0 referred to the computation

[[P]]
τ
−→h−1 Q′. We consider all the possible ways in which Q′

τ
−→ Q can be generated.

1. It is generated by [[P0]]: this is possible only if it is a synchronization between some A0 and
A0; thus, [[P0]] ≡ [[P′0]] | [[a〈b〉.P3]] | [[a(T).P4]], for some T matching against b. Then,

Q ≡ (ν̃u)([[P′0]] |
m+1∏
i=1

Ai
1.(B

i
N | [[Pi

1]]) |
m+1+n∏

j=1

B j
N .R

j
2 |

m+1∏
p=1

A
p
1 |

n∏
q=1

B
q
N)

where the (m+1)-th component of Q1 is a1(pbNq).(bN〈b0, b1〉 | [[P3]]), the (m+1)-th component
of Q3 is a1〈bN〉 and the (m + 1 + n)-th component of Q2 is bN(x0, x1).Rm+1+n

2 , with Rm+1+n
2 =

[[P4]] if T = pbq and Rm+1+n
2 = [[P4]]{bN/xN} if T = x. Then,

P
τ
−→k (ν̃v)(P0 |

m∏
i=1

Pi
1 |

m+n∏
j=1

P j
2σ j)

τ
−→ (ν̃v)(P′0 | P3 | P4σ |

m∏
i=1

Pi
1 |

m+n∏
j=1

P j
2σ j)

for σ = M(T ; b); moreover, k + 1 is #0 in the computation [[P]]
τ
−→h Q.

2. It is a synchronization between Q1 and Q3: in this case,

Q ≡ (ν̃u)([[P0]] | [[Pm
1]] |

m−1∏
i=1

Ai
1.(B

i
N | [[Pi

1]]) |
m+n∏
j=1

B j
N .R

j
2 |

m−1∏
p=1

A
p
1 |

n+1∏
q=1

B
q
N)

where the (n + 1)-th component of Q4 is B
m
N and the first claim holds because n + m = (n +

1) + (m − 1). The second claim, holds by inductive hypothesis and by the fact that k is #0 in
the computation [[P]]

τ
−→h Q.

3. It is a synchronization between Q2 and Q4: this case is similar to the previous one; just notice
that now

Q ≡ (ν̃u)([[P0]] | R |

m∏
i=1

Ai
1.(B

i
N | [[Pi

1]]) |
m+n−1∏

j=1

B j
N .R

j
2 |

m∏
p=1

A
p
1 |

n−1∏
q=1

B
q
N)

where R is [[Pm+n
2 {b/x}]], if Rm+n

2 = [[Pm+n
2]]{bN/xN}, and is [[Pm+n

2]], otherwise.

4. It is a synchronization between Q3 and [[P0]]: in this case, [[P0]] exhibits at top-level
the encoding of an output involving the same names (both of the channel and of the ar-
gument) as some of the A1 in Q3; correspondingly, there must be a component in Q2

25

starting with a formal input over the argument name. Moreover, such an A1 belongs to
Q3 because it communicated with some output with the same names. Thus, [[P0]] ≡
[[P′0]] | [[am〈bm〉.P̂]], Q1 ≡ am

1 (pbm
Nq).(b

m
N〈b

m
0 , b

m
1 〉 | [[Pm

1]]) |
∏m−1

i=1 Ai
1.(B

i
N | [[Pi

1]]), Q2 ≡

bm+n
N (xm+n

0 , xm+n
1).Rm+n

2 |
∏m+n−1

j=1 B j
N .R

j
2 and Q3 ≡ am

1 〈b
m
N〉 |

∏m−1
p=1 A

p
1 . Now,

Q ≡ (ν̃u)([[P′0 | P̂ | am〈bm〉.Pm
1]] |

m−1∏
i=1

Ai
1.(B

i
N | [[Pi

1]]) |
m+n∏
j=1

B j
N .R

j
2 |

m−1∏
p=1

A
p
1 |

n+1∏
q=1

B
q
N)

Indeed, the am
0 〈b

m
N〉 left by [[am〈bm〉.P̂]] after the synchronization can be joined with

am
1 (pbm

Nq).(b
m
N〈b

m
0 , b

m
1 〉 | [[Pm

1]]) to restore the encoding of am〈bm〉.Pm
1 ; moreover, [[P̂]] is un-

leashed and the associated output bm
N〈b

m
0 , b

m
1 〉 becomes the (n + 1)-th component of Q4.

Concerning the second claim, we have that the (m + n)-th component of Q2 came
from an input am(T).Pm+n

2 , for some T such that M(T ; b) = σm+n and Rm+n
2 =

Pm+n
2 , if T = pbq, while Rm+n

2 = Pm+n
2 {bN/xN}, if T = x. Thus, we have that

P
τ
−→k1 (νṽ′)(am〈bm〉.Pm

1 | am(T).Pm+n
2 | P′)

τ
−→k2 (ν̃v)(P0 |

∏m
i=1 Pi

1 |
∏m+n

j=1 P j
2σ j), for k =

k1 + k2. Now, notice that both [[Pm
1]] and Rm+n

2 are blocked in Q and, thus, they cannot con-
tribute to [[P]] =⇒ Q; thus,

P
τ
−→k−1 (ν̃v)(am〈bm〉.Pm

1 | a
m〈bm〉.P̂ | am(T).Pm+n

2 | P′0 |
∏m−1

i=1 Pi
1 |

∏m+n−1
j=1 P j

2σ j)
τ
−→ (ν̃v)(am〈bm〉.Pm

1 | P̂ | P
m+n
2 σm+n | P′0 |

∏m−1
i=1 Pi

1 |
∏m+n−1

j=1 P j
2σ j)

≡ (ν̃v)(P′0 | P̂ | a
m〈bm〉.Pm

1 | |
∏m−1

i=1 Pi
1 |

∏m+n
j=1 P j

2σ j)

and we can conclude because k is #0 also in the computation [[P]] =⇒ Q.

Proposition 5.2 The encoding [[·]] : L ,,, −→ L ,,, is reasonable.

Proof: Definition 3.2(4b) is a corollary of Lemma 5.1. Indeed, [[P]] =⇒ Q implies, by
Lemma 5.1(1), that Q ≡ (ν̃u)([[P0]] |

∏m
i=1 Ai

1.(B
i
N | [[Pi

1]]) |
∏m+n

j=1 B j
N .R

j
2 |

∏m
p=1 A

p
1 |

∏n
q=1 B

q
N);

thus, Q =⇒ (ν̃u)([[P0]] |
∏m

i=1[[Pi
1]] |

∏m+n
j=1 [[P j

2σ j]]) , [[(ν̃v)(P0 |
∏m

i=1 Pi
1 |

∏m+n
j=1 P j

2σ j)]] and
the claim holds because of Lemma 5.1(2).

Let us now prove that the encoding does not introduce divergence; the remaining reasonableness
requirements can be routinely proved. Assume that [[P]] diverges. By definition, [[P]] must perform
an infinite computation and, hence, #0 is infinite; indeed, by construction of the encoding, in every
given computation it holds that #0 ≥ #1 and #0 ≥ #N . By Lemma 5.1(2), also P diverges.

5.2 When Synchrony Matters
L ,,, is more expressive than L ,,,

Trivially, L ,,, can be encoded in L ,,,. The converse is impossible, as a corollary of
Theorem 5.3 later on.

26

L ,,, is more expressive than L ,,,

Trivially, L ,,, can be encoded in L ,,,. The converse is impossible, as a corollary of
Theorem 5.3 later on.

L ,,, is more expressive than L ,,,

Trivially, L ,,, can be encoded in L ,,,. The converse is impossible, as a corollary of Theo-
rem 5.6 later on.

5.3 Completing the Hierarchy
We still need a few results to properly place all the asynchronous primitives in the hierarchy; such
results are needed to properly merge Figures 2 and 3 and obtain the picture in Figure 1. Mainly, we
prove that the hierarchy has a single bottom element (viz. L ,,,) and that L ,,, cannot be
compared with both L ,,, and L ,,,.

L ,,, and L ,,, are more expressive than L ,,,

This fact can be proved like in the synchronous case: in those proofs, synchrony of L ,,, and
L ,,, does not play any role.

L ,,, and L ,,, are incomparable

The impossibility for a reasonable encoding both of L ,,, in L ,,, and of L ,,, in
L ,,, can be proved similarly to Theorems 4.7 and 4.8, where synchrony played no role.

L ,,, and L ,,, are incomparable

The impossibility for a reasonable encoding of L ,,, in L ,,, is proved similarly to Theo-
rem 4.9. The converse is proved via the following Theorem.

Theorem 5.3 There exists no reasonable encoding of L ,,, in L ,,,.

Proof: The proof is somewhat similar to the proof of Theorem 4.5. Consider the processes P ,
(x).P′ and Q , 〈a〉.Q′, for a < F(P′). By Proposition 3.5, [[P]] and [[Q]] must communicate;
this entails that C | [1; 2], the context used to compositionally translate the parallel composition

operator, must be structurally equivalent to (ν̃n)(1 | 2 | P̂). Now, let [[P]] | P̂
ρ

==⇒ R and [[Q]]
ρ

==⇒ R′,
for (ν̃n, k̃)(R | R′) ' [[P′{a/x} | Q′]] and k̃ = B(ρ, ρ).

First of all, ρ contains label ?a′, for at least one a′ ∈ ϕ[[]](a), and this input must come from
a formal template. Like in the proof of Theorem 4.5, we assume, for the sake of simplicity, that
|ϕ[[]](·)| = 1 and let ϕ[[]](a) = a′. Let us consider the first input in ρ, say ?m (at least one is present);
so, let

ρ = ρ1·?m · ρ2

with ρ1 made up of output labels only. Let us consider P′ , if x , b then Ω, for b , a and
m < ϕ[[]](b), and let us isolate two sub-cases.

27

1. ρ1 , ε. In this case, ?m cannot rely on a formal template (thus, m < ϕ[[]](a)) and m < N(ρ1)
otherwise, by Proposition 2.1(1,3), [[P]]

τ
−→ . Let ρ = ρ1·!m · ρ2, for m < B(ρ1), and

ρ = ρ3·?a′ · ρ4, with a′ < N(ρ3); consequently, ρ can be also decomposed as ρ3·!a
′ · ρ4.

Let h be the number of ?a′ occurring in ρ4 and ρ4. Now, let Q′ , 0 and consider the process
obtained by putting h + 2 copies of P | Q{b/a} in parallel; clearly, it does not diverge, whereas
its encoding does. Indeed:

• synchronize ρ3 with ρ3 in the first copy of [[P | Q{b/a}]];

• synchronize ρ1 with ρ1 in the remaining copies of [[P | Q{b/a}]];

• synchronize the !m action from the second copy of [[Q{b/a}]] with the (formal) input
action from the first copy of [[P]] (this has the effect of using m in place of a′ within
[[P′]]);

• synchronize ρ4 with ρ4 in the first copy of [[P | Q{b/a}]], except for the ?m actions not
present in ρ4 and ρ4 (these are at most h), that are instead synchronized with the !m action
from one of the remaining h copies of [[Q{b/a}]].

This strategy generates a process with a parallel component barbed congruent to [[if a ,
b then Ω]]{m/a′}, that diverges.

2. ρ1 = ε. If ?m is actual, we work like in case 1 above, but with the process obtained by
putting P in parallel with h + 2 copies of Q{b/a}. So, ?m relies on a formal input. Then,
notice that ρ cannot contain output labels only, otherwise [[Q]] ⇑ by letting Q′ , Ω (indeed,

if [[Q]]
ρ

==⇒
τ
−→ω, then, by Proposition 2.1(3), [[Q]]

τ
−→ω). Let ?n be the first input in ρ; thus,

ρ =?m · ρ5·!n · ρ6

where n < F(ρ5) ∪ {m} and n cannot be restricted, otherwise the input in ρ would have been
formal and, thus, [[Q]]

τ
−→ . We then work like in case 1 above, with h + 2 copies of P | Q{b/a}

in parallel; just notice that now we use n in place of m and all the needed !n actions are taken
from the h + 1 copies of [[P]].

L ,,, and L ,,, are incomparable

Impossibility for a reasonable encoding of L ,,, in L ,,, can be proved like in Theorem 4.9,
where synchrony does not play any role. The converse is also impossible, as proved in Theorem 5.6;
to prove such a result, we need a few preliminary facts.

Lemma 5.4 Let [[·]] be a reasonable encoding with target L ,,,; then, C|[1; 2], the context
used to compositionally translate parallel composition, is barbed congruent to (ν̃n)(1 | 2).

Proof: By compositionality and Proposition 3.5, it holds that C|[1; 2] ≡ (ν̃n)(1 | 2 | P̂), for some
P̂. It suffices to prove that (ν̃n)P̂ ' 0; if it were not the case, then [[0 | 0]] ⇓, in contradiction with
reasonableness.

Lemma 5.5 Let [[·]] be a reasonable encoding with target L ,,,; then, P
τ
−→ implies that

[[P]]
τ
−→ .

28

Proof: First of all, notice that in L ,,, it holds that Cop[] 6⇓, for every op, otherwise [[op(0)]] ⇓.
This implies that, whenever Cop[R]

τ
−→ , it must be that R

τ
−→ : indeed, it cannot be that Cop[]

τ
−→

nor that Cop[] and R communicate, otherwise in L ,,, this would imply that Cop[] ⇓.
Now, let P

τ
−→ ; then, ∗P ⇑ and, hence, [[∗P]] ⇑. Thus, [[∗P]]

τ
−→ and this implies that [[P]]

τ
−→ ,

because [[∗P]] , C∗[[[P]]].

Theorem 5.6 There exists no reasonable encoding of L ,,, in L ,,,.

Proof: Consider [[〈a〉.P | (x).Q]]; because of Lemma 5.4 and operational correspondence,
[[〈a〉.P | (x).Q]] ' (ν̃n)([[〈a〉.P]] | [[(x).Q]]) =⇒' [[P | Q{a/x}]] ' (ν̃n)([[P]] | [[Q{a/x}]]); this can

only happen if [[〈a〉.P]]
φ1·...·φt

======⇒ ' [[P]] | S 1 and [[(x).Q]]
φ̄1·...·φ̄t

======⇒ ' [[Q{a/x}]] | S 2, for some S 1
and S 2 such that (νB(φ1, . . . , φt, φ̄1, . . . , φ̄t))(S 1 | S 2) ' 0; in L ,,, this entails that S 1 ' 0 and
S 2 ' 0.

Notice that there must be at least one i ∈ {1, . . . , t} such that φi is an input action otherwise, by

letting P , (x).if x = a then Ω, we would have that [[〈a〉.P]]
φ1·...·φt

======⇒' [[P]]
φ̄1·...·φ̄t

======⇒' [[Ω]] that,
by Proposition 2.1(3), would imply [[〈a〉.P]] ⇑. Let φi the first input label and let φi =?m̃. Thus, we
have that

C〈a〉[[[P]]]
φ1·...·φi−1

=======⇒ C1[[[P]]]
?m̃
−−−→ C2[[[P]]]{m̃/̃y}

φi+1·...·φt
=======⇒' [[P]]

where C1[] ≡ (̃y).K1 | K2 for some K1 and K2 such that exactly one of them is a context and the
other one is a process. Symmetrically,

C(x)[[[Q]]]
φ̄1·...·φ̄i−1

=======⇒D1[[[Q]]σ]
(ν̃h)!m̃
−−−−−→ D2[[[Q]]σ]

φ̄i+1·...·φ̄t
=======⇒' [[Q{a/x}]]

for some substitution σ. Notice that, because of asynchrony,D1[] ≡ (ν̃h)(〈m̃〉 | D2[]).
Now, consider [[〈b〉.P | (x).Q]]; by name invariance, we have that

C〈b〉[[[P]]]
φ′1·...·φ

′
i−1

=======⇒ C′1[[[P]]]
?m̃′
−−−→ C′2[[[P]]]{m̃′/̃y}

φ′i+1·...·φ
′
t

=======⇒' [[P]]

C(x)[[[Q]]]
φ̄′1·...·φ̄

′
i−1

=======⇒D′1[[[Q]]σ′]
(ν̃h)!m̃′
−−−−−−→ D′2[[[Q]]σ′]

φ̄′i+1·...·φ̄
′
t

=======⇒' [[Q{b/x}]]

where here and in what follows the ‘primed’ items denote the corresponding ‘non-primed’ items
after the substitution of ϕ[[]](b) for ϕ[[]](a).

Let us now write φ1 · . . . · φt as ρ0·?̃n1 · . . . · ρk−1·?̃nk · ρk, where ρi is either ε or it only contains

output labels, for every i. If it were that C〈a〉[[[P]]]
ρ0·?̃n′1·...·ρk−1·?̃n′k ·ρk

===============⇒' [[P]], then
k

[[〈a〉.(x).if x = a then Ω |
︷ ︸︸ ︷
(〈b〉 | (x)) | . . . | (〈b〉 | (x))]]

would diverge. Indeed, the i-th copy of 〈b〉 | (x) could be used to output ñ′i that is consumed by
[[〈a〉.(x).if x = a then Ω]]; this unleashes [[(x).if x = a then Ω]] without consuming any of the
data produced by C〈a〉[]. Thus, [[(x).if x = a then Ω]] can consume all such data and reduce to a
process with a component barbed equivalent to [[if a = a then Ω]]. Thus, there must be a j such
that the process obtained after ?̃n′j is not equivalent to the process obtained after ?̃n j; for the sake
of simplicity, let us assume that j = 1, i.e. the first input can change the behaviour of C〈a〉[[[P]]]
(maybe, because of a name matching).

29

Let us now consider 〈a〉 | 〈b〉 | (x) and the computation

[[〈a〉 | 〈b〉 | (x)]]
τ

=⇒ [OUT1 | . . . | OUTi−1 | C2 {̃n
′
1/̃y} | C′1 | D

′
2] , R

where [. . .] denotes a process with some top-level restricted names, OUT j denotes the output process
that generates φ j and a context without argument denotes a context filled with [[0]]. By operational
correspondence, it must be that R =⇒' [[Pr]], for r ∈ {1, 2}, P1 , 〈a〉 and P2 , 〈b〉; indeed, it cannot
be that R =⇒' [[〈a〉 | 〈b〉 | (x)]] otherwise the encoding would introduce divergence. We now prove
that both the cases mentioned above contradict reasonableness.

1. If R =⇒' [[〈a〉]], then C1 must be restored and C′1 | D
′
2 must be consumed. To this aim (recall

that C′1[] ≡ (̃y).K′1 | K
′
2), we have that C2 {̃n

′
1/̃y} | D′2

θ1
==⇒ H1, K′2

θ̄1
==⇒ K′3, H1 | K′3

!̃v
−−→ H2 | K′4,

H2
θ2

==⇒ ' C1 and K′1 {̃v/̃y} | K
′
4

θ̄2
==⇒ ' 0. We can assume that θ1 · θ2 contain at least one input

label, otherwise C2 {̃n
′
1/̃y} | D′2 | K′2 =⇒ ' C1 {̃v/̃y} | OUT (θ2), where OUT (θ2) are the output

processes that produce θ2; then, C1 {̃v/̃y} | OUT (θ2) must produce an output of length |̃y|. This
cannot be repeated indefinitely, otherwise the encoding would introduce divergence; thus, we
must reach a process which produces an output of length |̃y| that cannot be consumed anymore
by C1; this can happen only if C1 is activated after a blocking input action. Let us consider the
case in which the first input is in θ1 or in θ2.

• Let θ1 = θ3·?̃k · θ4, for θ3 with output labels only. Let us consider the computation
C2 {̃n

′
1/̃y} | D′2 =⇒ H | OUT (θ3) , Ĥ

τ
−→/ ; at least one must exist, because of the blocking

input ?̃k and of divergence reflection. Let us now consider process 〈a〉 | (x) | 〈b〉 | (x) and
the following computation:

[[〈a〉 | (x) | 〈b〉 | (x)]] =⇒ [C2 {̃n
′
1/̃y} | D′2 | C

′
2 {̃

n1/̃y} | D2] =⇒ [Ĥ | Ĥ′]

Now, Ĥ | Ĥ′ cannot reduce: by construction, Ĥ
τ
−→/ and Ĥ′

τ
−→/ ; moreover, Ĥ cannot

communicate with Ĥ′, otherwise both Ĥ and Ĥ′ could reduce. By operational cor-
respondence, [Ĥ | Ĥ′] should be barbed congruent to the encoding of some reduct of
〈a〉 | (x) | 〈b〉 | (x), but this is not possible: because of Lemma 5.5, it cannot be equiva-
lent to [[〈a〉 | (x) | 〈b〉 | (x)]], [[〈a〉 | (x)]] and [[〈b〉 | (x)]]; by faithfulness, it cannot be
equivalent to [[0]] because [Ĥ | Ĥ′] ⇓ (it at least performs two input actions, viz. ?̃k and
?̃k′).

• Let θ2 = θ3·?̃k · θ4, for θ1 · θ3 with output labels only. This case is similar to the previous

one, with Ĥ , H | OUT (θ1 · θ3) | 〈̃v〉, if H1
!̃v
−−→ , and Ĥ , H | OUT (θ1 · θ3), otherwise.

2. If R =⇒ ' [[〈b〉]], notice that ñ′1 only depends on OUT ′1, . . . ,OUT ′i−1; hence, the fact that
C2 {̃n

′
1/̃y} behaves differently from C2 {̃n1/̃y} implies that there exists at least one j ∈ {1, . . . , i− 1}

such that OUT j , OUT ′j. Thus, R =⇒' [[〈b〉]] implies that there must be some OUT j that is

turned into OUT ′j, i.e. C2 {̃n
′
1/̃y} | D′2

φ̄ j
==⇒ , where φ̄ j corresponds to the first OUT j that is turned

into OUT ′j. Let us now consider C2 {̃n
′
1/̃y} | D′2 =⇒ Ĥ

φ̄ j
−−→ , for Ĥ

τ
−→/ and the computation

[[〈a〉 | (x) | 〈b〉 | (x)]] =⇒ [C2 {̃n
′
1/̃y} | D′2 | C

′
2 {̃

n1/̃y} | D2] =⇒ [Ĥ | Ĥ′]

Like in case 1 above, this suffices to violate operational correspondence.

30

6 Conclusions and Related Work
We have studied the expressive power of sixteen communication primitives, arising from the combi-
nation of four features: synchronism, arity of data, communication medium and presence of pattern-
matching. By relying on possibility/impossibility of ‘reasonable’ encodings, we obtained a clear
hierarchy of communication primitives. Notably, L’s communication paradigm [22] is at the top
of this hierarchy, whereas the π-calculus is in the middle. A posteriori, this can justify the fact that
the former one is usually exploited in actual programming languages [3, 20], where flexibility and
expressive power are the driving issues, whereas the latter one is mostly used for theoretical rea-
soning. Of course, the step that comes after this theoretical approach is the study of more concrete
languages, maybe by encoding them in one of the languages presented in this paper.

Related work. One of the pioneering works in the study of communication primitives for dis-
tributed systems is [25]. There, the expressive power of several “classical” primitives (like
test-and-set, compare-and-swap, ...) is studied by associating to every primitive the highest
number of parallel processes that can reach a distributed consensus with that primitive, under con-
ditions quite similar to our Definition 3.2. It then follows that a primitive with number n is less
expressive than every primitive with number m (> n): the latter one can solve a problem (i.e. the
consensus among m processes) that the former one cannot reasonably solve. This idea is also ex-
ploited in [35] to assess the expressive power of the non-deterministic choice in the π-calculus and
in [39] to evaluate the expressiveness of Mobile Ambients.

In [16], the notion of relative expressive power is used to compare different programming lan-
guages. In particular, a simple class of three concurrent constraint languages is studied and organized
in a strict hierarchy. The languages have guarded constructs and only differ in the features offered
by the guards: a guard is always passed in the least expressive language; a guard is passed only if a
given constraint is satisfied by the current knowledge; finally, a guard is passed only if a new con-
straint, that must be atomically added to the knowledge, is consistent with the current knowledge.
Roughly, the last kind of guards can be related to the pattern-matching construct of our languages,
for the possibility of atomically testing and modifying the environment; in both cases, this feature
sensibly increases the expressiveness of the language.

By the way, the form of pattern-matching considered here is very minimal: only the equality
of names can be tested while retrieving a datum. However, other forms of pattern-matching can be
exploited (e.g., those described in [18]), to have more and more flexible formalisms; some proposals
have been investigated from the expressiveness point of view in [49].

Another form of atomic polyadic name matching is presented in [13], but with a different ap-
proach with respect to ours. In our L ,, ,, the tuple of names to be matched is in the transmit-
ted/received value (by using a standard π-calculus terminology, the tuple is in the ‘object’ part of
an output/input); on the contrary, [13] exploit composite channel names that must all be matched
to enable a communication (thus, the tuple is in the ‘subject’ part of the output/input). This feature
enables a nice modeling of distributed and cryptographic process calculi; nevertheless, our L-
like pattern-matching is stronger, since the possibility of using formal and actual templates together
provides a more flexible form of input actions (that can easily encode the ones in [13]).

Finally, in [8] three different semantics for asynchronous languages are studied in the setting
of a simple L-based process calculus: instantaneous output (an output prefix immediately un-
leashes the corresponding tuple in the dataspace), ordered output (a reduction is needed to turn an

31

output prefix into the corresponding tuple in the dataspace) and unordered output (two reductions
are needed to turn an output into an available tuple, i.e. one to send the tuple to the dataspace and
another one to make the tuple available in the dataspace). In [8, 9] it is proved that the semantics
can be strictly ordered according to their expressive power, with the instantaneous semantics being
the most expressive one and the unordered semantics being the least expressive one (actually, the
latter semantics entails a language which is not Turing complete). According to this terminology,
the semantics we used in this paper for the asynchronous languages is instantaneous; it would be
interesting to discover whether our results still hold also under different semantics or not.

Acknowledgments I would like to thank Rosario Pugliese, Daniele Varacca and Nobuko Yoshida
for their interest in my work and for several suggestions that improved a first draft of this paper. I
am also grateful to Catuscia Palamidessi for her encouragements and discussions. Finally, I would
like to thank the anonymous reviewers for their positive attitude and for their detailed comments that
improved both the presentation and the contents of this work.

References
[1] L. Acciai and M. Boreale. Xpi: A typed process calculus for XML messaging. In Proc. of FMOODS’05,

volume 3535 of LNCS, pages 47–66. Springer, 2005.

[2] R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous π-calculus. Theo-
retical Computer Science, 195(2):291–324, 1998.

[3] K. Arnold, E. Freeman, and S. Hupfer. JavaSpaces Principles, Patterns and Practice. Addison-Wesley,
1999.

[4] S. Arun-Kumar and M. Hennessy. An efficiency preorder for processes. Acta Informatica, 29(8):737–760,
1992.

[5] G. Boudol. Asynchrony and the π-calculus (note). Rapport de Recherche 1702, INRIA Sophia-Antipolis,
May 1992.

[6] A. Brown, C. Laneve, and G. Meredith. πduce: a process calculus with native XML datatypes. In Proc. of
2nd Int. Workshop on Services and Formal Methods, volume 3670 of LNCS, pages 18–34. Springer, 2005.

[7] N. Busi, R. Gorrieri, and G. Zavattaro. A process algebraic view of L coordination primitives. Theo-
retical Computer Science, 192(2):167–199, 1998.

[8] N. Busi, R. Gorrieri, and G. Zavattaro. Comparing three semantics for L-like languages. Theoretical
Computer Science, 240(1):49–90, 2000.

[9] N. Busi, R. Gorrieri, and G. Zavattaro. On the expressiveness of L coordination primitives. Informa-
tion and Computation, 156(1-2):90–121, 2000.

[10] N. Busi and G. Zavattaro. On the expressive power of movement and restriction in pure mobile ambients.
Theoretical Computer Science, 322(3):477-515, 2004.

[11] D. Cacciagrano and F. Corradini. On synchronous and asynchronous communication paradigms. In Proc.
of ICTCS’01, volume 2202 of LNCS, pages 256–268. Springer, 2001.

[12] D. Cacciagrano, F. Corradini, and C. Palamidessi. Separation of synchronous and asynchronous commu-
nication via testing. In Proc. of EXPRESS’05, ENTCS, 154(3): 95–108. Elsevier, 2006.

[13] M. Carbone and S. Maffeis. On the expressive power of polyadic synchronisation in π-calculus. Nordic
Journal of Computing, 10(2):70–98, 2003.

32

[14] L. Cardelli and A. Gordon. Mobile ambients. Theoretical Computer Science, 240(1):177–213, 2000.

[15] G. Castagna, R. De Nicola, and D. Varacca. Semantic subtyping for the π-calculus. In Proc. of LICS,
pages 92–101. IEEE Computer Society, 2005.

[16] F. de Boer and C. Palamidessi. Embedding as a tool for language comparison. Information and Compu-
tation, 108(1):128–157, 1994.

[17] R. De Nicola, D. Gorla, and R. Pugliese. On the expressive power of K-based calculi. Theoretical
Computer Science, 356(3):387–421, 2006.

[18] R. De Nicola, D. Gorla, and R. Pugliese. Pattern matching over a dynamic network of tuple spaces. In
Proc. of FMOODS’05, volume 3535 of LNCS, pages 1–14. Springer, 2005.

[19] C. Ene and T. Muntean. Expressiveness of point-to-point versus broadcast communications. In Proc. of
12th Symp. on Fundamentals of Computation Theory, volume 1684 of LNCS, pages 258–268. Springer,
1999.

[20] D. Ford, T. Lehman, S. McLaughry, and P. Wyckoff. T Spaces. IBM Systems Journal, pages 454–474,
August 1998.

[21] C. Fournet, J.-J. Levy and A. Schmitt. An Asynchronous Distributed Implementation of Mobile Ambients.
In Proc. of IFIP-TCS, volume 1872 of LNCS, pages 348–364. Springer, 2000.

[22] D. Gelernter. Generative Communication in L. ACM Transactions on Programming Languages and
Systems, 7(1):80–112, 1985.

[23] D. Gorla. On the relative expressive power of asynchronous communication primitives. In Proc. of
FoSSaCS’06, volume 3921 of LNCS, pages 47–62. Springer, 2006.

[24] D. Gorla. Synchrony vs Asynchrony in Communication Primitives. In Proc. of EXPRESS’06, ENTCS
175(3):87–108, Elsevier 2007.

[25] M. Herlihy. Wait-Free Synchronization. ACM Transactions on Programming Languages and Systems,
13(1):124–149, 1991.

[26] K. Honda and M. Tokoro. An object calculus for asynchronous communication. In Proc. of ECOOP ’91,
volume 512 of LNCS, pages 133–147. Springer, 1991.

[27] K. Honda and N. Yoshida. On reduction-based process semantics. Theoretical Computer Science,
152(2):437–486, 1995.

[28] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[29] R. Milner. The polyadic π-calculus: A tutorial. In Logic and Algebra of Specification, volume 94 of Series
F. NATO ASI, Springer, 1993.

[30] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I and II. Information and Compu-
tation, 100(1):1–40, 41–77, 1992.

[31] R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. of ICALP ’92, volume 623 of LNCS, pages
685–695. Springer, 1992.

[32] U. Nestmann. What is a ‘good’ encoding of guarded choice? Information and Computation, 156:287–319,
2000.

[33] U. Nestmann. Welcome to the Jungle: A Subjective Guide to Mobile Process Calculi (Invited Tutorial).
In Proc. of CONCUR, volume 4137 of LNCS, pages 52–63. Springer, 2006.

[34] U. Nestmann and B. C. Pierce. Decoding choice encodings. Information and Computation, 163:1–59,
2000.

[35] C. Palamidessi. Comparing the expressive power of the synchronous and the asynchronous π-calculi.
Mathematical Structures in Computer Science, 13(5):685–719, 2003.

33

[36] J. Parrow. An introduction to the pi-calculus. In Handbook of Process Algebra, pages 479–543. Elsevier
Science, 2001.

[37] J. Parrow. Expressiveness of Process Algebras. In LIX Colloquium on Emerging Trends in Concurrency
Theory, ENTCS (to appear).

[38] A. Phillips, N. Yoshida and S. Eisenbach. A Distributed Abstract Machine for Boxed Ambient Calculi. In
Proc. of ESOP, volume 2986 of LNCS, pages 155–170. Springer, 2004.

[39] I.C.C. Phillips, and M.G. Vigliotti. Electoral systems in ambient calculi. Proc. FoSSaCS, volume 2987 of
LNCS, pages 408–422, 2004.

[40] B. C. Pierce and D. N. Turner. Pict: A programming language based on the pi-calculus. In Proof,
Language and Interaction: Essays in Honour of Robin Milner, Foundations of Computing. MIT Press,
May 2000.

[41] P. Quaglia and D. Walker. On synchronous and asynchronous mobile processes. In Proceedings of
FoSSaCS 2000, volume 1784 of LNCS, pages 283–296. Springer, 2000.

[42] P. Quaglia and D. Walker. Types and full abstraction for polyadic π-calculus. Information and Computa-
tion, 200(2):215–246, 2005.

[43] D. Sangiorgi. Bisimulation in higher-order process calculi. Information and Computation, 131:141–178,
1996.

[44] D. Sangiorgi and A. Valente. A distributed abstract machine for Safe Ambients. In Proc. of ICALP,
volume 2076 of LNCS, pages 408–420. Springer, 2001.

[45] D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. Cambridge University Press,
2001.

[46] E. Y. Shapiro. Separating concurrent languages with categories of language embeddings. In Proc. of 23rd

Symposium on Theory of Computing, pages 198–208. ACM Press, 1991.

[47] V. Vasconcelos and K. Honda. Principal typing schemes in a polyadic π-calculus. In Proc. of CON-
CUR’93, volume 715 of LNCS, pages 524–538. Springer, 1993.

[48] N. Yoshida. Graph types for monadic mobile processes. In Proc. of FSTTCS ’96, volume 1180 of LNCS,
pages 371–386. Springer, 1996.

[49] G. Zavattaro. Towards a hierarchy of negative test operators for generative communication. In Proc. of
EXPRESS, ENTCS, 16(2):154–170. Elsevier, 1998.

34

