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Abstract

We present a unified approach to evaluating the relative expressive power of process calculi.
In particular, we identify a small set of criteria (that have already been somehow presented
in the literature) that an encoding should satisfy to be considered a valid means for language
comparison. We argue that the combination of such criteria is a valid proposal by noting that:
(i) several well-known encodings appeared in the literature satisfy them; (ii) this notion is
not trivial, because some known encodings do not satisfy all the criteria we have proposed;
(iii) several well-known separation results can be formulated in terms of our criteria; and (iv)
some widely believed (but never formally proved) separation results can be proved by using
the criteria we propose. Moreover, the criteria defined induce general proof techniques for
separation results that can be easily instantiated to cover known case-studies.
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1. Introduction

As argued in [43], one of the hottest topics in concurrency theory, and mainly in process
calculi, is the identification of a uniform way to formally compare different languages from
the expressiveness point of view. Indeed, while the literature contains several results and
claims concerning the expressive power of a language, such results are usually difficult to
appreciate because they are proved sound by using different criteria. For a very good overview
of the problem, we refer the reader to [49].

In the 1980s, the trend was to adopt the approach followed in computability theory and
study the absolute expressive power of languages, e.g. by studying which problems were
solvable or which operators were definable in a given language. In the 1990s, the focus
moved to the relative expressive power: it became more interesting to understand the extent
to which a language could be encoded into another one, also because of the proliferation of
different process calculi. Nevertheless, some instructive absolute expressiveness results have
also appeared in the last few years: for example, [8, 9, 47] have recently compared the power
of recursion and replication in process calculi, by proving that in some case the languages
with replication are not Turing powerful. However, working with absolute expressiveness
only yields a bipartition of languages: the ones able to solve a given problem (for example,
the possibility of simulating Turing machines) and the one unable to do so. For this reason,
we think that relative expressiveness is more adequate when one wants to build up lattices of
languages.

IThis work is an extended and revised version of [27] and it includes some material taken from [24].
Email address: gorla@di.uniroma1.it (Daniele Gorla)
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A very common approach to proving soundness of encodings is based on the notion of
full abstraction. This concept was introduced in the 1970s to require an exact correspondence
between a denotational semantics of a program and its operational semantics. Intuitively, a
denotational semantics is fully abstract if it holds that two observably equivalent programs
(i.e., two programs that ‘behave in the same way’ in any execution context) have the same
denotation, and vice versa. The notion of full abstraction has been adapted to prove sound-
ness of encodings by requiring that an encoding maps equivalent source terms into equivalent
target terms, and vice versa. This adaptation was justified by the fact that an encoding resem-
bles a denotation function: they both map elements of a formalism (viz., terms of the source
language) into elements of a different formalism (another language, in the case of an encod-
ing, or a mathematical object, in the case of a denotation function). In this way, the stress
is put on the requirement that the encoding must translate a language into another one while
respecting some associated equivalences. This can be very attractive, e.g., if in the target we
can exploit automatic tools to prove equivalences and then pull back the obtained result to the
source. However, we believe that full abstraction is too focused on the equivalences and thus
it gives very little information on the computation capabilities of the two languages.

Operational and structural criteria have been developed in the years to state and prove
separation results [12, 28, 45, 50, 51], that are a crucial aspect of building a hierarchy of
languages. Indeed, to prove that a language L1 is more expressive than another language L2,
we need to show that there exists a “valid” encoding of the latter into the former, but not vice
versa. Usually, the latter fact is very difficult to prove and is obtained by: (1) identifying a
problem that can be solved in L1 but not in L2, and (2) finding the least set of criteria that
an encoding should meet to translate a solution in L1 into a solution in L2. Such criteria are
problem-driven, in that different problems call for different criteria (compare, for example,
the criteria in [45, 50, 51] with those in [12, 28]). Moreover, the criteria used to prove
separation results are usually not enough to testify to the quality of an encoding: they are
considered minimal requirements that any encoding should satisfy to be considered a valid
means for language comparison.

In this paper, we present a new proposal for assessing the quality of an encoding, tailored
to aspects that are strictly related to relative expressiveness. We isolate a small set of require-
ments that, in our opinion, are very well-suited to proving both soundness of encodings and
separation results. In this way, we obtain a notion of encodability that can be used to place
two (or more) languages in a clearly organized hierarchy. A preliminary proposal appeared
in [23] but it was formulated in a too demanding way.

Of course, in order to support our proposal, we have to give evidence of its reasonable-
ness. To this aim, we exhibit both philosophical and pragmatic arguments. From the prag-
matic side, we notice that most of the encodings appearing in the literature satisfy our criteria
and that their combination is not trivial, because there exist some encodings (e.g., the encod-
ings of π-calculus in Mobile Ambients proposed in [14, 16]) that do not satisfy all the criteria
we propose. Moreover, we also prove that several known separation results can be straightfor-
wardly obtained as instances of the framework we present; furthermost, some new separation
results can be now formally proved by using the criteria we propose. The philosophical part
is, by contrast, more delicate because we have to convince the reader that every proposed
criterion is deeply related to relative expressiveness. To this aim, we split the criteria in two
groups: structural and semantic. We think that structural criteria are difficult to criticize: we
simply require that the encoding is compositional and that it does not depend on the specific
names appearing in the source term. Semantic criteria are, as usual, more debatable, because
different people have different views on the semantics of a calculus and because the same
semantic notions can be defined in different ways. Here, we assume that an encoding should
be: operationally corresponding, in the sense that it preserves and reflects the computations
of the source terms; divergence reflecting, in that we do not want to turn a terminating term
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into a non-terminating one; and success sensitive, i.e., once defined a notion of successful
computation of a term, we require that successful source terms are mapped into successful
target terms and vice versa.

Although intuitively quite clear, the above mentioned criteria can be formulated in differ-
ent ways. In particular, operational correspondence is usually defined up to some semantic
equivalence/preorder to ignore dead processes yielded by the encoding. However, there is a
wide range of equivalences/preorders and choosing one or another is always highly debatable.
In Section 2 we start by leaving the notion of equivalence/preorder unspecified; this is, in our
opinion, the ideal scenario, where encodability and separation results do not depend on the
particular semantic theory chosen. However, when we want to prove some concrete result,
we are forced to make assumptions on the equivalence used in operational correspondence.
In doing this, we try to work at the highest possible abstraction level; in particular, we never
commit to any specific equivalence/preorder and always consider meaningful families of such
relations.

The paper is organized as follows. In Section 2, we present the criteria that we are going
to consider and compare them with other ones already presented in the literature. To support
our criteria, we then put them at work on some mainstream process calculi: CCS [37], the
asynchronous π-calculus (πa) [6], the separate and mixed choice π-calculus (πsep and πmix)
[57], Mobile Ambients (MA) [16] and the π-calculus with polyadic synchronizations (eπ and
πn) [12]. A sketch of their syntax and operational semantics is in Section 3. In Section 4
we start revisiting some very well-known encodings and show that they all meet our criteria:
this shows that our criteria accord with the community’s common sense. Then, we show that,
nevertheless, our criteria are not trivial, since all the encodings of πa into MA do not satisfy
at least one of them; this is not due to the impossibility of developing such an encoding and,
indeed, we do provide a valid encoding. In Section 5 we move to separation results. First,
we give some general proof techniques that can be easily instantiated to prove (in a simpler
and more uniform way) known separation results appearing in the literature; to this aim,
we specialize in three ways the semantic theory used to define operational correspondence.
Second, we show a couple of separation results (of MA into πmix and of CCS into MA) that,
to the best of our knowledge, have never been proved yet. In Section 6 we discuss if and
how our approach can be scaled for dealing with more sophisticated kinds of encodings, like
two-level [4, 7] or parameterized [34, 38, 58] ones. In Section 7 we conclude by summing up
our main contributions and discussing future work.

2. The Encodability Criteria

Process calculi. In this section we discuss the criteria an encoding should satisfy to be con-
sidered a valid means for language comparison. For the moment, we work at an abstract level
and do not commit to any precise formalism. Indeed, we just assume a (countable) set of
names N and specify a calculus as a triple L = (P, 7−→,�), where

• P is the set of language terms (usually called processes) that is built up from the termi-
nated process 0 and the success process

√
(whose need will be clear when presenting

Property 5 later on) by at least using the parallel composition operator ‘|’, that we as-
sume to be unique in every language.1 Processes are usually identified up to some

1 This assumption is very realistic; indeed, modern process calculi have a single parallel composition operator. If
this was not the case (for example, assume to have a language with two parallel operators, one allowing synchroniza-
tion and one not), some technicalities of this paper would be difficult to express in a convincing way. For example,
the homomorphism criterion of Definition 5.2 in Section 5.1.1 could be formulated in different ways: which parallel
has to be translated homomorphically, if the source language has two parallel operators? Or, conversely, which
parallel operator of the target has to be used when translating the source parallel operator(s)?
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notion of structural congruence, written ≡, that intuitively equates different syntactic
ways of writing the same process.

• 7−→ is the operational semantics, needed to specify how a process computes; following
common trends in process calculi, we specify the operational semantics by means of
reductions. Usually, 7−→ is a binary relation on processes inductively defined by rules
in the structural operational semantics style [52]. As usual, Z=⇒ denotes the reflexive
and transitive closure of 7−→.

• � is a behavioural equivalence needed to describe the abstract behaviour of a process.
Usually, � is a congruence at least with respect to parallel composition; it is often
defined in the form of a barbed equivalence [41] or can be derived directly from the
reduction semantics [32].

Encodings. An encoding of L1 = (P1, 7−→1,�1) into L2 = (P2, 7−→2,�2) is a pair (J · K, ϕJ K)
where J · K : P1 → P2 is called translation and ϕJ K : N → Nk is called renaming policy
and it is such that ϕJ K(u) ∩ ϕJ K(v) = ∅, for all u , v, where ϕJ K(·) is simply considered a set
here. The translation turns every source term into a target term; in doing this, it is possible
that the translation fixes some names to play a precise rôle or it can translate a single name
into a tuple of names. In most of the encodings present in the literature, every name is simply
translated to itself. However, it is sometimes necessary to have a set of reserved names, i.e.
names with a special function within the encoding. Reserved names can be obtained either
by assuming that the target language has more names than the source one, or by exploiting
what we call a strict renaming policy, i.e. a renaming policy ϕJ K : N −→ N . For example,
we can isolate one reserved name by linearly ordering the set of names N as {n0, n1, n2, . . .}
and by letting ϕJ K(ni) , ni+1, for every i; the reserved name is n0.

The requirement that ϕJ K maps names to tuples of the same length can be justified by
the fact that names are all ‘at the same level’ and, thus, they must be treated uniformly.
Moreover, such tuples must be finite, otherwise it would be impossible to transmit all ϕJ K(a)
in the translation of a communication where name a is exchanged (notice that, since the
sender cannot know how the receiver will use a, all ϕJ K(a) must be somehow transmitted).
Consequently, the requirement that different names are associated to disjoint tuples can be
intuitively justified as follows. Assume that there exists u , v such that ϕJ K(u) ∩ ϕJ K(v) , ∅;
since there is no relationship between different names, this implies that, for every w, ϕJ K(u)∩
ϕJ K(w) , ∅. If the name shared by every pair of tuples is the same, then such a name can
be considered reserved and we can define a renaming policy ϕ′J K satisfying the requirement
that different names are associated with disjoint tuples. Otherwise, for every v and w, ϕJ K(v)
and ϕJ K(w) must have a different name in common with ϕJ K(u); thus, ϕJ K(u) would contain
an infinite number of names.

To simplify reading, we shall usually write J · K instead of (J · K, ϕJ K), by leaving the re-
naming policy understood. Moreover, we let S range over processes of the source language
(viz., L1) and T range over processes of the target language (viz., L2).

Valid encodings. We shall call valid any encoding that satisfies the criteria we are going
to present. Notice that, since we aim at a set of criteria suitable for both encodability and
separation results, we have to find a compromise between ‘minimality’ (typical of separation
results, where one wants to identify the minimal set of properties that make a separation result
provable) and ‘maximality’ (typical of encodability results, where one wants to show that the
encoding satisfies as many properties as possible).

First of all, a translation should be compositional, i.e. the translation of a compound term
must be defined in terms of the translation of the subterms, where, in general, the translated
subterms can be combined by relying on a context that coordinates their inter-relationships.
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A k-ary context C( 1; . . . ; k) is a term where k occurrences of 0 are linearly replaced by the
holes { 1; . . . ; k} (every hole must occur once and only once). In defining compositionality,
we let the context used to combine the translated subterms depend on the operator that com-
bines the subterms and on the free names (written F(·)) of the subterms. For example, we
could think to have a name handler for every free name in the subterms.

Property 1 (Compositionality). A translation J · K : L1 → L2 is composi-
tional if, for every k-ary operator op of L1 and for every subset of names N,
there exists a k-ary context CN

op( 1; . . . ; k) such that, for all S 1, . . . , S k with
F(S 1, . . . , S k) = N, it holds that J op(S 1, . . . , S k) K = CN

op(J S 1 K; . . . ; J S k K).
Compositionality is a very natural property and, indeed, every encoding we are aware

of is defined compositionally. Compositionality with respect to some specific operator has
been assumed also to prove some separation result, viz. of synchronous vs asynchronous
π-calculus [11] or of persistent fragments of the asynchronous π-calculus [10]. However, for
separation results, the most widely accepted criterion is homomorphism of parallel compo-
sition [12, 28, 45, 46, 50, 51]; indeed, translating a parallel process by introducing a coor-
dinating context would reduce the degree of distribution and show that L2 has not enough
expressive power to simulate L1. This point of view has been, however, sometimes criticized
and, indeed, there exist encodings that do not translate parallel composition homomorphically
[4, 7, 42].

Our definition of compositionality allows two processes that only differ in their free names
to have totally different translations: indeed, it could be that CN

op(. . . ) is very different from
CM
op(. . . ), whenever N , M. We want to avoid this fact; indeed, a valid translation cannot

depend on the particular names involved in the source process, but only on its syntactic struc-
ture. In our view, a translation should reflect in the translated term all the renamings carried
out in the source term. In what follows, we denote with σ a substitution of names for names,
i.e. a function σ : N −→ N , and we shall usually specify only the non-trivial part of a
substitution: for example, {b/a} denotes the (non-injective) substitution that maps a to b and
every other name to itself. Moreover, we shall also extend substitutions to tuples of names in
the expected way, i.e. component-wise.

Property 2 (Name invariance). A translation J · K : L1 → L2 is name invariant
if, for every S and σ, it holds that

J Sσ K
{

= J S Kσ′ if σ is injective
�2 J S Kσ′ otherwise

where σ′ is such that ϕJ K(σ(a)) = σ′(ϕJ K(a)) for every a ∈ N .

To understand the distinction between injective and non-injective substitutions, assume
that σ maps two (or more) different names to the same name. Then, the set of free names of
Sσ is smaller than the set of free names in S ; by compositionality, this fact leads to different
translations, in general. For example, if the translation introduces a name handler for every
free name, having sets of free names with different cardinality leads to inherently different
translations. However, non-injective substitutions are natural in name-passing calculi, where
language contexts can induce them. In this case, the formulation with ‘=’ is too demanding
and the weaker formulation (with ‘�2’) is needed. Thus, this formulation implies that two
name handlers for the same name are behaviourally equivalent to one handler for that name;
this seems us a very reasonable requirement. Notice that our definition of name invariance
is definitely more complex than those, e.g., of [12, 45, 50, 51], where it is required that
J Sσ K = J S Kθ for some (not better specified) substitution θ. However, we do not think that
our formulation is more demanding; it is just more detailed and we consider this fact a further
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contribution of our paper. Finally, notice that we are not aware of any encoding that satisfies
Property 2 in the weaker formulation, i.e. with ‘�2’ in place of ‘=’. Nevertheless, since we
are defining a general theory, we do not see anything wrong with the weaker formulation and
still consider it as part of the definition of valid encodings.

Up to now, we have presented and discussed properties dealing with the way in which a
translation is defined; we are still left with the more crucial part of the criteria. We want to
focus our attention on the possible computations (i.e., sequences of reductions) of a process;
thus, we require that the source and the target language have the same computations. A
widely accepted way to formalize this idea is via operational correspondence that, intuitively,
ensures two crucial aspects: (i) every computation of a source term can be mimicked by its
translation (thus, the translation does not reduce the behaviours of the source term); and (ii)
every computation of a translated term corresponds to some computation of its source term
(thus, the translation does not introduce new behaviours).

Property 3 (Operational correspondence). A translation J · K : L1 → L2 is
operationally corresponding if it is

Complete: for all S Z=⇒1 S ′, it holds that J S K Z=⇒2�2 J S ′ K;
Sound: for all J S K Z=⇒2 T, there exists an S ′ such that S Z=⇒1 S ′

and T Z=⇒2�2 J S ′ K.

Notice that operational correspondence is very often used for assessing the quality of
an encoding; thus, we took it into account for having a set of criteria that work well both
for encodability and for separation results. Nothing related to this property has ever been
assumed for separation results, except in [23, 25] where, however, it was formulated in a too
demanding way. Also notice that the original formulation of operational correspondence put
forward in [44] does not use ‘�2’; for this reason, it is too demanding and, indeed, several
encodings (including those in loc. cit.) do not enjoy it. The problem is that usually encodings
leave some ‘junk’ process after having mimicked some source language reduction; such a
process invalidates the ‘exact’ formulation of this property. The use of ‘�2’ is justified to get
rid of potential irrelevant junk processes.

Another important semantic issue, borrowed from [12, 17, 30, 42], is that a translation
should not introduce infinite computations, written 7−→ω.

Property 4 (Divergence reflection). A translation J · K : L1 → L2 reflects di-
vergence if, for every S such that J S K 7−→ω

2 , it holds that S 7−→ω
1 .

One may argue that divergence can be ignored if it arises with negligible probability or in
unfair computations. However, suppose that every translation of L1 into L2 introduces some
kind of divergence; this means that, to preserve all the functionalities of a terminating source
term, every translation has to add infinite computations in the translation of the term. This fact
makesL2 not powerful enough to encodeL1 and is fundamental to proving several separation
results (e.g., that the test-and-set primitive cannot be encoded via any combination of
read and write – see [30]).

It is interesting to notice that, with all the properties listed up to now, one can accept the
translation that maps every source term into 0. Of course, this translation is “wrong” because
it does not distinguish processes with different interaction capabilities. In process calculi, in-
teraction capabilities are usually described either by the barbs that a process exhibits [41] or
by the set of tests that a process successfully passes [18, 55]. Barbs are often defined in a very
ad hoc way, they are chosen as the simplest predicates that induce meaningful congruences
and they strictly depend on their language (even though in [55] there is a preliminary attempt
at a ‘canonical’ definition of barbs); for this reason, we found it difficult to work out a satis-
factory semantic property relying on barbs for encodings that translate a source language into
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a very different target language (notice that barb correspondence is by contrast very natural
in, e.g., [12, 28, 45] where similar languages are studied). On the contrary, the testing ap-
proach is more uniform: it identifies a binary predicate P ⇓ O of successful computation for a
process P in a parallel context O (usually called observer, that is a normal process containing
occurrences of a distinguished success action), and, by varying O, it describes the interactions
P can be engaged in. Moreover, the testing approach is at the same time more general and
more elementary than barbs: the latter ones can be identified via elementary tests, and test
passing is the basic mechanism for the ‘canonical’ definition of barbs in [55].

By following [3, 10, 11], we shall require that the source and the translated term behave in
the same way with respect to success. However, a formulation like “∀P∀O.P ⇓ O iff J P K ⇓
JO K” is not adequate in our setting: indeed, it is possible to have a successful computation for
P|O but not for J P K | JO K since, because of compositionality, a successful computation in the
target would be possible only with the aid of the coordinating context used to compositionally
translate the parallel composition. Thus, we have to define ⇓ as a unary predicate and require
that “∀P∀O.P|O ⇓ iff J P|O K ⇓”. For our aims, it is not necessary to distinguish between
processes and observers. Moreover, to formulate our property in a simpler way, we assume
that all the languages contain the same success process

√
and that ⇓ means reducibility (in

some modality, e.g. may/must/...) to a process containing a top-level unguarded occurrence of√
. This is similar to [28, 45], where

√
is an output over a reserved channel and ⇓ is defined in

terms of may and must, respectively. Clearly, different modalities in general lead to different
results; in this paper, proof will be carried out in a ‘may’ modality, but all our results could
be adapted to other modalities. So, formally, P ⇓ if there exists P′ such that P Z=⇒ P′ and
P′ ≡ P′′ | √, for some P′′. Finally, for the sake of coherence, we require the notion of success
be caught by the semantic theory underlying the calculi, viz. �; in particular, we assume that
� never relates two processes P and Q such that P ⇓ and Q 6⇓.

Property 5 (Success sensitiveness). A translation J · K : L1 → L2 is success
sensitive if, for every S , it holds that S ⇓ if and only if J S K ⇓.

Notice that Property 5 does not necessarily imply that J√ K =
√

for any valid encoding,
even though it is something very natural to have. In general, since

√
is a 0-ary operator, we

just have that, by Property 1, J√ K = C∅√( ); but a 0-ary context is simply a constant target
process.

3. Some Sample Process Calculi

We now very briefly present the syntax and the operational semantics of the languages
we will use in the remainder of this paper; for more details, the interested reader can refer to
[6, 12, 16, 37]. All the languages have a common syntax given by

P ::= 0
∣∣∣ (νn)P

∣∣∣ P1|P2

∣∣∣ !P
∣∣∣ √

As usual, 0 is the terminated process, whereas
√

denotes success (see the discussion on
Property 5); P1|P2 denote the parallel composition of two processes; (νn)P restricts to P the
visibility of n and binds n in P; finally, !P denotes the replication of process P. We have
assumed here a very simple way of modeling recursive processes; all what we are going to
prove does not rely on this choice and can be rephrased under different forms of recursion.

In all calculi we are going to consider, (νn) is a binder for n in the continuation. In π-
derived calculi and in MA, there is also another binder: the input prefix, that binds the input
variable in the continuation. Free and bound names, written F(·) and B(·), are defined
accordingly.
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Terms of this syntax are equated up-to structural congruence, that is the least binary con-
gruence closed under alpha-renaming of bound names and under the following axioms, that
are the ‘classical’ structural laws taken from [38, 39]:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R !P ≡ P | !P

(νn)0 ≡ 0 (νn)(νm)P ≡ (νm)(νn)P P | (νn)Q ≡ (νn)(P |Q) if n< F(P)

The inference rules that define the operational semantics of processes are:

P 7−→ P′

E(P) 7−→ E(P′)

P ≡ P′ P′ 7−→ Q′ Q′ ≡ Q

P 7−→ Q

where E(·) denotes an evaluation context, defined as

E(·) ::= ·
∣∣∣ E(·) | P

∣∣∣ P | E(·)
∣∣∣ (νn)E(·)

Of course, the operational axioms are specific to every language and are given below.

CCS: it is obtained from the common syntax as follows:

P ::= . . .
∣∣∣ Σn

i=1πi.Pi π ::= a
∣∣∣ ā

where Σn
i=1πi.Pi is the non-deterministic choice between the prefixed processes πi.Pi.

In CCS, prefixes are just names (ranged over by a) or co-names (ranged over by ā). To
fully define the operational semantics, it suffices to consider the following axiom:

(. . . + a.P + . . .) | (. . . + ā.Q + . . .) 7−→ P |Q
Moreover, structural equivalence also includes the monoidal laws for sum.

πa: the asynchronous π-calculus is obtained from the common syntax as follows:

P ::= . . .
∣∣∣ a〈b〉

∣∣∣ a(x).P
∣∣∣ [a = b]P

Here, a〈b〉 denotes the emission of name b along channel a; a(x).P is an input prefixed
process that waits for some name from channel a that will replace x in the continuation
P (and is a binder for x in P); finally, [a = b]P is a test for equality of a and b (if the
test is passed, then P is activated, otherwise P is blocked for ever). The only reduction
axiom is

a(x).P | a〈b〉 7−→ P{b/x}
Moreover, structural congruence is extended to handle name matching:

[a = a]P ≡ P

πmix: the mixed choice π-calculus is defined similarly to CCS, but with the possibility of
passing/receiving names during a communication and of checking name equality:

P ::= . . .
∣∣∣ [a = b]P

∣∣∣ Σn
i=1πi.Pi π ::= a(x)

∣∣∣ a〈b〉
Apart from the presence of choices, the only difference with πa is that in πmix also
output actions are prefixes: they block the continuation process until a communication
happens. The operational semantics is obtained from the following axiom:

(. . . + a(x).P + . . .) | (. . . + a〈b〉.Q + . . .) 7−→ P{b/x} |Q
Moreover, structural equivalence also includes the monoidal laws for sum and the struc-
tural axiom given for πa to handle name matching.
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πsep: the separate choice π-calculus is the sub-calculus of πmix where every choice contains
prefixes of the same kind. It is obtained from the common syntax as follows:

P ::= . . .
∣∣∣ [a = b]P

∣∣∣ Σn
i=1ai(xi).Pi

∣∣∣ Σn
i=1ai〈bi〉.Pi

The operational and structural axioms are formally identical to the ones for πmix.

πn and eπ: the π-calculus with polyadic synchronizations is defined similarly to πmix but,
instead of specifying a single channel name, a tuple of names (of length at most n in
πn or of unbounded length in eπ) is exploited. Formally, πn and eπ are defined like πmix

with prefixes defined as follows:

π ::= a1 · . . . · ak(x)
∣∣∣ a1 · . . . · ak〈b〉 for every k ≤ n

π ::= a1 · . . . · ak(x)
∣∣∣ a1 · . . . · ak〈b〉 for every k

The operational axiom is the one of πmix, tailored to polyadic synchronizations:

(. . . + a1 · . . . · ak(x).P + . . .) | (. . . + a1 · . . . · ak〈b〉.Q + . . .) 7−→ P{b/x} |Q
Again, structural equivalence also includes the monoidal laws for sum and name match-
ing.

MA: the mobile ambient calculus is a calculus for modeling mobile and hierarchically dis-
tributed processes; it can be obtained from the common syntax as follows:

P ::= . . .
∣∣∣ a[P]

∣∣∣ M.P
∣∣∣ 〈M〉

∣∣∣ (x).P

M ::= n
∣∣∣ in a

∣∣∣ out a
∣∣∣ open a

∣∣∣ M.M

The term a[P] denotes a process P located within an ambient named a; of course, P
can have as sub-terms other ambients, that are then nested in a. In MA entire ambients
can move: an ambient n can enter into another ambient m via the in m action or exit
from another ambient m via the out m action; moreover, an ambient n can be opened
via the open n action. Communication is anonymous (no channel name is specified
for input/output), can only happen between co-located processes and can exchange
sequences of actions, apart from raw names. Formally, the operational semantics is
obtained from the following axioms:

n[in m.P1|P2] | m[P3] 7−→ m[P3 | n[P1|P2]]

m[n[out m.P1|P2] | P3] 7−→ n[P1|P2] | m[P3]

open n.P1 | n[P2] 7−→ P1 | P2

〈M〉 | (x).P 7−→ P{M/x}
Moreover, structural congruence also includes the following axioms:

(M.M′).P ≡ M.(M′.P) m[(νn)P] ≡ (νn)m[P] if n , m

and evaluation contexts also include ambient encapsulation:

E(·) ::= . . .
∣∣∣ a[E(·)]

MA strongly relies on a type system to avoid inconsistent processes like, e.g., n.P or
in n[P]; these two processes can arise after the (ill-typed) communications (x).x.P | 〈n〉
and (x).x[P] | 〈in n〉. For MA we only consider the sub-language formed by all the
well-typed processes, as defined in [14].
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4. Our Criteria for Encodability Results

We now give evidence for supporting our combination of criteria, for proving both en-
codability and separation results. We start with the former ones: we show that several well
known encodings in the literature satisfy them (thus, our criteria accord with the community’s
common sense), but there are still examples of encodings that do not meet all our criteria (so,
our proposal is not trivial).

4.1. Our criteria accord with common sense

Most of our criteria are not new; the only exception is Property 5. Moreover, also Prop-
erty 2 has some novelty: to the best of our knowledge, it is the first time it has been codified in
such a precise and formal way. Nevertheless, the combination of these five properties is new
and constitutes our proposal. In order to show that it fits well with the common understanding
of language expressiveness, we now quickly discuss the most important encodability results
for process calculi we are aware of.

First, we want to mention [39], where the polyadic (synchronous) π-calculus is encoded
into its monadic fragment. The encoding acts homomorphically on all operators, except for

J a〈b1, . . . , bk〉.P K , (νc)a〈c〉.c〈b1〉. . . . .c〈bk〉.J P K
J a(x1, . . . , xk).P K , a(y).y(x1). . . . .y(xk).J P K

Clearly, Properties 1–5 are all satisfied; however, as we have explicitly proved in [23, 26],
this holds only for the well-typed fragment of the calculus (i.e., the set of processes where no
arity mismatch between an input and an output over the same channel can arise at runtime).

Another well-established encodability result is from the synchronous (choice-free) π-
calculus into πa; this result appears as two different encodings in [6, 31]. Boudol’s encoding
is a homomorphism for all operators, except for:

J a〈b〉.P K , (νc)(a〈c〉 | c(z).(z〈b〉 | J P K))
J a(x).P K , a(y).(νd)(y〈d〉 | d(x).J P K)

whereas Honda and Tokoro’s is even simpler:

J a〈b〉.P K , a(z).(z〈b〉 | J P K)
J a(x).P K , (νd)(a〈d〉 | d(x).J P K)

These three encodings, that are maybe the best known in process calculi, are all valid, but
they all suffer from the fact that their soundness has never been fully established, since the
reference criterion was full abstraction w.r.t. (weak) bisimilarity. Boudol only proved one
direction (viz., that J P K �2 JQ K implies P �1 Q, where � denotes a Morris-like preorder),
whereas [53, 54, 59] showed that full abstraction w.r.t. (weak) bisimilarity does not hold.
Possible ways to remedy this lack are weakening the notion of equivalence; two possibilities
are barbed congruence closed under translated contexts [5, 46] or typed contexts [53, 54,
59]. However, by changing the reference equivalence, an encodability result can turn into
a separation result: this is what happens to the possibility of encoding the synchronous π-
calculus into πa [11], if the reference semantic theory is must testing [18].

As we have said in the introduction, full abstraction is an orthogonal criterion. Indeed, it is
possible to have encodings that enjoy full abstraction but not our criteria. A notable example
is the DJ · K encoding of input-guarded choices into the asynchronous π-calculus given in
[44]: it is fully abstract w.r.t. weak asynchronous bisimilarity but it introduces divergence.
And, as we have just said, there exist valid encodings that are not fully abstract w.r.t. the
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expectable notions of equivalences (e.g., strong/weak bisimilarity): the three ones described
above are good examples.

Other issues that raised interesting encodability results in process calculi are: external
vs internal mobility [5], locality of received names [19, 36], higher-order vs first-order com-
munications [56], depth of prefix nesting [33, 48] and (different forms of) guarded choice
[42, 44]. All these encodings have been proved sound by relying on different criteria, rang-
ing from full abstraction (w.r.t. different equivalences) to sensitiveness to different semantic
notions (e.g., divergence, deadlock, liveness, ...). On the other hand, they all satisfy our cri-
teria, with the only exception of compositionality that is sometimes weakened by assuming a
notion of two-level encoding (for a discussion on this issue, see Section 6).

Another aspect related to compositionality emerges from the standard encoding of repli-
cation with process definitions:

J !P K , AP where AP
def
= J P K | AP

under the assumption that there exists a process constant AP for every process P. This en-
coding does not satisfy compositionality, as defined in Property 1: the encoding of !P is not
obtained by filling a unary context with J P K. This should not be surprising, since process
definitions entail two worlds: processes and process definitions. This calls for a refined no-
tion of compositionality (where the two worlds are somehow combined into a single one,
e.g. by letting process constant be contexts, with the understanding that they represent their
unfolding) or, as we have done in this paper, by exploiting a modeling of recursive processes
where everything lives in a single world. For example, recursion would be another possible
candidate, since process definitions belong to the language of processes. Indeed, we could
model replication via recursion as

J !P K , rec X.(J P K | X)

and this is compositional, using the unary context rec X.( | X). Nevertheless, a valid encod-
ing of replication with process definitions can be obtained by letting

J !P K , J P K | AP

with AP defined as above.
To conclude, we want to mention other very well-known encodings in the world of pro-

cess calculi: the translation of the λ-calculus into the π-calculus [38, 57, 58]. The translations
proposed do not fit well with the criteria we have presented because they are parametric on
an auxiliary name. We shall discuss in Section 6 the problems that we met when trying to
extend our framework for accepting also these kinds of translations as valid encodings.

4.2. Our criteria are not trivial
After the previous discussion, one could argue that all the encodings proposed in the lit-

erature so far satisfy our criteria. Thus, one could think that it is easy to write valid encodings
and so our proposal is not adequate for evaluating encodability results. Actually, this is not
the case, and a notable example is encoding πa into MA: this is a non-trivial task, if we want
to satisfy all the properties in Section 2. Indeed, in several papers [13, 15, 16] there are at-
tempts to encode πa into MA, but none of them satisfies operational soundness and divergence
reflection.

For example, let us consider the simplest of all the encodings proposed in [13, 15, 16],
i.e. the one in [16]. There, the idea is to let

J n(x).P | n〈m〉 K , (νp)(io[in n.(x).p[out n.J P K]] | open n)

| io[in n.〈m〉] | n[!open io]
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However, this encoding suffers from two problems (and, indeed, it is not valid according to
our definition):

1. it introduces divergence Consider for example !n(x) | n〈m〉: it does not diverge but its
encoding diverges (infinitely many ambients named io originating from the encoding
of the replicated input can repeatedly enter ambient n and be opened therein).

2. it violates operational soundness Consider for example n(x) | n〈m〉 | n〈m′〉: it can only
reduce to either n〈m〉 or n〈m′〉 whereas

J n(x) | n〈m〉 | n〈m′〉 K 7−→7 io[in n.〈m〉] | n[!open io] 7−→2 n[!open io | 〈m〉]

where n[!open io | 〈m〉] cannot reduce and it is not equivalent (w.r.t. any ‘reasonably
defined’ notion of equivalence for MA) to J n〈m〉 K nor to J n〈m′〉 K.

To conclude, notice that the encodings proposed in [13, 15] suffer from the same problems,
but are more complicated for typing reasons.

To the best of our knowledge, the encoding we are going to present now (already appeared
in [24]) is the first one that fully satisfies operational correspondence without introducing di-
vergence. Moreover, our encoding shows how difficult could be writing valid encodings. The
encoding relies on a renaming policy that maps every name a to a triple of pairwise different
names (a1, a2, a3); it is a homomorphism w.r.t. all the operators, except for restrictions, inputs
and outputs, that are translated as follows:

J (νa)P K , (ν a1, a2, a3)J P K
J a〈b〉 K , a1[a2[open a3.〈b1, b2, b3〉]]

J a(x).P K , open a1.(νp, q)(open p | a3[in a2.open rest | (x1, x2, x3).in q.p[out q.J P K]]
| q[open a2.rest[! rest[in a3.out q.in a2.open rest]]])

for p, q < F(J P K) ∪ {rest, poly, a1, a2, a3, x1, x2, x3}

where (x1, x2, x3) is a shortcut for (x1).open poly.(x2).open poly.(x3) and 〈b1, b2, b3〉 is a
shortcut for 〈b1〉 | poly[〈b2〉 | poly[〈b3〉]], with poly a reserved name.

Our encoding works as follows. For every communication along a, the ambient named a3
is used as a ‘pilot’ ambient to enter a2 and consume the datum associated to b. To reflect the
fact that an output along a can be consumed only once, we exploit the outer ambient a1 and
the corresponding open a1 action. To avoid interferences that can arise from independent
communications along channel a, only one a3-ambient will be opened within a2; the (possi-
ble) other ones must be rolled back, i.e. reappear at top-level, ready to enter another ambient
a2. This is done by opening a2 in a restricted ambient q and by leading all the not consumed
a3-ambients out from q via the reserved ambient rest, that also restores the in a2 capability
consumed.

The encoding just presented is valid, i.e. it satisfies all the properties of Section 2, with
operational correspondence formulated up-to strong barbed equivalence. All the properties
are easy to prove, except for operational soundness and divergence reflection. To carry out
the proofs, we found it useful to assign a number to the reductions that the encoding of a
communication performs, to easily refer them later on. In what follows, to ease reading, we
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enlight the parts of the process that are involved in the generation of the next transition.

J a〈b〉 | a(x).P K
, a1 [a2[open a3.〈b1, b2, b3〉]]

| open a1 .(νp, q)(open p | a3[in a2.open rest | (x1, x2, x3).in q.p[out q.J P K]]
q[open a2.rest[! rest[in a3.out q.in a2.open rest]]])

7−→@1A Pr@1Aa , a2 [open a3.〈b1, b2, b3〉]
| (νp, q)(open p | a3[ in a2 .open rest | (x1, x2, x3). · · ·] | q[· · ·])

7−→@2A Pr@2Aa , (νp, q)(open p | q[· · ·]
| a2[ open a3 .〈b1, b2, b3〉 | a3 [open rest | (x1, x2, x3). · · ·]])

7−→@3A Pr@3Aa , (νp, q)(open p | q[· · ·]
| a2[ 〈b1〉 | poly[〈b2〉 | poly[〈b3〉]] | open rest

| (x1) .open poly.(x2).open poly.(x3).in q.p[out q.J P K]])
7−→@4A Pr@4Aa , (νp, q)(open p | q[· · ·]

| a2[ poly [〈b2〉 | poly[〈b3〉]] | open rest

| open poly .(x2).open poly.(x3).in q.p[out q.J P K{b1/x1}]])
7−→@5A Pr@5Aa , (νp, q)(open p | q[· · ·]

| a2[ 〈b2〉 | poly[〈b3〉] | open rest

| (x2) .open poly.(x3).in q.p[out q.J P K{b1/x1}]])
7−→@6A Pr@6Aa , (νp, q)(open p | q[· · ·]

| a2[ poly [〈b3〉] | open rest

| open poly .(x3).in q.p[out q.J P K{b1/x1, b2/x2}]])
7−→@7A Pr@7Aa , (νp, q)(open p | q[· · ·]

| a2[ 〈b3〉 | open rest | (x3) .in q.p[out q.J P K{b1/x1, b2/x2}]])
7−→@8A Pr@8Aa , (νp, q)(open p | q [· · ·]

| a2[open rest | in q .p[out q.J P{b/x} K]])
7−→@9A Pr@9Aa , (νp, q)(open p | q[ open a2 .rest[! rest[· · ·]] | a2 [open rest | p[out q.J P{b/x} K]]])
7−→@10A Pr@10A

a , (νp, q)(open p | q[ rest [! rest[· · ·]] | open rest | p[out q.J P{b/x} K]])
7−→@11A Pr@11A

a , (νp, q)(open p | q [! rest[· · ·] | p[ out q .J P{b/x} K]])
7−→@12A Pr@12A

a , (νp, q)( open p | q[! rest[· · ·]] | p [J P{b/x} K])
7−→@13A (νq)q[! rest[in a3.out q.in a2.open rest]] | J P{b/x} K

What we have just shown immediately yields a proof of operational completeness.

Proposition 4.1. If P 7−→1 P′ then J P K Z=⇒2�2 J P′ K, where �2 denotes strong barbed
equivalence for MA.

Proof: It suffices to observe that (νq)q[! rest[in a3.out q.in a2.open rest]] �2 0. �

By contrast, to prove operational soundness and divergence reflection we have to take
care of the possible interferences between the encoding of different communications along
the same channel. In such a case, some new reductions (viz, those arising from the replicated
copies of ambient rest) are needed to restore the interfering a3 ambients at top-level, ready
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to complete their task. However, such reductions are spurious, in the sense that they do not
correspond to original reductions in πa and are only performed to remedy some interference.

Formally, a reduction arising from the encoding of a πa process is called spurious if

• it is of kind @2A , but leads an a3 ambient within an a2 ambient that has already been
entered by (at least) another a3 ambient. Of course, such an ambient can still be there
(i.e., its has still not been opened), or it has been opened, it is within a communication
or it has finished communicating. Formally:

a3[ in a2 .open rest | (x1, x2, x3). · · ·] | a2 [· · · | a3[· · ·]]
7−→@2sA a2[· · · | a3[· · ·] | a3[open rest | (x1, x2, x3). · · ·]]

a3[ in a2 .open rest | (x1, x2, x3). · · ·] | a2 [· · · | (xi). · · ·]
7−→@2sA a2[· · · | (xi). · · · | a3[open rest | (x1, x2, x3). · · ·]]

a3[ in a2 .open rest | (x1, x2, x3). · · ·] | a2 [· · · | open poly. · · ·]
7−→@2sA a2[· · · | open poly. · · · | a3[open rest | (x1, x2, x3). · · ·]]

a3[ in a2 .open rest | (x1, x2, x3). · · ·] | a2 [· · · | in q. · · ·]
7−→@2sA a2[· · · | in q. · · · | a3[open rest | (x1, x2, x3). · · ·]]

In these cases, we denote the step with @2sA to emphasize their spurious nature and
distinguish them from a step performed to mimic a reduction in πa.

• it arises from the content of the a replicated copy of ambient rest:

q[! rest[ in a3 .out q.in a2.open rest] | a3 [open rest | (x1, x2, x3). · · ·]]
7−→@14A q[! rest[· · ·] | a3[ open rest | (x1, x2, x3). · · · | rest [out q.in a2.open rest]]]

7−→@15A q [! rest[· · ·] | a3[(x1, x2, x3). · · · | out q .in a2.open rest]]

7−→@16A q[! rest[· · ·]] | a3[in a2.open rest | (x1, x2, x3). · · ·]

Notice that, after reduction @16A , the content of a3 is exactly the same as the content of
a3 before performing the @2sA reduction: this allows a3 to complete its communication,
by entering another a2 ambient. Indeed, reductions @14A /@15A /@16A can only happen after
reduction @10A ; so, the ambient a2 previously entered by a3 has already been dissolved
when a3 is restored at top-level by @16A . This fact intuitively ensures us that no divergence
is introduced by the encoding (a formal proof will be given in a few moments).

Let us use metavariable ` to range over {1, . . . , 16, 2s}. Then, the numbered reductions
defined so far are closed under evaluation contexts and structural congruence:

P 7−→@̀A P′

E(P) 7−→@̀A E(P′)

P ≡ Q 7−→@̀A Q′ ≡ P′

P 7−→@̀A P′

Here and in what follows, we denote with na
@̀A the number of reductions of kind ` originated

from the encoding of a communication along a in a given sequence of n reductions; n@̀A stands
for

∑
a∈N na
@̀A .

Theorem 4.2 (Operational soundness). Let P be a πa process and Q be a MA process such
that J P K 7−→n Q. Then, P 7−→n@1A P′, for some πa process P′ such that Q Z=⇒�2 J P′ K, where
‘�2’ denotes strong barbed equivalence in MA.
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Proof: See the Appendix. �

We now exploit the previous result to prove that the encoding does not introduce diver-
gence. To this aim, we first need a preliminary result that relates the number of spurious
reductions with the number of initial reductions (i.e., reductions of kind @1A ), since only spu-
rious reductions can introduce divergence. It turns out that there are at most polynomially
many spurious reductions, and this easily leads us to divergence freedom.

Lemma 4.3. Let J P K 7−→n; then the number of spurious reductions (i.e., n@2sA+n@14A+n@15A+n@16A)
is at most 2 · (n@1A )2 − 2 · n@1A .

Proof: The worst case is when all the n@1A reductions are on the same channel, say a, and can
be obtained as follows. Put all the n@1A a3 ambients in the same a2 ambient; this introduces
n@1A − 1 spurious reductions of kind @2sA and the corresponding 3 · (n@1A − 1) reductions (of kind
@14A , @15A and @16A ) to remedy this choice. Then, put all the remaining n@1A − 1 a3 ambients in
the same a2 ambient; this introduces 4 · (n@1A − 2) spurious reductions. And so on. Thus, the
overall number of spurious reductions is at most

n@1A∑

k=1

4 · (k − 1) = 4 ·
(

n@1A · (n@1A + 1)
2

− n@1A

)
= 2 · (n@1A )2 − 2 · n@1A

�

Theorem 4.4 (Divergence reflection). If J P K 7−→ω, then P 7−→ω.

Proof: Let J P K 7−→n and observe that n > 0 implies that n@1A > 0. Moreover, for every
k ∈ {2, . . . , 13}, it holds that n@kA ≤ n@1A ; indeed, by construction of the encoding, it is not
possible to produce a reduction of kind @kA without having produced a corresponding reduction
of kind @1A . By Lemma 4.3, n → ∞ implies that n@1A → ∞; by Theorem 4.2, we easily
conclude. �

5. Our Criteria for Separation Results

We now show that our criteria allow us to revisit several separation results appearing in
the literature, and to prove new separation results.

In the following proofs, we shall sometimes use a labeled transition system (LTS, for
short) to describe the possible interactions between two parallel components and the way
in which they cooperate to yield a reduction. Traditionally, LTSs have been used to give the
operational semantics of a process and to define several different behavioural equivalences for
them [20, 21]. Here, we do not need all the (sometimes sophisticated) features of the LTSs
for the process calculi we are going to use and only use labeled transitions in an informal and
intuitive way. For example, we let P

µ−→ mean that P is able to perform action µ; moreover,
as usual, we let µ stand for the complementary action of µ, i.e. an action such that, if P

µ−→
and P′

µ−→ , then P | P′ 7−→. For full definitions and discussions, we refer the interested reader
to the standard references for the various languages (viz. [57] for all the variants of π-calculi
that we consider, [12] for πe and πm, and [35] for MA). The only (standard) thing that we
assume is the presence of a silent action τ and that every τ action corresponds to a reduction.

5.1. Proving known separation results

Let us start with the separation results in [28], i.e. between πa/MA and CCS. In loc. cit., it
is assumed (a form of) success sensitiveness, homomorphism of ‘|’ and name invariance under
any renaming policy that maps every name into a single name. The last two properties, mainly
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the last one, are quite demanding. We now prove such results by removing any assumption
on the renaming policy and by allowing parallel composition be translated by introducing a
centralized coordination process. Thus, we assume that, for every N ⊆ N , there exist ñ and
R such that CN

| ( 1 ; 2) = (ν̃n)( 1 | 2 | R).

Theorem 5.1. There exists no valid encoding of πa into CCS.

Proof: By contradiction, assume that there exists a valid encoding J · K. Let a, b, c and d be
pairwise distinct names and define S , [x = b][c = c][d = d]

√
. Since (a(x).S | 0) | a〈b〉 7−→1√

, Property 3 implies that J (a(x).S | 0) | a〈b〉 K Z=⇒2 T �2 J√ K; moreover, by Property 5,
J√ K reports success and so does T , since �2 is assumed to be sensitive to success. By
Property 1, J (a(x).S | 0) | a〈b〉 K , C{a,b,c,d}| (J a(x).S | 0 K; J a〈b〉 K), with C{a,b,c,d}| ( 1 ; 2) ,
(ν̃n)( 1 | 2 | T ′), for some ñ and T ′.

By definition of the operational semantics of CCS, every reduction of a generic CCS
process P | Q can be: (i) a reduction of P, or (ii) a reduction of Q, or (iii) a synchronization

between P and Q, with P
a−→ and Q

a−→ or vice versa. Here, P
µ−→ , for µ ∈ {a, a}, means that P

has a top-level sum containing a summand prefixed by action µ and that a is not restricted in
P. Thus, the sequence of reductions J (a(x).S | 0) | a〈b〉 K Z=⇒2 T is generated by J a(x).S | 0 K
and J a〈b〉 K | T ′ by either reducing in isolation or by synchronizing, i.e. J a(x).S | 0 K µ1...µk

====⇒ T1

and J a〈b〉 K | T ′ µ1...µk
====⇒ T2, for (ν̃n)(T1 | T2) ≡ T . where, for every i ∈ {1, . . . , k}, there exists

mi such that µi ∈ {mi,mi}. More explicitly, we can write

J a(x).S | 0 K 7−→h0
2 H0

µ1−→ K1 7−→h1
2 H1

µ2−→ K2 . . . 7−→hk−1
2 Hk−1

µk−→ Kk 7−→hk
2 T1

J a〈b〉 K | T ′ 7−→h′0
2 H′0

µ1−→ K′1 7−→
h′1
2 H′1

µ2−→ K′2 . . . 7−→
h′k−1
2 H′k−1

µk−→ K′k 7−→
h′k
2 T2

Moreover, notice that {m1, . . . ,mk} ∩ ñ = ∅: indeed, J a(x).S | 0 K , C{a,b,c,d}| (J a(x).S K; J 0 K) =

(ν̃n)(J a(x).S K | J 0 K | T ′) and J a(x).S | 0 K µ1...µk
====⇒ implies that the name occurring in µi (viz.,

mi) does not belong to ñ, for every i.
Let σ be the permutation that swaps a with c and b with d; also let σ′ denote the permu-

tation of names induced by σ, as defined in Property 2. By Property 2,

J c(x).Sσ | 0 K 7−→h0
2 H0σ

′ µ1σ
′

−−−→ K1σ
′ 7−→h1

2 H1σ
′ µ2σ

′
−−−→ K2σ

′ . . . 7−→hk−1
2 Hk−1σ

′ µkσ
′

−−−→ Kkσ
′ 7−→hk

2 T1σ
′

J c〈d〉 K | T ′ 7−→h′0
2 H′0σ

′ µ1σ
′

−−−→ K′1σ
′ 7−→h′1

2 H′1σ
′ µ2σ

′
−−−→ K′2σ

′ . . . 7−→h′k−1
2 H′k−1σ

′ µkσ
′

−−−→ K′kσ
′ 7−→h′k

2 T2σ
′

Like before, it must be that {σ′(m1), . . . , σ′(mk)} ∩ ñ = ∅.
Now, consider Q , ((a(x).P | 0) | a〈d〉) | ((c(x).Pσ | 0) | c〈b〉). Trivially, Q 6⇓ whereas, as

we shall see, JQ K ⇓; this yields the desired contradiction. By compositionality,

JQ K , C{a,b,c,d}| (J (a(x).S | 0) | a〈d〉 K ; J (c(x).Sσ | 0) | c〈d〉 K)
= (ν̃n)(J (a(x).S | 0) | a〈d〉 K | J (c(x).Sσ | 0) | c〈d〉 K | T ′)
, (ν̃n)(C{a,b,c,d}| (J a(x).S | 0 K; J a〈d〉 K) | C{a,b,c,d}| (J c(x).Sσ | 0 K; J c〈d〉 K) | T ′)
= (ν̃n)((ν̃n)(J a(x).S | 0 K | J a〈d〉 K |T ′) | (ν̃n)(J c(x).Sσ | 0 K | J c〈b〉 K |T ′) | T ′)
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Then, consider

JQ K 7−→2(h0+h′0)
2 (ν̃n)((ν̃n)(H0 |H′0) | (ν̃n)(H0σ

′ |H′0σ′) | T ′)
7−→2 7−→2 (ν̃n)((ν̃n)(K1 |K′1) | (ν̃n)(K1σ

′ |K′1σ′) | T ′) (1)

7−→2(h1+h′1)
2 (ν̃n)((ν̃n)(H1 |H′1) | (ν̃n)(H1σ

′ |H′1σ′) | T ′)
7−→2 7−→2 (ν̃n)((ν̃n)(K2 |K′2) | (ν̃n)(K2σ

′ |K′2σ′) | T ′) (2)
. . .

7−→2(hk−1+h′k−1)
2 (ν̃n)((ν̃n)(Hk−1 |H′k−1) | (ν̃n)(Hk−1σ

′ |H′k−1σ
′) | T ′)

7−→2 7−→2 (ν̃n)((ν̃n)(Kk |K′k) | (ν̃n)(Kkσ
′ |K′kσ′) | T ′) (k)

7−→2(hk+h′k)
2 (ν̃n)((ν̃n)(T1 |T2) | (ν̃n)(T1σ

′ | T2σ
′) | T ′)

≡ (ν̃n)(T | (ν̃n)(T1σ
′ |T2σ

′) | T ′)

where the two reductions labeled with (i) are obtained by synchronizing

• µi produced by Hi−1 with µi produced by H′i−1, and µiσ
′ produced by Hi−1σ

′ with µ′iσ
′

produced by H′i−1σ
′, if mi < ϕJ K(b);

• µi produced by Hi−1 with µi produced by H′i−1σ
′, and µiσ

′ produced by Hi−1σ
′ with

µ′iσ
′ produced by H′i−1, otherwise.

Thus, we have proved that JQ K ⇓, since (ν̃n)(T | (ν̃n)(T1σ
′ |T2σ

′) | T ′) is successful because
T is; by contrast, Q 6⇓, in contradiction with the validity of J · K. �

The previous proof can be adapted to MA: indeed, we can exploit the encoding of channel
based communications of πa into MA given in Section 4.2 and the encoding of name matching
in MA provided in [50]. Thus, process (a(x).[x = b][c = c][d = d]

√ | 0) | a〈b〉 can be
written in MA and the proof then proceeds like above.

Theorem 5.2. There exists no valid encoding of MA into CCS.

We now aim at proving other separation results, viz. those in [12, 45, 50, 51], in a more
uniform and abstract setting. Our aim is to characterize the features of a language that make
an encoding impossible without committing at any concrete language, i.e. by only relying on
properties of reductions and of success. For example, the separation result in Theorem 5.1
only holds for CCS and πa; by changing the languages the proof is meaningless. Instead, the
proof-techniques put forward by Theorems 5.3, 5.8 and 5.9 are results that do not involve any
specific language and can be instantiated (as trivial corollaries) to concrete cases.

To this aim, however, we must leave the ideal framework presented in Section 2 and
make it slightly more concrete; carrying out proofs at the abstract level is a challenging open
problem. Mainly, we have to make some assumptions on the semantic theory of the target
language, viz. ‘�2’. We propose three possible instantiations that allow us to develop proofs.

5.1.1. First Setting

Definition 5.1. We say that � is exact whenever P � P′ and P
µ−→ imply that P′

µ
=⇒ , for every

µ , τ.

Examples of exact equivalences are (the different kinds of) synchronous bisimilarity and
synchronous trace equivalence. Regretfully, under this assumption, we are able to develop
proofs only under a restricted formulation of Property 1.
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Definition 5.2. We say that J · K is homomorphic (w.r.t. ‘|’) whenever CN
| ( 1; 2), the context

used to compositionally translate the parallel composition of two processes with free names
in N, is 1 | 2, for every set of names N.

This requirement is similar to the one in [12, 28, 45, 46, 50, 51], where only encod-
ings that translate ‘|’ homomorphically are considered. In such works, this requirement is
defended by saying that only encodings that do not reduce the degree of parallelism of any
source process can be ‘valid’ means for language comparison. Reducing the degree of paral-
lelism is seen as a weakness of encodings in the setting of process calculi: the target language
is not able to mimic the source one without reducing the degree of distribution. We agree with
this argument and, hence, we believe that working with homomorphic encodings is not a too
high price to be payed.

We are now ready to prove our first proof-technique.

Theorem 5.3. Assume that there is a L1-process S such that S 7−→/ 1, S 6⇓ and S | S ⇓;
moreover, assume that every L2-process T that does not reduce is such that T | T 7−→/ 2. If �2
is exact, there cannot exist any valid and homomorphic encoding J · K : L1 −→ L2

Proof: We work by contradiction. First, let us fix, for every L1-process S that does not
reduce, a L2-process f (J S K) such that J S K Z=⇒2 f (J S K) 7−→/ 2; such a process always exists
because of Property 4 (when J S K does not reduce, we can always let f (J S K) = J S K). Now,
consider the auxiliary encoding L · M : L1 −→ L2 such that:

L S M ,


f (J S K) if S 7−→/ 1
L S 1 M | L S 2 M if S = S 1 | S 2 7−→1
J S K otherwise

Such an encoding satisfies the following two properties:

A. if S 7−→/ 1 then L S M 7−→/ 2 B. L S M �2 J S K
Property A follows by construction of L · M; let us prove Property B, by induction on the struc-
ture of S . If S 7−→/ 1 (base step and first sub-case of the inductive step), then, by operational
completeness (that is part of Property 3), we have that J S K Z=⇒2 f (J S K) implies the exis-
tence of a S ′ such that S Z=⇒1 S ′ and f (J S K) Z=⇒2�2 J S ′ K. Since S 7−→/ 1, we have that S ′

can only be S itself; moreover, the fact that f (J S K) 7−→/ 1 implies that L S M �2 J S K, as desired.
If S = S 1 | S 2 7−→1 then, by structural induction, L S 1 M �2 J S 1 K and L S 2 M �2 J S 2 K; we
easily conclude by congruence of �2 with respect to parallel composition. The third sub-case
is trivial, by reflexivity of �2.

Now, let us take a L1-process S such that S 7−→/ 1, S 6⇓ and S | S ⇓; by Property 5
and homomorphism, we have that J S K 6⇓ and J S | S K , J S K | J S K ⇓. This implies that

J S K | J S K 7−→2, with J S K µ−→ and J S K µ−→ , for some pair of complementary actions µ and µ
(here we are assuming binary synchronizations, as often happens in process calculi). Since �2

is ‘exact’, we can use property B to obtain that L S M µ−→ and L S M µ−→ ; thus, L S M | L S M 7−→2
whereas, by S 7−→/ 1 and property A, L S M 7−→/ 2, in contradiction with the hypothesis. �

Corollary 5.4. There exists no valid and homomorphic encoding of πmix, CCS and MA into
πsep and into πa.

Proof: Take any exact behavioural theory for πsep (e.g., strong/branching/weak bisimi-
larity, both in their early/late/open form, or may/must/fair testing, just to mention some
possibilities). On one hand, notice that, if T is a πsep-process such that T | T 7−→2, then
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T ≡ (ν̃n)(Σm
i=1ai(xi).Ti | Σn

j=1a′j〈b j〉.T ′j | T ′′) and there exist i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}
such that ai = a′j. Thus, trivially, T 7−→2; hence, every πsep-process T that does not reduce is
such that T | T 7−→/ 2.

On the other hand, we can find both in CCS, in πmix and in MA a process S that does not
reduce and does not report success, but such that S | S reports success: it suffices to let S be
a.0 + ā.

√
in CCS, a(x).0 + a〈b〉.√ in πmix and (νp)(open p.

√ | n[in n.p[out n.out n.0]]) in
MA.

The case for πa is similar: just notice that now if T is a πa-process such that T | T 7−→2,
then T ≡ (ν̃n)(a(x).T | a〈b〉 | T ′). �

5.1.2. Second Setting
Definition 5.3. We say that � is reduction sensitive whenever P � P′ and P′ 7−→ imply that
P 7−→.

Examples of reduction sensitive equivalence/preorders are strong syn-
chronous/asynchronous bisimulation [1, 37] and the expansion preorder [2]. Working
with a reduction sensitive �2 has the advantage that we are able to carry out proofs also
under translations of ‘|’ more liberal than the homomorphic one.

A Uniform Approach to Separation Results. We now describe the methodological approach
we shall follow to prove separation results. The key fact that will enable all our proofs is the
following (adapted from [23] and corresponding to property A in the proof of Theorem 5.3).
By using the terminology of [44], this proposition implies that in this setting we only consider
prompt encodings.

Proposition 5.5. If �2 is reduction sensitive and J · K : L1 −→ L2 is a valid encoding, then
S 7−→/ 1 implies that J S K 7−→/ 2, for every S .

Proof: By contradiction, assume that J S K 7−→2 T , for some S 7−→/ 1. By operational
soundness, there exists a S ′ such that S Z=⇒1 S ′ and T Z=⇒2 T ′ �2 J S ′ K; but the only
such S ′ is S itself. Since �2 is reduction sensitive and since J S ′ K = J S K 7−→2 , then
T ′ 7−→2 T ′′. Again, by operational soundness T ′′ Z=⇒2 T ′′′ �2 J S K, and so on; thus,
J S K 7−→2 T Z=⇒2 T ′ 7−→2 T ′′ Z=⇒2 T ′′′ 7−→2 . . ., in contradiction with Property 4 (since
S 7−→/ 1 implies that S does not diverge). �

Another crucial consequence of our criteria are the following two propositions. Here and
in what follows, let us assume the following notation: block(S ) denotes any term S ′ such that
F(S ′) = F(S ), S ′ 7−→/ 1, S ′ 6⇓1 and S ′ cannot interact with any other L1-process. It is easy
to build such a S ′: it suffices to prefix S with any blocking action involving a new restricted
name (for example, in CCS and in any of the π-calculi we can prefix S with an input from a
new restricted channel; in MA with an open of a new restricted ambient; and so on).

Proposition 5.6. Let J · K : L1 −→ L2 be a valid encoding and �2 be reduction sensitive.
Then, for every set of names N, it holds that CN

| ( 1; 2) has both its holes at top-level.

Proof: Let us fix a set of names N and a L1-process S with F(S ) = N. Let us now
consider S ′ ,

√ | block(S ). By Proposition 5.5, it must be that J S ′ K 7−→/ 2, since S ′ 7−→/ 1.
By Property 1, we have that J S ′ K , CN

| (J√ K; J block(S ) K). By Property 5, it must be that
J S ′ K ⇓2, since S ′ ⇓1. All these facts entail that the top-level occurrence of

√
in J S ′ K is

exhibited

• either by the translating context, and so CN
| ( 1; 2) ⇓2,
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• or by J√ K, but this implies that CN
| ( 1; 2) has 1 at top-level.

Indeed, it is not possible that
√

is exhibited by J block(S ) K, since block(S ) 6⇓1. However, the
first case is not possible, otherwise J block(S ) | block(S ) K ⇓2, whereas block(S ) | block(S ) 6⇓1.
To show that also the occurrence of 2 in CN

| ( 1; 2) is at top-level, it suffices to reason in the
very same way, but using S ′ , block(S ) | √. �

Proposition 5.7. Let J · K : L1 −→ L2 be a valid encoding and �2 be reduction sensitive. If
there exist two L1-terms S 1 and S 2 such that S 1 | S 2 ⇓, with S i 6⇓ and S i 7−→/ 1 for i = 1, 2,
then J S 1 K | J S 2 K 7−→2.

Proof: By Property 5, J S 1 | S 2 K ⇓2 and, by Proposition 5.6, it has both J S 1 K and J S 2 K at
top-level. However, since none of J S 1 K, J S 2 K and J block(S 1) | block(S 2) K can report suc-
cess, it must be that J S 1 | S 2 K 7−→2 . This can only happen by synchronizing J S 1 K and J S 2 K.
If this was not the case, we would have that J S 1 | block(S 2) K 7−→2 or J block(S 1) | S 2 K 7−→2
or J block(S 1) | block(S 2) K 7−→2 , in violation of Proposition 5.5: indeed, S 1 | block(S 2) 7−→/ 1
because S 1 7−→/ 1, block(S 2) 7−→/ 1 and block(S 2) cannot interact with S 1; a similar reasoning
holds for block(S 1) | S 2 and block(S 1) | block(S 2). �

In this framework, the way in which we prove a separation result between L1 and L2 is
the following:

(a) by contradiction, suppose that there exists a valid encoding J · K : L1 −→ L2;
(b) find a pair of L1-processes S 1 and S 2 that satisfy the hypothesis of Proposition 5.7; by

such a result, J S 1 K | J S 2 K 7−→2 ;
(c) from S 2 obtain a process S ′2 with the same free names as S 2 but such that S 1 | S ′2 7−→/ 1

and J S 1 K | J S ′2 K 7−→2 ;
(d) by Property 1, this implies that J S 1 | S ′2 K 7−→2 , in contradiction with Proposition 5.5.

Notice that the identification of S 1 and S 2 (point (b) above) is usually very simple: they are
directly obtained from the constructs of L1 that one believes not to be encodable into L2.
This is different from [12, 28, 45, 50, 51] where, by contrast, a lot of effort must be spent to
define a programming scenario that can be properly implemented in the source language but
not in the target one. Point (c) is the only part that requires some ingenuity (it can be easy or
quite difficult): usually, it strongly relies on Property 2 (sometimes also on compositionality)
to slightly modify S 2 in order to obtain the new process S ′2.

A Simpler Proof of Known Separation Results. First, we reformulate Theorem 5.3 by chang-
ing the hypothesis on �2; this modification will allow us to obtain Corollary 5.4 under a
different choice of semantic theories for πsep.

Theorem 5.8. Assume that there is a L1-process S such that S 7−→/ 1, S 6⇓ and S | S ⇓;
moreover, assume that every L2-process T that does not reduce is such that T | T 7−→/ 2. Also
assume that �2 is reduction sensitive. Then, there cannot exist any valid encoding J · K :
L1 −→ L2.

Proof: By contradiction. Let S be such that S 7−→/ 1, S 6⇓ and S | S ⇓; by Proposition 5.7,
J S K | J S K 7−→2 that, by hypothesis, implies that J S K 7−→2 , in contradiction with Proposi-
tion 5.5. �

We now give a second proof-technique that allows us to obtain the hierarchy for polyadic
synchronizations in [12] and to adapt the results in [23, 25] to the present setting. To this
aim, let us define the matching degree of a language L, written M(L), as the least upper
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bound on the number of names that must be matched to yield a reduction in L. For example,
the matching degree of CCS [37], of the π-calculus [37] and of Mobile Ambients [16] is 1;
the matching degree of Dπ [29] is 2; the matching degree of πn (the π-calculus with n-ary
polyadic synchronizations [12]) is n; the matching degree of eπ (the π-calculus with arbitrary
polyadic synchronizations [12]) is ∞. Indeed, as a representative sample, the π-calculus
process a(x).P | a〈b〉.Q can reduce because of the successful matching between the channel
name specified for input and for output (a here).2

Theorem 5.9. If M(L1) > M(L2) and �2 is reduction sensitive, then there exists no valid
encoding J · K : L1 −→ L2.

Proof: By contradiction assume the existence of a valid encoding J · K. Pick up two L1-
processes S 1 and S 2 that satisfy the hypothesis of Proposition 5.7 and that synchronize only
once (before reporting success) by matching exactly k = M(L1) names, viz. {n1, . . . , nk}.
By Proposition 5.7, their encodings must synchronize: i.e., J S 1 K

µ−→ and J S 2 K
µ−→ . Since

M(L1) > M(L2), it must be that the names in F(µ)∩ F(µ) matched when synchronizing
µ and µ (say, {m1, . . . ,mh}) are less than k; this implies the existence of an ni such that ϕJ K(ni)∩
{m1, . . . ,mh} = ∅. Let us choose a new name m (i.e., m < F(S 1) ∪ F(S 2) ∪ F(µ) ∪ F(µ))
and consider the substitution σ that swaps m and ni. Trivially, S 1 | S 2σ 7−→/ 1 because, by
construction, S 1 and S 2 can only synchronize by matching k names; thus, also S 1 and S 2σ
can only synchronize by matching k names and the match on the i-th name fails, since S 1

contains ni and S 2σ contains m. By Property 2, J S 2σ K = J S 2 Kσ′ and J S 2 Kσ′
µσ′−−→ . Now,

notice that µσ′ is still synchronizable with µ because σ′ swaps component-wise ϕJ K(ni) and
ϕJ K(m), and so it does not touch {m1, . . . ,mh}; so, J S 1 K | J S 2σ K 7−→2. By Proposition 5.6,
J S 1 | S 2σ K 7−→2 whereas S 1 | S 2σ 7−→/ 1, in contradiction with Proposition 5.5. �

Corollary 5.10. There exists no valid encoding from eπ into πm, for every m, and from πm

into πn, whenever m > n.

Proof: Observe that M(eπ) = ∞ and that M(πm) = m; then apply Theorem 5.9. �

5.1.3. Third Setting
The setting presented in Section 5.1.2 relies on the assumption that �2 is reduction sensi-

tive. This restriction seems us not too severe, since most of the operational correspondence
results appearing in the literature are formulated up to such semantic theories; the only no-
table exception we are aware of is [42, 44], where weak (asynchronous) bisimilarity [1] is
exploited. We now sketch a weaker setting, that covers all the separation results we are aware
of (including [42, 44]) without breaking the elegant and powerful proof-techniques developed
in Section 5.1.2.

We have said that the aim of formulating operational correspondence up to �2 is to get
rid of junk processes possibly arising from the encoding. We can make this intuition explicit
by formulating operational correspondence as follows:

• for all S Z=⇒1 S ′, there exist ñ and T ′ such that J S K Z=⇒2 (ν̃n)(J S ′ K | T ′) �2 J S ′ K;
• for all J S K Z=⇒2 T , there exist S ′, ñ and T ′ such that S Z=⇒1 S ′ and T Z=⇒2

(ν̃n)(J S ′ K | T ′) �2 J S ′ K.

2Incidentally, the early-style LTS for the π-calculus also verifies that
ab−→ synchronizes with

ab−→ . However, this does not imply
that the matching degree of the π-calculus is 2. Indeed, the process that generates label ab can generate label ac, for every name c;
thus, the only name that is matched is the name of the communication channel (a in this case), whereas the second name (viz. b) is
only a parameter exchanged.
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Maybe, such a formulation can be criticized by saying that it is too ‘syntactic’, but in practice
we are not aware of any encoding that does not satisfy it. Moreover, encodings work at a
syntactic level on processes; thus, in the same vein as Properties 1 and 2, we think that it is
acceptable to also have syntactic conditions on operational correspondence.

Restricting �2 to pairs of kind ((ν̃n)(T | T ′),T ), for (ν̃n)(T | T ′) �2 T , yields a reduc-
tion sensitive relation, for any �2; thus, Propositions 5.5, 5.6 and 5.7 (and, consequently,
all the results proved in Section 5.1.2) hold also in this setting without requiring reduction
sensitiveness of �2.

5.2. Proving new separation results

We now prove in the settings of Sections 5.1.2 and 5.1.3 that MA cannot be encoded into
πmix (actually, the proof scales well to the general π-calculus, as presented in [40]) and that it
cannot encode CCS (actually, its mixed choice operator).

The proofs will be carried out by following the general methodology presented in Sec-
tion 5.1.2. A challenging issue for future research is the development of analogous proofs to
the setting of Section 5.1.1 or, even better, without making any assumption on ‘�2’. How-
ever, when the target language is MA, the first setting seems not very adequate, since the
bisimulation equivalences for MA [35] are not ‘exact’.

Theorem 5.11. Let ‘�2’ satisfy the assumptions in Section 5.1.2 or 5.1.3. Then, there exists
no valid encoding of MA into πmix.

Proof: Consider the processes S 1 , n[in m.p[out n.out m.
√

]] and S 2 , m[0] | open p,
where S 1|S 2 ⇓, S 1 6⇓ and S 2 6⇓; by Proposition 5.7, it must be that J S 1|S 2 K 7−→2 with the
contribution of both J S 1 K and J S 2 K.

We first prove that in πmix we have that J S 1|S 2 K ≡ (ν̃n)((J S 1 K + . . .) | (J S 2 K + . . .) | T ),
with J S 1 K | J S 2 K 7−→2. By Proposition 5.6, J S 1|S 2 K = CF(S 1,S 2)

| (J S 1 K ; J S 2 K), with both
J S 1 K and J S 2 K occurring at top-level. So, for i ∈ {1, 2}, we have that i is underneath some
restriction, or it is replicated, or, if the outermost operator of J S K is a prefix for every S , then

i can also be a summand of some mixed sum. In all these cases, we easily conclude.
Because J S 1 K and J S 2 K must synchronize, we have that J S 1 K performs an out-

put over some channel a and J S 2 K performs a corresponding input from a (the case in
which the input and the output are swapped is identical). Because of compositional-
ity, J S 1 K , C{n,m,p}n[ ] (J in m.p[out n.out m.

√
] K); thus, the output over a can be either

performed by C{n,m,p}n[ ] (·) or by J in m.p[out n.out m.
√

] K. In both cases we could vio-
late Proposition 5.5: in the first case J n[〈n〉 | 〈m〉 | 〈p〉] | S 2 K 7−→2, in the second case
J in m.p[out n.out m.

√
] | S 2 K 7−→2. �

Theorem 5.12. Let ‘�2’ satisfy the assumptions in Section 5.1.2 or 5.1.3. Then, there exists
no valid encoding of CCS into MA.

Proof: Let P , x̄.a.b.c + y.
√

for a, b, c pairwise distinct; let Pmn denote m̄.a.b.c + n.
√

,
i.e. the process Pσ, where σ is the substitution that maps x in m and y in n. By con-
struction, Pab | Pbc ⇓ whereas Pmn 6⇓ for every m and n; by Proposition 5.6, J Pab | Pbc K =

(ν̃n)(J Pab K | J Pbc K | T ) and, by Proposition 5.7, it must be that J Pab K | J Pbc K 7−→2. In MA,
this can happen in three ways (symmetric cases are omitted because they do not add anything
new to the proof):

1. J Pab K performs an output and J Pbc K performs an input;
2. J Pab Kwants to open an ambient m and J Pbc K has such a top-level unrestricted ambient;
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3. J Pab K has a top-level ambient that wants to enter into an ambient m and J Pbc K has an
unrestricted top-level occurrence of ambient m.

We now show that all these cases lead to contradict Proposition 5.5.

1. Consider J Pba | Pbc K. By compositionality, we have that J Pba | Pbc K =

C{a,b,c}| (J Pba K; J Pbc K) = (ν̃n)(J Pba K | J Pbc K | T ); moreover, by name invariance, also
J Pba K performs an output. Thus, J Pba K | J Pbc K 7−→2; hence J Pba | Pbc K 7−→2, whereas
Pba | Pbc 7−→/ 1.

2. Because of compositionality, J Pbc K = C{a,b,c}+ (J b̄.a.b.c K ; J c.
√ K); thus, ambient m is

exhibited either by C{a,b,c}+ ( 1; 2), or by J c.
√ K, or by J b̄.a.b.c K. In the first case, we

would also have that J Pab | Pcb K 7−→2, while in the second case we would also have that
J Pab | Pac K 7−→2; hence, the only way to respect Proposition 5.5 is the third possibility.
So, C{a,b,c}+ ( 1; 2) must have 1 at top-level.

With a similar reasoning, we can show that J b.
√ K performs the open m action and

that C{a,b,c}+ ( 1; 2) has also 2 at top-level.
Now consider Pbb: its encoding is J b̄.a.b.c + b.

√ K , C{a,b,c}+ (J b̄.a.b.c K; J b.
√ K) ≡

(νm̃)(J b̄.a.b.c K | J b.
√ K | T ′), for some m̃ and T ′, since C{a,b,c}+ ( 1; 2) has both 1 and 2

at top-level. Thus, J Pbb K 7−→2, since J b̄.a.b.c K wants to open m and J b.
√ K provides

an unrestricted occurrence of m at top-level. By contrast, Pbb 7−→/ 1, in violation of
Proposition 5.5.

3. Like in the previous case, we can conclude that J b̄.a.b.c K exhibits ambient m and that
C{a,b,c}+ ( 1; 2) has a top-level occurrence of 1. Moreover, either J b.

√ K has the ambient
aiming at entering into m, or C{a,b,c}+ ( 1; 2) is of the form (ν̃h)(h[ 1 | Q] | . . .) and J b.

√ K
performs an in m action. In both cases, we can reason like in case 2 above to obtain
that J Paa K 7−→2 and conclude.

�

Of course, the previous proof scales straightforwardly to πmix, by considering process
P , x〈x〉.a(x1).b(x2).c(x3) | y(z).

√
. Thus, we have also proved that

Theorem 5.13. Let ‘�2’ satisfy the assumptions in Section 5.1.2 or 5.1.3. Then, there exists
no valid encoding of πmix into MA.

6. On Enhanced Forms of Translations

Before concluding, we would like to briefly discuss if the criteria of Section 2 can be
enhanced by mainly showing to what extent the first two properties can be formulated in a
more liberal way.

Concerning Property 1, all the encodings we are aware of satisfy some form of composi-
tionality, and it would be very hard to concretely define an encoding that does not satisfy any
form of such a property. Indeed, if a translation exists, we should be able to write it down,
and this is feasible only if it can be defined inductively (since the syntactic terms can be ar-
bitrary long). However, this fact does not imply that our formulation of compositionality is
the only possibility for having an inductively defined translation. For example, as it happens
in [4, 7], we can have a ‘two-level’ encoding: J · K is a translation that satisfies Properties 2–
5 and it is such that J P K , CF(P)(L P M), where L · M is a compositional translation (this
property is called weak compositionality in [49]). The proof-techniques presented in Sec-
tions 5.1.2 and 5.1.3 can be readily adapted to this enhanced notion of encoding, whereas the
proof-technique of Section 5.1.1 cannot (recall that there we had to work with homomorphic
translations of parallel composition).
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Also name invariance is somehow related to the inductive definition of the translation:
such an induction is usually carried out over the syntactic structure of the source term, and
this justifies the fact that, for source terms that differ only by an injective name substitution,
the encoded terms should have the same syntactic structure. However, our formulation of
Property 2 does not scale well to parametric translations, that are functions from pairs of the
form (S ,Parameters) to target processes instead of being functions from source processes to
target ones (as we have considered throughout this paper). Consider, for example, the en-
codings in [34, 38, 57, 58]; there, an encoding is a family of translations J · KΞ, where the
parameter Ξ is a set of names (in the first one) or a single name (in the last three ones) used as
auxiliary parameters in the translation. Moreover, one can also imagine different translation
schemata, where Ξ represents, e.g., an upper bound on the free names of the source process.
In these cases, our framework is less adequate: indeed, it is difficult to formulate our prop-
erties and carry out proofs without knowing what the index represents. For example, which
is the initial (i.e., top-level) value of Ξ in J · KΞ? If Ξ are names, are they part of the source
or of the target language? The latter question is very delicate when defining Property 2: in
the first case, the property should be adapted by requiring that J Sσ KΞσ is equal/equivalent to
(J S KΞ)σ′; in the second case, we have that J Sσ KΞσ′ must be equal/equivalent to (J S KΞ)σ′.
Moreover, does compositionality have to somehow take into account Ξ or not? Even more,
operational correspondence should be formulated by keeping Ξ the same or let it evolve along
reductions (i.e., S Z=⇒1 S ′ implies J S KΞ Z=⇒2�2 J S ′ KΞ or J S KΞ Z=⇒2�2 J S ′ KΞ′ , for some –
which? – Ξ′)?

Thus, even if we believe that parametric forms of encoding are very reasonable, we have
problems in defining a general framework without specifying anything on the index. On the
contrary, we can properly specialize our criteria from case to case, according to the rôle of
the index in the encoding.

7. Conclusion

We have collected together some criteria that an encoding should satisfy to be considered
a valid means for language comparison. We have argued that the resulting set of criteria is a
satisfactory notion for assessing the relative expressive power of process calculi by noting that
most encodings appearing in the literature satisfy them. Moreover, this notion is not trivial,
because there exist known encodings that do not satisfy all the criteria we have proposed:
a representative example is given by the encodings of the π-calculus into Mobile Ambients
[14, 16].

This paper is mostly methodological, as it describes a new approach both to encodabil-
ity and to separation results. On one hand, we believe that, for encodability results, we
have proposed a valid alternative to full abstraction for comparing languages: our proposal
is more focused on expressiveness issues, whereas full abstraction is more appropriate when
we look for a tight correspondence between the behavioural equivalences associated with the
compared languages. We think that full abstraction is still an interesting notion to investigate
when developing an encoding, but it should be considered an “extra-value”: if it holds, the en-
coding is surely more interesting, because it enables not only a comparison of the languages,
but also of their associated equivalences. On the other hand, our proposal is also interesting
for separation results: as we have shown, several separation results appearing in the literature
can be easily formulated and proved in terms of our criteria. In Table 1 we have compar-
atively listed such results. Roughly speaking, the approach taken in [12, 28, 45, 50, 51]
consists in (i) identifying a problem that can be solved in the source language but not in the
target, and then (ii) finding the least set of criteria that an encoding should meet to translate a
solution of the problem in the source into a solution of the problem in the target. Concerning
point (ii), we have already argued that the criteria put forward by our criteria are not more
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Electoral Systems Matching Systems Our Criteria
1st setting 2nd setting 3rd setting

CCS −→/ πsep [45] (a) × X X X
πmix −→/ πsep [45] (a) × X X X
MA −→/ πsep [50] (a) × X X X

eπ −→/ πm −→/ πn

(m > n) × [12] (c) ? X X

MA −→/ πmix × × ? X X
CCS −→/ MA × × // X X
πa −→/ CCS [45] (b) [28] (a) X
MA −→/ CCS [51] (b) [28] (a) X

Table 1: Comparison of different separation methodologies. For every result, we list where it appears (‘×’ if it has
never been published, ‘?’ if we believe that it holds but we have not been able to prove it, and ‘//’ if the setting does
not apply) and the criteria adopted: (a) stands for homomorphism w.r.t. ‘|’, (a form of) name invariance and (a form
of) success sensitiveness; (b) is (a) plus a condition requiring that source processes without shared free names must
be translated into target processes without shared free names; (c) is (a) plus divergence reflection.

demanding than those in [12, 28, 45, 50, 51]. Concerning point (i), we are only aware of two
kinds of problem: symmetric electoral systems [45, 50, 51] and matching systems [12, 28].
However, none of them is ‘universal’, in the sense that different separation results usually
require different separation problems (see the ‘×’ in Table 1).

Apart from being very adequate for proving known separation results, our approach can
be used to prove several new separation results: in [22, 24], we exploit such criteria to com-
pare the relative expressive power of several calculi for mobility (viz., the asynchronous π-
calculus, a distributed π-calculus, and Mobile/Safe/Boxed Ambients together with several of
their variants); moreover, the results in [23, 25, 26] can be easily re-formulated under Proper-
ties 1–5 (actually, the criteria we assume in this paper generalize the criteria in those papers
without compromising the validity of the results appearing therein). Finally, the fact that
our criteria are also well-suited for encodability results makes the hierarchies of languages
uniform.

Of course, there is still a lot of work to do. For example, with the general formulation
of our criteria (see Section 2) we have only been able to prove the last two separation results
of Table 1, even though we strongly believe that also the remaining ones hold. It would be
nice to prove more separation results in the general framework: in that setting, such results
are very strong, since the formulation of our criteria is more liberal and abstract. Moreover, it
would be nice to replace the two ‘?’ in Table 1 with a ‘X’. Another very challenging direction
for future research is to prove existence of a valid encoding without giving a concrete trans-
lation. Such ‘existence results’ are very common in mathematics and physics; to the best of
our knowledge, no such result has ever appeared for studying the expressiveness of process
calculi. To conclude, the challenge raised in [43] is still open, but we think and hope that our
proposal can contribute to its final solution.
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Appendix A. Technicalities and Proofs from Section 4.2

To ease reading, let us denote with PRā the encoding of a〈b〉, for some b, with its enclosing
a1 ambient dissolved, i.e.,

PRā , a2[open a3.〈b1, b2, b3〉]
and with PRa the process left by the encoding of some input over a used to remedy to reduc-
tions of kind @2sA , i.e.

PRa , q[! rest[in a3.out q.in a2.open rest]]

Moreover, given any ambient process P, we denote with Ps2,s14,s15 the processes P without the
(possible) top-level restrictions on p and q, and that moreover contains:

• s2 parallel copies of process

P@2sA
a3
, a3[open rest | (x1, x2, x3).in q′.p′[· · ·]]

within the top-level ambient named a2, if there is such an ambient in P, or within the
top-level ambient named q, otherwise;

• s14 parallel copies of process

P@14A
a3
, a3[open rest | (x1, x2, x3).in q′.p′[· · ·] | rest[out q.in a2.open rest]]

and s15 parallel copies of process

P@15A
a3
, a3[(x1, x2, x3).in q′.p′[· · ·] | out q.in a2.open rest]

within the top-level ambient named q.

Of course, we shall use notation Ps2,s14,s15 only for those P’s that either have a top-level ambi-
ent a2 or q. Then, working only with such processes allows us to add also the following rule
for inferring numbered reductions:

P 7−→@̀A Q

Ps2,s14,s15 7−→@̀A Qs2,s14,s15

Before going on, we want to remark that, to be precise, we would have to index pro-
cesses PRā and PR

@kA , s2, s10, s7
a not only with the name of the channel (viz., a), but also with the

communicated name (say, b) in the first case and with the continuation process (say, P) in
the second case. However, this would have made our notation much heavier; thus, to ease
reading, we prefer to be less precise and rely on the reader’s understanding.

We can now prove operational soundness (i.e. the second item of Property 3). To this
aim, it suffices to prove the following lemma, where we let n̂a

@kA be na
@1A − na

@2A − na
@2sA + na

@16A, if
k = 1, and be na

@kA − na
@k+1A, for every k = 2, . . . , 12.

Lemma Appendix A.1. Let P be a πa process and Q be an MA process such that J P K 7−→n

Q, for n =
∑
`∈{1,...,16,2s} n@̀A . Then,

Q ≡ (νm̃, p̃, q̃)
(
JR K | ∏

a∈N


na
@2sA−na
@16A∏

k=1
PRā |

12∏
k=1

n̂a
@kA∏

i=1
PR
@kA , s2ki

, s14ki
, s15ki

a |
na
@13A∏

i=1
PR

s213i
, s1413i

, s1513i
a


)

where
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• JR K has no top-level restrictions;

• p̃ and q̃ have the same length;

• s14ki
= s15ki

= 0, whenever k < 11; and

• na
@2sA =

∑13
k=1

∑na
@kA

i=1 s2ki
, na
@14A =

∑13
k=11

∑na
@kA

i=1 s14ki
and na

@15A =
∑13

k=11
∑na
@kA

i=1 s15ki
.

Proof: By induction on n. The base step is trivial; for the inductive step, let J P K 7−→n Q 7−→
Q′. By induction,

Q ≡ (νm̃, p̃, q̃)
(
JR K | ∏

a∈N


na
@2sA−na
@16A∏

k=1
PRā |

12∏
k=1

n̂a
@kA∏

i=1
PR
@kA , s2ki

, s14ki
, s15ki

a |
na
@13A∏

i=1
PR

s213i
, s1413i

, s1513i
a


)

Let us now consider all the possible cases for the reduction Q 7−→ Q′:

• JR K can only evolve in isolation by performing a reduction of kind @1A ;

• PR
@1A , s21i

, s141i
, s151i

a can evolve in isolation by performing a reduction of kind @2A , or it can
interact with some PRā by still performing a reduction of kind @2A or it can perform a

reduction of kind @2sA by interacting with some PR
@hA , s2h j

, s14h j
, s15h j

a , for h ≤ 8;

• PR
@kA , s2ki

, s14ki
, s15ki

a , for k > 1, can only evolve in isolation by performing a reduction of
kind @k+1A;

• PR
s213i

, s1413i
, s1513i

a can only evolve in isolation by performing a reduction of kind @14A (pro-
vided that s213i

> 0), @15A (provided that s1413i
> 0) or @16A (provided that s1513i

> 0).

Let us consider all these cases in isolation.

1. The reduction has been originated by JR K. In this case, the reduction must
be of kind @1A and, hence, R ≡ a〈b〉 | a(x).P | R′. The thesis easily follows by
noting that, after the (n + 1)-th reduction, the new value of n̂a

@1A is the old value
plus one: the new process of the form PR@1A , s2, s10, s7

a arising from this reduction is
a2[open a3.〈b1, b2, b3〉] | open p | a3[in a2.open rest | (x1, x2, x3).in q.p[out q.J P K]].
Moreover, the restricted p and q can be scope extended and added to p̃ and q̃, respec-
tively. Finally, JR′ K has no top-level restrictions, since JR K has none.

2. The reduction has been originated by PR
@kA , s2ki

, s14ki
, s15ki

a , for some k ∈ {1, . . . , 12} and
i ∈ {1, . . . , n̂a

@kA}. We reason by case analysis.

(a) The reduction is of kind @k+1A. In this case, PR
@kA , s2ki

, s14ki
, s15ki

a 7−→@k+1A
PR
@k+1A , s2ki

, s14ki
, s15ki

a and we can easily conclude since the new value of n̂a
@kA is the

old value minus one and the new value of n̂a
@k+1A is the old value plus one.

When k = 1, this case also keeps into account the possible reductions arising

from an interaction between PR
@1A , s21i

, s141i
, s151i

a and one of the na
@2sA − na

@16A processes
PRā of the first product. Indeed, by using structural equivalence, we can swap the

process of kind PRā occurring as a parallel component of PR
@1A , s21i

, s141i
, s151i

a with

the one occurring in the first product; then the new version of PR
@1A , s21i

, s141i
, s151i

a
can reduce in isolation.
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(b) If k = 1, the reduction can also be of kind @2sA . In this
case, there exist h ∈ {1, . . . , 8} and j ∈ {1, . . . , n̂a

@hA} such that

PR
@1A , s21i

, s141i
, s151i

a | PR
@hA , s2h j

, s14h j
, s15h j

a 7−→@2sA PRā | PR
@hA , s2h j

+1, s14h j
, s15h j

a . Also in this
case we can conclude by letting the new value of s2h j

be the old value plus one,

and by noting that the new value of n̂a
@1A is the old value minus one and the new

value of na
@2sA is the old value plus one.

(c) If k ∈ {11, 12}, it can also be one of the following cases:

• The reduction is of kind @14A . In this case, PR
@kA , s2ki

, s14ki
, s15ki

a 7−→@14A
PR
@kA , s2ki

−1, s14ki
+1, s15ki

a and we can easily conclude by letting the new value
of s2ki

be the old value minus one and the new value of s14ki
be the old value

plus one.

• The reduction is of kind @15A . In this case, PR
@kA , s2ki

, s14ki
, s15ki

a 7−→@15A
PR
@kA , s2ki

, s14ki
−1, s15ki

+1
a and reason similarly to the previous case.

• The reduction is of kind @16A. In this case, PR
@kA , s2ki

, s14ki
, s15ki

a 7−→@16A
PR
@kA , s2ki

, s14ki
, s15ki

−1
a | a3[· · ·]. In this case, it suffices to notice that the new

value of na
@16A is the old value plus one, the new value of n̂a

@1A is the old value
minus one and that the ambient a3[· · ·] together with the copy of PRā re-
moved from the first product (arising from the decrement of na

@16A) form the
new PR@1A , 0, 0, 0

a that is added to the product containing processes of this kind
(and this justifies the increase of the value of n̂a

@1A).

3. The reduction has been originated by PR
@13A , s213i

, s1413i
, s1513i

a , for some i ∈ {1, . . . , na
@13A}.

This case is similar to case 2(c) above.
�

Proof of Theorem 4.2.. By Lemma Appendix A.1,

Q ≡ (νm̃, p̃, q̃)
(
JR K | ∏

a∈N


na
@2sA−na
@16A∏

k=1
PRā |

12∏
k=1

n̂a
@kA∏

i=1
PR
@kA , s2ki

, s14ki
, s15ki

a |
na
@13A∏

i=1
PR

s213i
, s1413i

, s1513i
a


)

Then, reduce every PR
@kA , s2ki

, s14ki
, s15ki

a such that at least one of s2ki
, s14ki

, s15ki
is different from

0 to PR
@13A , s2ki

, s14ki
, s15ki

a . We now obtain a process of the form

(νm̃, p̃, q̃)
(
JR′ K | ∏

a∈N


na
@2sA−na
@16A∏

k=1
PRā |

12∏
k=1

n̂a
@kA
′∏

i=1
PR@kA , 0, 0, 0

a |
na
@13A

′∏
i=1

PR
s213i

, s1413i
, s1513i

a


)

where JR′ K collects together all the processes of the form J P{b/x} K that are part of the pro-

cesses PR
@13A , s2ki

, s10ki
, s7ki

a obtained after this sequence of reductions.
Now consider all processes of kind PR

s213i
, s1413i

, s1513i
a such that at least one of

s213i
, s1413i

, s1513i
is different from 0. By construction of the encoding, it must always be that

s213i
≥ s1413i

≥ s1513i
. Thus, the number of processes of this kind is exactly na

@2sA − na
@16A; further-

more, for every such process, there exists a corresponding PRā process in the first product.
We can now perform all the possible actions of kind @14A , @15A and @16A ; this leads to a process of
the form

(νm̃, p̃, q̃)
(
JR′ K | ∏

a∈N

12∏
k=1

n̂a
@kA
′+na
@2sA−na
@16A∏

i=1
PR@kA , 0, 0, 0

a

)
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where now all the a3[· · ·] (produced from some PR
s213i

, s1413i
, s1513i

a after all these reductions)
together with the corresponding process of kind PRā now become a new PR@1A , 0, 0, 0

a . Now, let
us reduce every PR@kA , 0, 0, 0

a to PR@k+1A , 0, 0, 0
a until we obtain a process of the form

J P′ K | (νq̃)
∏

a∈N

12∏

k=1

n̂a
@kA
′+na
@2sA−na
@16A∏

i=1

PR0, 0, 0
a

that, by what we have observed in the proof of Proposition 4.1, is barbed equivalent to J P′ K.
To conclude, we just note that P′ is the process obtained from P by performing the n@1A re-
ductions associated to the reductions of kind @1A in J P K 7−→n Q. �
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