
On the Relative Expressive Power
of Ambient-based Calculi

Daniele Gorla
Dip. di Informatica, Univ. di Roma “La Sapienza”

To appear in the Proc. of TGC’08. c© Springer.

Abstract. Nowadays, some of the most successful models for global
computers are defined as ambient-based calculi; among them, the main-
stream models are Mobile, Safe and Boxed Ambients. In this paper, we
comparatively analyze most of their variants by comparing every vari-
ant against the language it comes from. In particular, we discuss and
compare: objective moves in Mobile Ambients; passwords and a different
semantics for the out primitive in Safe Ambients; different communi-
cation and mobility primitives in Boxed Ambients. By establishing the
possibility/impossibility of encoding one language in another one, we
discover which variants enhance the original language and which ones
actually yield different formalisms.

1 Introduction

In the last few years, there has been a wide interest in the calculus of Mobile
Ambients (MA) [4], an emerging model for global computing systems. As the
name suggests, the key feature of MA is the notion of ambient, a bounded place
where computations happen. Each ambient has a name, a collection of local
processes and a collection of sub-ambients (each with its own name, processes and
sub-ambients). The nesting of ambients forms a hierarchical (tree-like) structure
that can be modified by the processes during a computation. A computation step
(also called reduction) in MA may happen because an ambient, together with
all its content, enters/exits another ambient, because an ambient is opened, so
that its content is unleashed at its nesting level, or because co-located processes
communicate.

The paradigm put forward by MA has stimulated the development of sev-
eral ambient-based calculi, each modifying some feature of the original language.
One of the first main developments is the calculus of Safe Ambients (SA) [11],
obtained by adding co-actions to MA. The main difference is that ambient move-
ments/openings in MA are initiated by only one ambient and the target ambient
has no control over them; in contrast, in SA both participants must agree by
using a matching action and co-action. A second major variation of MA is the
calculus of Boxed Ambients (BA) [1], obtained by disallowing ambient openings
and allowing a limited form of communication across boundaries (between par-
ent and child in the tree-like nesting structure). After these two major variants,
several minor variants of MA/SA/BA appeared in the literature.

A lot of efforts have been spent to define more and more sophisticated type
theories to control and improve reliability of the global computing systems pro-

grammable in these models. However, a necessary (and more preliminary) re-
quirement for establishing the trustworthiness of such systems is the deep un-
derstanding of all their distinctive language features. Moreover, a comparative
analysis of the different proposals is desirable also for understanding the extent
to which theories developed for one model can be transposed into another model.

In a companion paper [7], we approach these questions by comparing the
language design issues of some calculi for mobility, including the three main-
stream ambient-based calculi just mentioned; there, we prove that SA enhances
the expressiveness of MA, whereas BA yields a language with an incomparable
expressive power. In this paper, we go further and consider several variations of
these three languages. We study the relative expressive power of each variation
with respect to the calculus it comes from, i.e. we try to encode one language
in the other, while respecting some reasonable properties. In principle, a good
encoding should be “faithful”, in that the encoding of a term must have the same
functionalities as the original term. This notion can be formalized in different
ways and a number of different proposals have been considered in the literature
(e.g., sensitivity to barbs/divergence/deadlock, operational correspondence, full
abstraction, ...).

Here, we take the proposal in [8] and consider only encodings that satisfy the
following properties: compositionality (i.e., the encoding of a compound term
must be expressed in terms of the encoding of its components), name invariance
(i.e., the encodings of two source processes that differ only in their free names
must only differ in the associated free names), operational correspondence (i.e.,
computations of a source term must correspond to computations in the encoded
term, and vice versa), divergence reflection (i.e., terminating processes must be
translated into terminating processes) and success sensitivity (i.e., successful
terms – for some notion of success – must be translated into successful terms,
and vice versa). In [8] we show that these criteria form a valid proposal for
language comparison: most of the encodings in the literature respect them (so
our notion is consistent with the common understanding of the community), but
there still exist encodings that do not satisfy them (so our notion is non-trivial);
moreover, the best known separation results can be proved (in a much easier
and uniform way) by relying on our proposal. Here, we furthermore vindicate
the validity of our proposal by showing that some widely believed (but never
formally proved) separation results can be established by relying on the above
mentioned criteria.

Our set of criteria and the associated proof techniques developed in [8] are
quickly recalled in Section 2. Then, we start our analysis in Section 3, where
we present MA and compare it with two dialects that use objective moves. In
particular, we show that MA is more expressive than MAo, the objective variant
of MA proposed in [4], whereas its expressive power is incomparable with the
one of the push and pull ambient calculus, Pac [16].

In Section 4 we move to SA; we study how its expressiveness changes by
introducing passwords and by changing the semantics for the out primitive, as
suggested in [12]. We prove that passwords enhance the expressiveness of SA,

whereas the different modeling of the out primitive yields a language with an
incomparable expressive power.

Finally, in Section 5 we consider BA and study the expressiveness of a few
variations obtained by slightly changing its mobility and communication primi-
tives. We first compare the expressiveness of shared and localized channels, and
conclude that the two forms of communication are incomparable. Then, we ex-
tend BA with co-actions and passwords to obtain safe boxed ambients [13] and
new boxed ambients [2]: we prove that both these variants enhance the expres-
siveness of BA and are incomparable.

Section 6 concludes the paper by mentioning some related work. Due to space
limitations, no motivation on the languages considered is given; for this aspect
and for a full explanation of their constructs, we refer the interested reader to
their standard references. Moreover, we just quickly and intuitively sketch proofs;
full details can be found in the on-line technical report [6].

2 The Formal Framework

2.1 Ambient-based Process Calculi

We assume a countable set of names, N , ranged over by m,n, . . . , u, v, w, . . . ,
x, y, z, . . . and their decorated versions. To simplify reading, we shall use m,n, . . .
to denote ambient names, x, y, z, . . . to denote input variables, and u, v, w, . . . to
denote generic names.

A calculus is a triple L = (P, 7−→,'), where

– P is the set of language terms, usually called processes and ranged over by
P,Q,R, All the process calculi we are going to consider have a common
core syntax given by:

P ::= 0
∣∣M.P

∣∣ n[P]
∣∣ (νn)P

∣∣ P1|P2

∣∣!P ∣∣√
As usual, 0 is the terminated process, whereas

√
denotes success (see the

discussion on Property 5 later on). In ambient-based calculi, n[P] denotes
process P running within ambient n; M.P denotes process P prefixed by
the sequence of actions M ; P1|P2 denote the parallel composition of two
processes; (νn)P restricts to P the visibility of n and binds n in P ; finally,
!P denotes the replication of process P . We have assumed here a very simple
way of modeling recursive processes; all what we are going to prove does not
rely on this choice and can be rephrased under different forms of recursion.

– 7−→ is the operational semantics, needed to specify how a process computes;
following common trends in process calculi, we specify the operational se-
mantics by means of reductions, whose inference rules shared by all our
process calculi are:

P 7−→ P ′

E(P) 7−→ E(P ′)

P ≡ P ′ P ′ 7−→ Q′ Q′ ≡ Q

P 7−→ Q

where

• E(·) denotes an evaluation context, defined by the following grammar:

E(·) ::= ·
∣∣ E(·)|P

∣∣ P |E(·)
∣∣ (νn)E(·)

∣∣ n[E(·)]

and E(P) denotes the process obtained by replacing the hole ‘ · ’ with
process P ;

• ≡ denotes structural equivalence, the least equivalence closed under
alpha-renaming of bound names, under evaluation contexts and under
the following axioms:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

!P ≡ P | !P (νn)0 ≡ 0 (νn)(νm)P ≡ (νm)(νn)P

P | (νn)Q ≡ (νn)(P |Q) if n 6∈ fn(P)

m[(νn)P] ≡ (νn)m[P] if n 6= m (M.M ′).P ≡M.(M ′.P)

where fn(P) denotes the free names (i.e., the names not bound) in P .
Structural equivalence can be extended to evaluation contexts by getting
rid of alpha-conversion.

Of course, the operational axioms are peculiar to every language, since they
depend on the action prefixes. As usual, Z=⇒ denotes the reflexive and tran-
sitive closure of 7−→.

– ' is a behavioural equivalence/preorder, needed to describe the abstract
behaviour of a process. Usually, ' is a congruence with respect to closure
under evaluation contexts (or, at the very least, with respect to parallel
composition) and it is often defined in the form of a barbed equivalence [14],
even though our results do not rely on any specific behavioural equivalence.

2.2 The Encodability Criteria

A translation of L1 = (P1, 7−→1,'1) into L2 = (P2, 7−→2,'2), written J · K :
L1 → L2, is a function from P1 to P2. We shall call encoding any translation
that satisfies the five properties we are going to present now. There, to simplify
reading, we let S range over processes of the source language (viz., L1) and T
range over processes of the target language (viz., L2).

As already said in the introduction, an encoding should be compositional.
To formally define this notion, we exploit the notion of k-ary context, written
C(1; . . . ; k), that is a term where k occurrences of 0 are replaced by the k holes
1, . . . , k.

Property 1. A translation J · K : L1 → L2 is compositional if, for ev-
ery k-ary L1-operator op and finite subset of names N , there ex-
ists a k-ary L2-context CNop[1; . . . ; k] such that J op(S1, . . . , Sk) K =
CNop[JS1 K; . . . ; JSk K], for every S1, . . . , Sk with fn(S1, . . . , Sk) = N .

Moreover, a good encoding should reflect in the encoded term all the name
substitutions carried out in the source term.

Property 2. A translation J · K : L1 → L2 is name invariant if, for every
substitution σ, there exists a substitution σ′ such that

JSσ K
{

= JS Kσ′ if σ is injective
'2 JS Kσ′ otherwise

In [8] we formally describe how the substitution in the target language (viz.
σ′) can be obtained from the substitution in the source (viz. σ). Notice that
injectivity of σ must be taken into account because non-injective substitutions
can fuse two distinct names, and this matters because compositionality also
depends on the free names occurring in the encoded terms.

A source term and its encoding should have the same operational behaviour,
i.e. all the computations of the source term must be preserved by the encoding
without introducing “new” computations. This intuition is formalized as follows.

Property 3. A translation J · K : L1 → L2 is operationally corresponding
if
– for every S and S′ s.t. S Z=⇒1 S

′, it holds that JS K Z=⇒2'2 JS′K;
– for every S and T such that JS K Z=⇒2 T , there exists a S′ such that
S Z=⇒1 S

′ and T Z=⇒2'2 JS′ K.

Another important semantic issue that an encoding should avoid is the intro-
duction of infinite computations, written 7−→ω, when translating a terminating
process.

Property 4. A translation J · K : L1 → L2 is divergence reflecting when-
ever JS K 7−→ω implies that S 7−→ω, for every S.

Finally, we require that the source and the translated term behave in the
same way with respect to success, a notion that can be used to define sensible
semantic theories [5, 19]. To formulate our property in a simpler way, we fol-
low the approach in [19] and assume that all the languages contain the same
success process

√
; then, we define the predicate ⇓, meaning reducibility (in

some modality, e.g. may/must/fair-must) to a process containing a top-level un-
guarded occurrence of

√
. Clearly, different modalities in general lead to different

results; in this paper, proofs will be carried out in a ‘may’ modality, but all our
results could be adapted to other modalities. Finally, for the sake of coherence,
we require the notion of success be caught by the semantic theory underlying
the calculi, viz. '; in particular, we assume that ' never relates two processes
P and Q such that P ⇓ and Q 6⇓.

Property 5. A translation J · K : L1 → L2 is success sensitive if, for every
S, it holds that S ⇓ iff JS K ⇓.

Definition 1 (Encoding). An encoding of L1 into L2 is a translation J · K :
L1 → L2 that satisfies Properties 1–5.

Finally, to prove a couple of results, we also need a further property, still
very reasonable but not as basic as the previous five ones.

Property 6. A translation J · K : L1 → L2 is adequate if, for every S and
S′ such that S ≡ S′, it holds that JS K '2 JS′ K.

This property seems us quite acceptable, since the purpose of structural equiv-
alence is relating different ways of writing the same process; thus, it is natural
to require that the encodings of structurally equivalent processes behave in the
same way. We could have asked for structural equivalence of the encoded terms,
but, because of compositionality, this would have led to a too demanding prop-
erty. It has to be said that Property 6 is quite close in spirit to the notion of
full abstraction, whereas the proposal in [8] was defined as an alternative to such
a notion. Thus, we would really like to avoid the use of Property 6; this leaves
space for improving our results. Indeed, we believe that the impossibility results
we are going to prove via Property 6 should also hold without it, but we have
still not been able to prove them.

2.3 Derived Properties

In [8] we have shown that some separation results can be proved in the gen-
eral framework we have just presented; however, to carry out more proofs, we
have to slightly specialize the framework; this is mainly done by making some
assumptions on the behavioural equivalence of the target language, viz. '2. In
particular, in loc.cit. we have considered three alternative settings:

1. '2 is exact, i.e. T '2 T
′ and T performs an action µ imply that T ′ (weakly)

performs µ as well; moreover, parallel composition must be translated ho-
momorphically, i.e. for every N ⊂ N it holds that CN| [1; 2] = 1 | 2;

2. '2 is reduction sensitive, i.e. T '2 T
′ and T ′ 7−→ imply that T 7−→;

3. the occurrences of '2 in Property 3 are restricted to pairs of kind (E(T), T),
for E(T) '2 T .

All these assumptions are discussed and justified at length in [8]. By relying
on them, we can prove a number of auxiliary results that will be useful in carrying
out the main proofs of this paper.

Proposition 1. Let J · K be an encoding; then, S 7−→/ implies that JS K 7−→/ .

Proposition 2. Let J · K be an encoding; if there exist two source terms S1 and
S2 such that S1 | S2 ⇓, S1 6⇓ and S2 6⇓, then JS1 | S2 K 7−→.

Proposition 3. Let J · K : L1 → L2 be an encoding. If there exist two source
terms S1 and S2 that do not reduce but such that JS1 | S2 K 7−→, then it can only
be that C1(JS1 K) | C2(JS2 K) 7−→, where Cfn(S1,S2)

| [1; 2], i.e. the context used to

compositionally translate S1 |S2, is structurally equivalent to E(C1(1) | C2(2))
for some evaluation context E(·) and two contexts C1(·) and C2(·) that are either
empty (viz., ·) or a single top-level ambient containing a top-level hole (viz.,
m[·], for some m).

Theorem 1. Assume that there is a L1-process S such that S 7−→/ 1, S 6⇓ and
S | S ⇓; moreover, assume that every L2-process T that does not reduce is such
that T | T 7−→/ 2. Then, there cannot exist any encoding J · K : L1 −→ L2.

To state the following proof-technique, let us define the matching degree of a
language L, written Md(L), as the least upper bound on the number of names
that must be matched to yield a reduction in L. For example, the matching
degree of Mobile Ambients [4] is 1, whereas the matching degree of Safe Ambients
with Passwords (SAP) [12] is 2.

Theorem 2. If Md(L1) > Md(L2), there exists no encoding J · K : L1 −→ L2.

3 Mobile Ambients (MA) and its Variants

Definition 2 (MA processes and messages).

P ::= . . .
∣∣ (x).P

∣∣ 〈M〉 M ::= u
∣∣ in u

∣∣ out u
∣∣ open u

∣∣M.M

Intuitively, an ambient m enters into another ambient n via the in n action,
exits from another ambient n via the out n action and is opened via the open m
action. Moreover, 〈M〉 represents message M ready to be consumed by a co-
located input prefixed process (x).P that, upon communication, replaces with
M every occurrence of variable x in P . As usual, (x).P binds x in P .

Definition 3 (MA reduction axioms).

m[in n.P1|P2] | n[P3] 7−→ n[P3 | m[P1|P2]] open m.P1 | m[P2] 7−→ P1 | P2

n[m[out n.P1|P2] | P3] 7−→ m[P1|P2] | n[P3] (x).P | 〈M〉 7−→ P{M/x}

MA, like all the following Ambient-based languages, strongly relies on a
type system to avoid inconsistent processes like, e.g., m.P or in n[P]; these
two processes can arise after the (ill-typed) communications (x).x.P | 〈m〉 and
(x).x[P] | 〈in n〉. For MA, like for SA and BA, we shall always consider the
sub-language formed by all the well-typed processes, as defined in [3, 11, 1].

3.1 Mobile Ambients with Objective Moves (MAo)

The first variation of MA has been proposed in [4]: ambient movements, instead
of being subjective (the moving ambient decides where and when moving), be-
come objective (the moving ambient is stuck and moved from the outside). In

MAo, actions in n and out n are replaced by mv in n and mv out n, whose
semantics is

mv in n.P1 | n[P2] 7−→ n[P1 | P2] n[mv out n.P1 | P2] 7−→ P1 | n[P2]

The following theorem proves that MA is strictly more expressive than MAo.

Theorem 3. MA is more expressive than MAo: there exists an encoding of
MAo in MA; there exists no encoding of MA in MAo.

Proof. For the first part, it suffices to consider the translation of MAo in MA
provided in [4] and observe that it satisfies Properties 1–5. For the second part,
we exploit Theorem 1 by noting that:

– P , (νp)(open p.
√
| n[in n.p[out n.out n.0]]) is a MA process that does

not reduce and does not report success but such that P |P ⇓;
– every MAo-process T that does not reduce is such that T | T 7−→/ . ut

3.2 The Push and Pull Ambient Calculus (Pac)

The second variation of MA with objective moves is the so called Push and
Pull ambient calculus (Pac) [16]. Now, actions in n and out n are replaced by
pull n and push n, whose semantics is

m[P1] | n[pull m.P2 | P3] 7−→ n[m[P1] | P2 | P3]

n[m[P1] | push m.P2 | P3] 7−→ m[P1] | n[P2 | P3]

Notice that the objective mobility in MAo is much more controlled than that in
Pac: at every moment, at most one movement for every ambient can happen in
MAo, since the moving ambient is blocked by the mv in/mv out prefix. On the
other hand, in Pac the same ambient can undergo different movements, because
of execution of different parallel actions naming the same ambient. Indeed, MA
can reasonably encode MAo, whereas MA cannot encode Pac (nor vice versa),
as the following theorem proves. We shall give full details for this proof, since
the following ones will be similar or easier.

Theorem 4. MA and Pac are incomparable: there exists no encoding satisfying
Property 6 of Pac in MA and of MA in Pac.

Proof. Let us work by contradiction and assume that such encodings do exist.
For the first claim, consider the Pac process P | Q, for P ,

n[pull m.(〈n〉 | push p | p[
√

])], Q , m[0] | open p and n 6= m. By Proposi-
tion 2, its encoding must reduce; by Proposition 3 and by definition of MA
reduction rules, this can happen in one of the following ways:

– C1(JP K) and C2(JQ K) communicate: if this were the case, then consider σ,
the permutation that swaps n and m. By Property 2, we would have that
JPσ | Q K 7−→. This fact would falsify Proposition 1, thus implying that J · K
is not an encoding: contradiction.

– C1(JP K) contains an ambient that wants to enter into some ambient k and
C2(JQ K) exhibits such an ambient at top-level:

If C1(·) was not empty, it must be that JP K contains a top-level
in k prefix, with JP K = C{n,m,p}

n[]
(J pull n.(〈m〉 | push p | p[

√
]) K)

by compositionality. However, this is not possible, because
otherwise either Jn[pull n.(〈m〉 | push p | p[

√
])] | Q K 7−→ or

J pull m.(〈n〉 | push p | p[
√

]) | Q K 7−→, according to whether C{n,m}
n[]

(·)
or J pull m.(〈n〉 | push p | p[

√
]) K contains the top-level in k. Both these

reductions would contradict Proposition 1.
So, it must be that C1(·) is empty and JP K contains the ambient that

wants to enter into k; we now prove that this implies that either J · K violates
Proposition 1 or that J !P K can repeatedly provide an ambient that wants
to enter into k (and so J !P | Q K diverges, in violation with Property 4).
By Proposition 3, we know that Cfn(P)

| [1; 2] ≡ E(1 | 2): indeed, also
C2(·) must be empty, otherwise JP | (〈m〉 | open m) K 7−→. Moreover, we
can prove that the holes in E(1 | 2) are not contained in any ambient, i.e.
E(·) ≡ (νñ)(1 | 2 | R).

If k 6∈ ñ, then we can use Property 6 to state that J !P K ' JP | !P K ≡
E(JP K | J !P K) ≡ (νñ)(JP K | J !P K | R); thus, J !P K contains a top-level
ambient that wants to enter into k. But then (νñ)(JP K | J !P K | R) '
(νñ)(JP K | JP | !P K | R) ≡ (νñ)(JP K | (νñ)(JP K | J !P K | R) | R), and so
on; hence, J !P K can exhibit as many top-level ambients that want to enter
into k as desired.

We now prove that k ∈ ñ implies that there must exists another pair of
complementary actions produced by JP K and JQ K such that either they fall
in a different case of this Theorem (and, hence, J · K would violate Proposi-
tion 1) or one of them is produced by an ambient that wants to enter into
some ambient h 6∈ ñ (and we can then conclude by the previous reasoning).
It it was not the case, then JP | ((νb)in b.P | Q) K, that is structurally equiv-
alent to E(JP K | E(J ((νb)in b.P | Q) K)), would not reduce, in contradiction
with Proposition 2.

– C1(JP K) wants to open an ambient k and C2(JQ K) exhibits such an am-
bient at top-level: similarly, we can prove that J · K is not an encod-
ing by showing that either J pull m.(〈n〉 | push p | p[

√
]) | Q K 7−→ or

Jn[pull n.(〈m〉 | push p | p[
√

])] | Q K 7−→, against Proposition 1.
– C1(JP K) exhibits a top-level k ambient that C2(JQ K) wants to open/enter:

similar to the previous case.

The second claim can be proved in a very similar way, by let-
ting P , n[in m.(〈n〉 | p[out n.out m.

√
])]. Just notice that now

J !P | Q K 7−→ω in the second item of the previous proof is replaced by
Jn[! in m.(〈n〉 | p[out n.out m.

√
])] | !Q K 7−→ω (and, again, this can be

obtained thanks to Property 6). ut

4 Safe Ambients (SA) and its Variants

The Safe Ambient calculus [11] extends MA by adding co-actions to make the
execution of actions in/out/open more controlled.

Definition 4 (SA processes and messages). SA extends Definition 2 with

M ::= . . .
∣∣ in u

∣∣ out u
∣∣ open u

Definition 5 (SA reduction axioms).

(x).P | 〈M〉 7−→ P{M/x}

open m.P1 | m[open m.P2|P3] 7−→ P1 | P2 | P3

m[in n.P1|P2] | n[in n.P3|P4] 7−→ n[P3 | P4 | m[P1|P2]]

n[m[out n.P1|P2] | out n.P3 | P4] 7−→ m[P1|P2] | n[P3|P4]

4.1 Passwords and alternative modeling of the out action

In [12], SA has been enriched with passwords: an ambient n that aims at enter-
ing/exiting/opening another ambient m must not only be authorized by m via
a corresponding co-action, but it must also exhibit some credential to perform
the action (credentials are simply names and are called passwords). Intuitively,
passwords are a way to better control ambient movements and openings: for
example, in SA any ambient can open an ambient m that performs a open m
action; with passwords, the action becomes open (m, p) and only the ambients
knowing the password p can open m.

Let SAp be the language where processes are defined like in Definition 2,
whereas messages are defined as follows:

M ::= u
∣∣ in (u, v)

∣∣ out (u, v)
∣∣ open (u, v)

∣∣
in (u, v)

∣∣ out (u, v)
∣∣ open (u, v)

∣∣M.M

The reductions rules extend the axioms in Definition 5 by also matching pass-
words.

Theorem 5. SAp is more expressive than SA: there exists an encoding of SA
in SAp; there exists no encoding of SAp in SA.

Proof. SA is trivially encodable in SAp by letting each action and co-action
naming n use n also as password. The converse cannot hold because in SAp every
reduction requires to atomically match two names (the name of the ambient
target of the action and the password); SA reductions, instead, can match at
most one name. This suffices to conclude, because of Theorem 2. ut

The language proposed in [12] (called SAP) differs from SAp in the semantics
of the out action: in SAP, the co-action is not in the ambient left (like in SA and

SAp) but is in the receiving ambient. Formally, the axiom to exit an ambient
now becomes:

n[m[out (n, p).P1|P2] | P3] | out (n, p).P4 7−→ m[P1|P2] | n[P3] | P4

We now prove that this slight modification makes SAP incomparable with both
SA and SAp; thanks to Theorem 5, it suffices to prove the following two results.

Theorem 6. There exists no encoding of SAP in SAp (and hence in SA).

Proof. Consider the processes P 1
1 , m[n[out (m, p)]], P 1

2 , out (m, p).
√

,
P 2

1 , n[in (m, p)], P 2
2 , m[in (m, p).q[out m.open q]] | out m.open q.

√
,

P 3
1 , m[open (m, p).〈n〉] and P 3

2 , open (m, p).
√

. The fact that JP i1 | P i2 K
must evolve, for every i = 1, 2, 3, leads us to conclude that at least one
of the following encodings must reduce: JP i1σ | P i2 K, for i ∈ {1, 2, 3} and
some non-trivial permutation σ of {n,m, p} (that we assume pairwise distinct),
JP 1

1 | P 2
1 K, JP 1

1 | n[in (p,m)] K, JP 1
1 | P 3

2 K, JP 1
1 | open (p,m).

√
K, JP 2

1 | P 3
2 K or

JP 2
1 | open (p,m).

√
K. A reduction of any of these encodings would contradict

Proposition 1. ut

Theorem 7. There exists no encoding of SA (and hence of SAp) in SAP.

Proof. Consider m[n[out m.open n] | out m] | open n.
√

, for n 6= m;
because of Proposition 2, it encoding must reduce. The proof consists
in showing that every possible kind of reduction implies that at least
one of the following encodings reduce (in contradiction with Proposi-
tion 1): Jm[out m.open n | out m] | open n.

√
K, Jm[0] | open n.

√
K or

Jm[n[0] | out m] | open n.
√

K. ut

5 Boxed Ambients (BA) and its Variants

The Boxed Ambient calculus [1] evolves MA by removing the open action (that
is considered too powerful) and by allowing a restricted form of non-local com-
munication. In particular, every input/output action can be performed locally (if
tagged with direction ?), towards the enclosing ambient (if tagged with direction
ˆ̂) or towards an enclosed ambient n (if tagged with direction n).

Definition 6 (BA processes, messages and directions).

P ::= . . .
∣∣ (x)η.P

∣∣ 〈M〉η.P
M ::= u

∣∣ in u
∣∣ out u

∣∣M.M η ::= ?
∣∣ ˆ̂

∣∣ u
Definition 7 (BA reduction axioms).

m[in n.P1|P2] | n[P3] 7−→ n[P3 | m[P1|P2]]

n[m[out n.P1|P2] | P3] 7−→ m[P1|P2] | n[P3]

(x)?.P1 | 〈M〉?.P2 7−→ P1{M/x} | P2

(x)?.P1 | n[〈M〉ˆ̂.P2|P3] 7−→ P1{M/x} | n[P2|P3]

(x)n.P1 | n[〈M〉?.P2|P3] 7−→ P1{M/x} | n[P2|P3]

〈M〉?.P1 | n[(x)ˆ̂.P2|P3] 7−→ P1 | n[P2{M/x}|P3]

〈M〉n.P1 | n[(x)?.P2|P3] 7−→ P1 | n[P2{M/x}|P3]

5.1 Shared vs Localized Channels in BA: BAs and BA

The operational rules for parent-child communications given in Definition 7 ex-
ploits localized channels: the communication channel is owned either by the par-
ent (4th and 6th rule) or by the child (5th and 7th rule). Another possible way
to model parent-child communications in BA exploits shared channels: the com-
munication channel is shared by the parent and its child. Formally, BAs is the
calculus derived from BA by letting the last four rules of Definition 7 be replaced
by:

(x)n.P1 | n[〈M〉ˆ̂.P2|P3] 7−→ P1{M/x} | n[P2|P3]

〈M〉n.P1 | n[(x)ˆ̂.P2|P3] 7−→ P1 | n[P2{M/x}|P3]

BAs provides a more controlled form of communication, since it rules out the in-
terferences that can arise, e.g., in (x)n | n[〈M〉? | (y)? | m[(z)ˆ̂]], where message
M can be consumed by three different input actions placed in different ambients.
However, as we now prove, the two forms of communication are incomparable.

Theorem 8. BAs and BA are incomparable: there exists no encoding of BAs

in BA; there exists no converse encoding that also satisfies Property 6.

Proof. For the second claim, we notice that BA has more kinds of remote reduc-
tions than BAs; the main idea underlying the proof is to show that this higher
flexibility in the source language cannot be reflected in the target language. In
particular, consider P1 , (x)n.(b[0] |

√
) | n[〈b〉?], P2 , 〈b〉n.

√
| n[(x)?.b[0]],

P3 , (x)?.(n[b[0]] |
√

) | n[〈b〉ˆ̂] and P4 , 〈b〉?.(n[0] |
√

) | n[(x)ˆ̂.b[0]]; by Propo-
sition 2, their encodings must evolve. Again, this can be used to show that the
encoding either violates Proposition 1 or introduces divergence (and to this aim
Property 6 is needed).

For the first claim, the problem is that it is impossible in BA to rule
out the interferences excluded by the tighter control on communications of
BAs. The proof proceeds like for the previous claim (but now Property 6 is
not needed anymore), by considering processes P1 , (x)n.(b[0] |

√
) | n[〈b〉ˆ̂],

P2 , 〈b〉n.
√
| n[(x)ˆ̂.b[0]] and P3 , (x)?.(n[b[0]] |

√
) | 〈b〉?.n[0]. ut

5.2 Alternative Mobility Primitives in BA: SBA and NBA

We first consider Safe Boxed Ambient (SBA) [13]: it is BA extended with co-
actions to better control ambient movements, in the same spirit as SA. However,
in SBA co-actions can either allow any ambient enter/exit a given ambient n

(and this is similar to SA), or can selectively allow movements (this resembles
SAP, though no password appears in SBA). Formally, the reductions for ambi-
ent movements are:

n[in m.P1 | P2] | m[in δ.P3 | P4] 7−→ m[n[P1 | P2] | P3 | P4]

m[n[out m.P1 | P2] | P3] | out δ.P4 7−→ n[P1 | P2] | m[P3] | P4

for δ ∈ {∗, n}. Also notice that the out is placed outside the ambient left, like in
SAP. We now prove that SBA enhances the expressiveness of BA.

Theorem 9. SBA is more expressive than BA: there exists an encoding of BA
in SBA; there is no encoding of SBA in BA.

Proof. It is easy to prove that SBA can encode BA: it suffices to translate every
operator homomorphically, except for J 0 K , ! out ∗ and Ju[P] K , ! out ∗
| u[! in ∗ | JP K]. For the converse, notice that Md(SBA) = 2 > Md(BA) = 1
and apply Theorem 2. ut

Another variation on BA is New Boxed Ambients (NBA) [2]: it adopts the
shared-channel form of communication of BAs, it introduces passwords in mo-
bility actions (similarly to SAP) and let co-actions dynamically learn the name
of the ambient that performed the corresponding action. As we have shown in
Theorem 8, localized channels cannot be reasonably encoded in shared channels
nor vice versa; thus, to compare NBA with BA and SBA, we define the variant
of NBA with localized channels that we call NBAl. Formally, its distinctive
reduction rules are:

n[in (m, p).P1 | P2] | m[in (x, p).P3 | P4] 7−→ m[n[P1 | P2] | P3{n/x} | P4]

m[n[out (m, p).P1 | P2] | P3] | out (x, p).P4 7−→ n[P1 | P2] | m[P3] | P4{n/x}

Theorem 10. NBAl is more expressive than BA: there exists an encoding of
BA in NBAl; there is no encoding of NBAl in BA.

Proof. NBAl can encode BA: it suffices to translate every operator homomor-
phically, except for

J 0 K , ! out (x, p) Ju[P] K , ! out (x, p) | u[! in (x, p) | JP K]

J in u.P K , in (u, p).JP K J out u.P K , out (u, p).JP K

for some predefined and fixed (constant) password p. For the converse, notice
that Md(NBAl) = 2 > Md(BA) = 1 and apply Theorem 2. ut

We have shown that both SBA and NBAl are more expressive than BA;
it remains to understand the relationships between NBAl and SBA. We now
prove that the two languages are incomparable.

Theorem 11. NBAl and SBA are incomparable: there exists no encoding of
NBAl in SBA, nor vice versa.

Proof. For the first claim, consider processes P , n[in (m, p).〈q〉?] and Q ,
m[in (x, p).〈 〉∗] | ()m.

√
, for n, m, p and q pairwise distinct. For the second

claim, consider processes P , n[in m] and Q , m[in n.〈 〉∗] | ()m.
√

, for n 6= m.
In both cases, we can prove like before that JP |Q K 7−→, that holds because of
Proposition 2, leads to contradict Proposition 1 for some minor variations of P
and /or Q. ut

6 Conclusions and Related Work

We have studied three ambient-based calculi and some of their variants, namely
Mobile Ambients (compared with two dialects with objective moves), Safe Ambi-
ents (compared with its dialect with passwords) and Boxed Ambients (compared
with the dialects resulting from some variations of its communication and mobil-
ity primitives). To this aim, we have exploited the set of criteria presented and
discussed in [8]. However, we believe that all our impossibility results should
hold under different ‘reasonable’ sets of properties.

Our results carry a two-fold contribution: on one hand, they should help in
better clarifying the peculiarities of the languages studied and their distinctive
programming features; on the other hand, they allow us to formally compare the
expressive power of the languages and their inter-relationships. In some cases,
we have discovered that the dialect proposed is comparable, in terms of expres-
sive power, with the language it comes from: for example, MAo reduces the
expressiveness of MA, whereas SBA and NBA enhance the expressiveness of
BA. In other cases, we have discovered that the dialect and its original language
are incomparable, i.e. no relative encoding exists: the most remarkable cases are
Pac vs MA, SAP vs SA and BAs vs BA. In these cases, we must be aware that
the dialect is not a different presentation of the original language nor a minor
variation on it, as it is sometimes believed. Indeed, the distinguishing features
added to (or modified in) the original language can have advantages (e.g., in
terms of ease-of-programming or of controlling interferences) that make the di-
alect non-encodable in the original language; the price to be paid is that some
computational feature of the original language gets lost, thus making also the
converse encoding impossible.

To conclude, we want to mention a few strictly related results. First, [10] pro-
vides an encoding of BAs in a variant of SA that exploits mobility primitives
similar to those in SBA. The encoding respects all our criteria but the target
language is still another variant of the languages we have presented. Second, [17,
18] are inspired by Palamidessi’s work on electoral systems [15], where separa-
tion results are formulated according to the possibility/impossibility of electing a
leader in a symmetric system (i.e. a set of parallel processes programmed in the
same way, modulo renamings). Though their approach is different from ours,
our results confirm theirs. For example, [17] proves that there is no encoding
of MA into MAo, as we have also shown. However, our approach is more dis-
criminating: for example, we have proved that Pac and MA are incomparable,
whereas leader eligibility does not say much on the relative expressive power of

such languages, since leader election is possible in both of them. Actually, by
using leader election, we can only say that MAo is less expressive than all the
other languages presented in this paper, because it is the only one where leader
election is impossible. This is an evidence of the fact that our comparison is
more structured and informative.

References

1. M. Bugliesi, G. Castagna, and S. Crafa. Access control for mobile agents: the
calculus of Boxed Ambients. Trans. on Progr. Lang. and Syst., 26(1):57–124, 2004.

2. M. Bugliesi, S. Crafa, M. Merro, and V. Sassone. Communication and mobility
control in Boxed Ambients. Information and Computation, 202(1):39–86, 2005.

3. L. Cardelli, G. Ghelli and A. D. Gordon. Types for the Ambient Calculus. Infor-
mation and Computation, 177(2):160–194, 2002.

4. L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science,
240(1):177–213, 2000.

5. R. De Nicola and M. Hennessy. Testing equivalence for processes. Theoretical
Computer Science, 34:83–133, 1984.

6. D. Gorla. Comparing calculi for mobility via their relative expressive power. Tech.
Rep. 09/2006, Dip. di Informatica, Università di Roma “La Sapienza”.

7. D. Gorla. On the relative expressive power of calculi for mobility. Extended
abstract of the first part of [6], unpublished.

8. D. Gorla. Towards a unified approach to encodability and separation results for
process calculi. Proc. of CONCUR, volume 5201 of LNCS, pages 492–507, 2008.

9. N. Kobayashi. A partially deadlock-free typed process calculus. ACM Transactions
on Programming Languages and Systems, 20(2):436–482, 1998.

10. F. Levi. A typed encoding of boxed into safe ambients. Acta Informatica,
42(6):429–500, 2006.

11. F. Levi and D. Sangiorgi. Mobile safe ambients. ACM Transactions on Program-
ming Languages and Systems, 25(1):1–69, 2003.

12. M. Merro and M. Hennessy. A bisimulation-based semantic theory of Safe Ambi-
ents. ACM Trans. on Programming Languages and Systems, 28(2):290–330, 2006.

13. M. Merro and V. Sassone. Typing and subtyping mobility in boxed ambients. In
Proc. of CONCUR’02, volume 2421 of LNCS, pages 304–320. Springer, 2002.

14. R. Milner and D. Sangiorgi. Barbed bisimulation. In Proc. of ICALP ’92, volume
623 of LNCS, pages 685–695. Springer, 1992.

15. C. Palamidessi. Comparing the expressive power of the synchronous and the asyn-
chronous π-calculi. Mathem. Structures in Computer Science, 13(5):685–719, 2003.

16. I. Phillips and M. Vigliotti. On reduction semantics for the push and pull ambient
calculus. IFIP Conf. on Theoretical Comp. Sci., pages 550-562. Kluwer, 2002.

17. I. Phillips and M. Vigliotti. Electoral systems in ambient calculi. In Proc. of
FoSSaCS, volume 2987 of LNCS, pages 408–422. Springer, 2004.

18. I. Phillips and M. Vigliotti. Leader election in rings of ambient processes. Theo-
retical Computer Science, 356(3):468–494, 2006.

19. J. Rathke, V. Sassone and P. Sobocinski. Semantic barbs and biorthogonality. In
Proc. of FoSSaCS, volume 4423 of LNCS, pages 302–316. Springer, 2007.

