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Abstract

In this paper, we comparatively analyze some mainstream calculi for mobility: asynchronous
π-calculus, distributed π-calculus, a distributed version of L and Mobile/Boxed/Safe ambients.
In particular, we focus on their relative expressive power, i.e. we try to encode one in the other while
respecting some reasonable properties. According to the possibility or the impossibility for such
results, we set up a hierarchy of these languages. Finally, we discuss and compare some variants
of ambient-like languages, including objective moves, passwords and different semantics for the
mobility primitives and for parent-child communications.
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1 Introduction

In the last ten years, one of the main research lines in the field of concurrency theory has been the
development of new formalisms, paradigms and environments that better model distributed and mobile
systems. These are systems whose configuration deeply varies in time, as a consequence of the inter-
actions between the principals (usually called processes) they host. Several terms have been coined to
name this fortunate research line (network-aware programming, WAN computing, global computing,
...) that is now a well-established field for many computer scientists around the world.

In this scenario, the term mobility has become the reference keyword to denote several possible
dynamic evolutions of systems, ranging from name mobility to mobile computation and mobile com-
puting. Name mobility has been coined for the π-calculus [37], where a collection of concurrent pro-
cesses communicate through named channels and the communicated objects are channel names as well;
thus, the dynamic modifications of a system consist in the variation of the interconnection structure un-
derlying the processes as a result of inter-process communications. The term mobile computation has
been used to denote those languages where the net structure (seen as a collection of network nodes) is
visible to the processes running in the system and is exploited by the processes to move across the net,
i.e. to migrate from one node to another. Finally, the term mobile computing has been used to denote
languages in which network nodes can move, together with the processes and data they host.

Different kinds of mobility stress different features of the system modeled. For example, with name
mobility, the scope of a name shrinks and widens during computations; thus, one desirable property is
to control when and how processes can access a certain channel. With mobile computations, the process
allocation in the nodes of the net varies in time; hence, one may want to control where a process migrate
and which resources of the new node it exploits. Finally, with mobile computing, the position of nodes
within the net changes; so, a primary need is to control node movements to ensure, e.g., that some
desired structural properties of the net are respected. All these checks have lead to more and more
sophisticated type systems ([44, 27, 23, 14, 10, 9, 30, 5, 33], just to cite a very few samples); truly
speaking, the development of powerful type theories has longly been the primary research topic on
calculi for mobility.

More recently, calculi for mobility have also been the workbench of orthogonal research lines, like
the development of good implementations of new programming paradigms [45, 17, 19, 3, 41] and of
easy-to-handle proof-techniques for behavioural properties of systems [32, 22, 30, 6, 34]. From the
practical side, we would need real-life applications where the distinctive features of such formalisms
are essential. From the theoretical side, what is still lacking is an exhaustive comparative analysis of all
these proposals, from a linguistic perspective; in particular, few formal results have been proved about
the inter-relationships between the different languages and paradigms.
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In this paper, we approach this problem by comparing some mainstream calculi for mobility:
asynchronous π-calculus (written πa-calculus) [25, 4], distributed π-calculus (written Dπ) [23], a dis-
tributed version of L (called µK) [15] and Mobile/Boxed/Safe ambients (written MA/BA/SA)
[11, 5, 30]. Our results formally prove some claims informally appeared in literature and prove in a
different ways some formal results already known. Moreover, for the sake of systematization, we also
consider and compare languages that, to the best of our knowledge, have never been contrasted, neither
informally. Consequently, our results carry a two-fold contribution: on one hand, they help in better
clarifying the peculiarities of the languages studied and their distinctive programming features; on the
other hand, they allow us to formally compare the expressive power of the languages and organize them
in a clear hierarchy, based on their expressiveness.

To this aim, the first crucial decision we had to take was the criterion to evaluate the expressive
power of the languages considered. A too liberal criterion would lead to poorly informative results:
most (if not all) of the languages would satisfy it. But also a too stringent criterion would be fruitless:
(almost) none of the languages would satisfy it. A good compromise seems to be the notion of relative
expressive power: this criterion relies on the possibility/impossibility of translating one language in an-
other, while respecting some reasonable properties. Again, the definition of such properties is essential
for the meaningfulness of our study.

In principle, a good encoding function should satisfy at least two properties: compositionality (the
encoding of a compound term must be expressed in terms of the encoding of its components) and faith-
fulness (the encoding of a term must have exactly the same functionalities as the original term). There
are different ways to formalize these notions; mainly for the second one, a number of different pro-
posals have been considered in literature (e.g., sensitiveness to barbs/divergence/deadlock, operational
correspondence, full abstraction, ...). Here, we consider the proposal of [21] and consider only the en-
codings that satisfy the following properties: compositionality, name invariance (i.e., the encodings of
two source processes that differ only in their free names must only differ in the associated free names),
operational correspondence (i.e., computations of a source term must correspond to computations in
the encoded term, and vice versa), divergence sensitiveness (i.e., non-terminating processes must be
translated into non-terminating processes, and vice versa) and success sensitiveness (i.e., successfully
terminated terms must be translated into successfully terminated terms, and vice versa). We think that
these criteria form a valid proposal for language comparison; indeed, all the best known encodings
respect them (so our notion is consistent with the common understanding of the community), but there
still exist encodings in literature that do not satisfy them (so our notion is non-trivial). Here, we further-
more vindicate the validity of our proposal by showing that some widely believed (but never formally
proved) separation results can be established by relying on the above mentioned criteria.

In the first part of the paper, we compare πa-calculus, Dπ, µK, MA, BA and SA; our results are
summarized in Figure 1. There, we write L1 −→ L2 if L1 can be encoded in L2 but not vice versa. We
say that L2 is more expressive than L1 if L1 −→ . . . −→ L2; L1 and L2 are incomparable if neither L1
is more expressive than L2 nor vice versa.

Some of our results are expectable: for example, we confirm that πa-calculus is the minimal com-
mon denominator of calculi for mobility, since it can be encoded in all the languages considered. Some
other results, though expectable, turned out very difficult to prove. For example, to encode πa-calculus
in MA we had to develop quite a complex encoding since one of our criteria is operational correspon-
dence: what we propose is, to the best of our knowledge, the first encoding that does not introduce
‘spurious’ computations in the encoding of a πa-calculus process). Ruling out computations that are
not present in the source process is a sensible task when dealing with MA, because of the high possi-

3



µK SA
6 6

Dπ MA BA-??
/

@
@

@@I 6

¡
¡

¡¡µ

πa-calculus

Figure 1: The Main Hierarchy of Calculi for Mobility

bility of interferences between MA processes. A simpler encoding of πa-calculus is possible, e.g., in
SA (see [30]), because the latter language is “more controlled” than MA. Another issue that turned out
surprisingly difficult to prove is the encodability of MA in BA, that we believe not to hold; this is a
conjecture that this paper leaves open.

In the second part of the paper, we throughly compare several dialects of ambient-based calculi;
in particular, we consider objective mobility actions in MA, the introduction of passwords in SA and
some possible alternative mobility and communication primitives for BA. In some cases, we discover
that the dialect proposed is comparable, in terms of expressive power, with the language it comes from;
in other cases, we discover that the dialect and its original language are incomparable, i.e. no relative
encoding exists. In the latter case, we must be aware that the dialect is not an enhancement of the
original language nor a minor variation on it, as it is sometimes believed. Indeed, the distinguishing
features added to (or modified in) the original language can have advantages (e.g., in terms of ease-
of-programming or of controlling interferences) that make the dialect non-encodable in the original
language; the price to be paid is that some computational feature of the original language gets lost, thus
making also the converse encoding impossible.

This paper is organized as follows. In Section 2, we formally present syntax and operational se-
mantics of the six languages depicted in Figure 1. In Section 3, we recall from [21] the properties that
encodings should satisfy. In Section 4, we formally build up the hierarchy of Figure 1: for every pair of
languages, we give a formal proof of encodability/non-encodability. In Section 5, we enrich the hierar-
chy of Figure 1 with further languages that are variants of ambient-like languages. Finally, in Section 6
we conclude the paper by also mentioning some related work.

2 The Process Calculi

A process calculus is a triple L = (P, 7−→,'), where

• P is the set of language terms, usually called processes and ranged over by P,Q,R, . . .. All the
process calculi we are going to consider have a common syntax given by:

P ::= 0
∣∣∣ (νn)P

∣∣∣ P1|P2
∣∣∣ !P

∣∣∣ √

As usual, 0 is the terminated process, whereas
√

denotes success (see the discussion on Property 5
in Section 3); P1|P2 denotes the parallel composition of two processes; (νn)P restricts to P the
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visibility of n and binds n in P; finally, !P denotes the replication of process P. We have assumed
here a very simple way of modeling recursive processes; all what we are going to prove does not
rely on this choice and can be rephrased under different forms of recursion.

• 7−→ is the operational semantics, needed to specify how a process computes; following common
trends in process calculi, we specify the operational semantics by means of reductions, whose
inference rules shared by all our process calculi are:

P 7−→ P′

E(P) 7−→ E(P′)

P ≡ P′ P′ 7−→ Q′ Q′ ≡ Q

P 7−→ Q

where E(·) denotes an evaluation context and ‘≡’ denotes structural equivalence (used to equate
different ways of writing the same process). Of course, the operational axioms, the evaluation
contexts and strutural equivalence are peculiar to every language. As usual, Z=⇒ denotes the
reflexive and transitive closure of 7−→.

• ' is a behavioural equivalence/preorder, needed to describe the abstract behaviour of a process;
usually, ' is a congruence at least with respect to parallel composition.

We now present the syntax and reduction-based operational semantics of the specific calculi con-
sidered in this paper. In what follows, we assume a countable set of names, N , ranged over by
a, b, c, . . . , l, k, . . . ,m, n, . . . , u, v,w, . . . , x, y, z, . . . and their decorated versions. To simplify reading, we
use: a, b, c, . . . to denote channels; l, k, . . . to denote localities; m, n, . . . to denote ambients; x, y, z, . . . to
denote input variables; finally, u, v,w, . . . are used to denote generic names (channels and variables in
πa-calculus; channels, localities and variables in Dπ; localities and variables in µK; ambients and
variables in MA, SA and BA).

2.1 The asynchronous π-calculus (πa-calculus)

We consider the asynchronous version of the π-calculus, as defined in [4]. This language is nowadays
widely considered the minimal common denominator of calculi for mobility, it is a good compromise
between expressiveness and simplicity, and it also has a good implementation [45]. Its syntax extends
the common syntax of processes by letting

P ::= . . .
∣∣∣ ū〈v〉

∣∣∣ u(x).P

Intuitively, ū〈v〉 represents message v unleashed along channel u. Dually, u(x).P waits for some message
from channel u and, once received, replaces with such a message every occurrence of variable x in P.
Processes u(x).P and (νa)P bind x and a in P, respectively; a name occurring in P that is not bound is
called free. Consequently, we define the free and bound names of a process P, written f n(P) and bn(P);
alpha-conversion is then defined accordingly.

Evaluation contexts are defined as follows:

E(·) ::= ·
∣∣∣ E(·) | P

∣∣∣ P | E(·)
∣∣∣ (νn)E(·)

The structural equivalence relation, ≡, is the least equivalence on processes closed by evaluation con-
texts, including alpha-conversion and satisfying the following axioms:

P|0 ≡ P P1|P2 ≡ P2|P1 P1|(P2|P3) ≡ (P1|P2)|P3 !P ≡ P|!P
(νa)0 ≡ 0 (νa)(νb)P ≡ (νb)(νa)P P1|(νa)P2 ≡ (νa)(P1|P2) if a < f n(P1)

5



The reduction relation, 7−→, is the least relation on processes closed by the inference rules described
above and satisfying the following axiom:

a(x).P | ā〈b〉 7−→ P{b/x}

where P{b/x} denotes the capture-avoiding substitution of each occurrence of x in P with an occurrence
of b.

2.2 Distributed π-calculus (Dπ)

We present a slightly simplified version of [23]; mainly, we elided typing information from the syntax.
The main syntactic entity are nets, that are collections of located processes, possibly sharing restricted
names:

N ::= 0
∣∣∣ l : P

∣∣∣ N|N
∣∣∣ (νu)N

Processes are obtained from the common syntax by letting

P ::= . . .
∣∣∣ u(x).P

∣∣∣ ū〈v〉.P
∣∣∣ go u.P

The main differences between Dπ and πa-calculus are: processes and channels are located at a
specified locality; communication can only happen between co-located processes and, hence, there is
a primitive to let processes migrate between localities (viz. action go u); finally, communication is
synchronous (i.e., it blocks both the sending and the receiving process).

Since the main syntactic entity is the set of nets, evaluation contexts, reductions and structural
equivalence will be given for nets.

E(·) ::= ·
∣∣∣ E(·) |N

∣∣∣ N | E(·)
∣∣∣ (νn)E(·)

The structural axioms are:

l : P|0 ≡ l : P l : P1|P2 ≡ l : P1 | l : P2 l : !P ≡ l : P|!P (νl)N ≡ (νl)(N | l : 0) N|0 ≡ N

N1|N2 ≡ N2|N1 N1|(N2|N3) ≡ (N1|N2)|N3 (νu)(νw)N ≡ (νw)(νu)N (νn)0 ≡ 0

l : (νu)P ≡ (νu)l : P if u , l N1|(νu)N2 ≡ (νu)(N1|N2) if u < f n(N1)

The reduction axioms are:

l : a(x).P | l : ā〈b〉.Q 7−→ l : P{b/x} | l : Q l : go l′.P | l′ : 0 7−→ l : 0 | l′ : P

A computation step of a Dπ nets can happen either because of a communication between co-located
processes, or because a migration to a remote locality. Notice that a migration at l′ is legal only if l′ is
an existing locality of the net. In the original paper [23], this check was carried out, among other tasks,
by the type system. We prefer the present formulation for the sake of simplicity; however, all what are
going to prove does not rely on this choice.
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2.3 micro K (µK)

µK [15] is a core calculus at the basis of the K language [13], a distributed version of L

[18]. Its syntax is similar to that of Dπ with the difference that now nodes hosts components, i.e.
processes or tuples of data, denoted by 〈. . .〉; indeed, similarly to L, communication in µK is
not channel-based but it relies on the notion of (distributed) tuple spaces.

N ::= 0
∣∣∣ l : C

∣∣∣ N|N
∣∣∣ (νl)N C ::= 〈 ũ 〉

∣∣∣ P
∣∣∣ C1|C2

P ::= . . .
∣∣∣ in(T̃ )@u.P

∣∣∣ rd(T̃ )@u.P
∣∣∣ out( ũ )@u.P

∣∣∣ eval(P)@u.P T ::= u
∣∣∣ puq

where we denote by˜ a (possibly empty) sequence of elements of kind .
Actions in µK access possibly remote data spaces by producing data (viz. action out), con-

suming data (viz. action in) or reading data (viz. action rd), and spawn processes at a possibly remote
locality (viz. action eval). When accessing data (via in or read), it is possible to either specify a name
that must be present in the datum accessed (via parameters of kind puq) or read a new name that will be
replaced in the continuation process (via parameters of kind u, that play the same rôle as input variables
of πa-calculus and Dπ).

Names in µK can be bound in four ways: either by (νl)N and (νl)P, that bind l in N and P, or by
in(. . . , x, . . .)@u.P and rd(. . . , x, . . .)@u.P, that bind x in P (in this case, x is a formal input parameter);
free names are defined accordingly. In particular, notice that parameters of the form puq do not bind u
in the continuation: they are actual input parameters that must be exactly matched when retrieving a
datum (this corresponds to a L-like pattern matching).

Evaluation contexts and structural equivalence are defined like for Dπ, with C in place of P every-
where. The reduction axioms are:

l : in(T̃ )@l′.P | l′ : 〈 l̃ 〉 7−→ l : Pσ | l′ : 0 if M(T̃ ; l̃) = σ

l : rd(T̃ )@l′.P | l′ : 〈 l̃ 〉 7−→ l : Pσ | l′ : 〈 l̃ 〉 if M(T̃ ; l̃) = σ

l : out( l̃ )@l′.P | l′ : 0 7−→ l : P | l′ : 〈 l̃ 〉
l : eval(P′)@l′.P | l′ : 0 7−→ l : P | l′ : P′

In the first two axioms, Pσ denotes the capture-avoiding application of substitution σ to P; σ results
from the pattern-matching function, M(T̃ ; l̃), defined as follows:

M(x; l) = {l/x} M( ; ) = M(plq; l) = ε
M(T ; l) = σ1 M(T̃ ; l̃) = σ2

M(T, T̃ ; l, l̃) = σ1 ] σ2

with ‘ε’ being the empty substitution and ‘]’ denoting the union of partial functions with disjoint
domains.

Actions in and read try to access a remote datum 〈 l̃ 〉 matching the parameters T̃ argument of the
actions; if such a datum exists, the first action removes it, whereas the second action leaves it in the
remote locality; if no matching datum exists, both actions are suspended. Intuitively, l̃ matches against
T̃ if they have the same number of fields and corresponding fields match, where x matches any name l
whereas plq matches only l.
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2.4 Mobile Ambients (MA)

We consider the Ambient calculus as presented in [11].

P ::= . . .
∣∣∣ (x).P

∣∣∣ 〈M〉
∣∣∣ M.P

∣∣∣ u[P]

M ::= u
∣∣∣ in u

∣∣∣ out u
∣∣∣ open u

∣∣∣ M.M

MA is somewhat related to Dπ in the sense that processes are located within ambients (viz. u[P])
and only co-located processes can communicate via a monadic, asynchronous and anonymous com-
munication: (x).P represents the anonymous input prefix, whereas 〈M〉 represents the asynchronous
and anonymous output particle, where message M can be not only a raw name but also a sequence of
actions. However, differently from Dπ, entire ambients can move: an ambient n can enter into another
ambient m via the in m action or exit from another ambient m via the out m action. Moreover, an
ambient n can be opened via the open n action.

Evaluation contexts are defined as follows:

E(·) ::= ·
∣∣∣ E(·) | P

∣∣∣ P | E(·)
∣∣∣ (νn)E(·)

∣∣∣ n[E(·)]

The structural equivalence relation extends structural equivalence of πa-calculus with the following
axioms:

(M.M′).P ≡ M.(M′.P) m[(νn)P] ≡ (νn)m[P] if n , m

The reduction axioms are:

n[in m.P1|P2] | m[P3] 7−→ m[P3 | n[P1|P2]] open n.P1 | n[P2] 7−→ P1 | P2

m[n[out m.P1|P2] | P3] 7−→ n[P1|P2] | m[P3] (x).P | 〈M〉 7−→ P{M/x}

MA, like all the following Ambient-like languages, strongly relies on a type system to avoid incon-
sistent processes like, e.g., m.P or in n[P]; these two processes can arise after the (ill-typed) commu-
nications (x).x.P | 〈m〉 and (x).x[P] | 〈in n〉. For MA, like for SA and BA, we shall always consider the
sub-language formed by all the well-typed processes, as defined in [10, 30, 5].

2.5 Safe Ambients (SA)

We consider the Safe Ambient calculus as presented in [30]. SA extends MA by adding co-actions,
though which ambient movements/openings must be authorised by the target ambient. Hence, the
syntax of SA is the same as MA’s, with

M ::= . . .
∣∣∣ in u

∣∣∣ out u
∣∣∣ open u

Evaluation contexts and structural equivalence are the same as for MA; the reduction axioms are:

(x).P | 〈M〉 7−→ P{M/x} open n.P1 | n[open n.P2|P3] 7−→ P1 | P2 | P3

n[in m.P1|P2] | m[in m.P3|P4] 7−→ m[P3 | P4 | n[P1|P2]]

m[n[out m.P1|P2] | out m.P3 | P4] 7−→ n[P1|P2] | m[P3|P4]
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2.6 Boxed Ambients (BA)

We consider the Boxed Ambient calculus as presented in [5]. BA evolves MA by removing the open
action that is considered too powerful and, hence, potentially dangerous. To let different ambients com-
municate, BA allows a restricted form of non-local communication: in particular, every input/output
action can be performed locally (if tagged with direction ?), towards the enclosing ambient (if tagged
with direction ˆ̂ ) or towards an enclosed ambient n (if tagged with direction n).

P ::= . . .
∣∣∣ (x)η.P

∣∣∣ 〈M〉η.P
∣∣∣ M.P

∣∣∣ u[P]

M ::= u
∣∣∣ in u

∣∣∣ out u
∣∣∣ M.M η ::= ?

∣∣∣ ˆ̂
∣∣∣ u

Evaluation contexts and structural equivalence are the same as for MA; the reduction axioms are:

n[in m.P1|P2] | m[P3] 7−→ m[P3 | n[P1|P2]]

m[n[out m.P1|P2] | P3] 7−→ n[P1|P2] | m[P3]

(x)?.P1 | 〈M〉?.P2 7−→ P1{M/x} | P2

(x)?.P1 | n[〈M〉ˆ̂.P2|P3] 7−→ P1{M/x} | n[P2|P3]

(x)n.P1 | n[〈M〉?.P2|P3] 7−→ P1{M/x} | n[P2|P3]

〈M〉?.P1 | n[(x)ˆ̂.P2|P3] 7−→ P1 | n[P2{M/x}|P3]

〈M〉n.P1 | n[(x)?.P2|P3] 7−→ P1 | n[P2{M/x}|P3]

3 Properties of Encodings

A translation of L1 = (P1, 7−→1,'1) into L2 = (P2, 7−→2,'2), written J · K : L1 → L2, is a function
from P1 to P2. We shall call encoding any translation that satisfies the five properties we are going to
present now. There, to simplify reading, we let S range over processes of the source language (viz.,L1)
and T range over processes of the target language (viz., L2).

As already said in the Introduction, an encoding should be compositional. To formally define this
notion, we exploit the notion of k-ary context, written C( 1; . . . ; k), that is a term where k occurrences
of 0 are replaced by the k holes 1, . . . , k.

Property 1. A translation J · K : L1 → L2 is compositional if, for every k-ary L1-operator
op and finite subset of names N, there exists a k-ary context CN

op( 1; . . . ; k) such that
J op(S 1, . . . , S k) K = CN

op(J S 1 K; . . . ; J S k K), for every S 1, . . . , S k with f n(S 1, . . . , S k) = N.

Moreover, a good encoding should reflect in the encoded term all the name substitutions carried out
in the source term. However, it is possible that an encoding fixes some names to play a precise rôle or
it can map a single name into a tuple of names. In general, every encoding assumes a renaming policy
ϕJ K : N −→ Nk that is a function such that ∀u, v ∈ N with u , v, it holds that ϕJ K(u) ∩ ϕJ K(v) = ∅
(where ϕJ K(·) is simply considered a set here). We extend the application of a substitution to sequences
of names in the expected way.
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Property 2. A translation J · K : L1 → L2 is name invariant if, for every substitution σ, it
holds that

J Sσ K
{

= J S Kσ′ if σ is injective
'2 J S Kσ′ otherwise

where σ′ is the substitution such that ϕJ K(σ(a)) = σ′(ϕJ K(a)).

Injectivity of σ must be taken into account because non-injective substitutions can fuse two distinct
names, and this matters because compositionality also depends on the free names occurring in the
encoded terms. For more discussion, see [21].

A source term and its encoding should have the same operational behaviour, i.e. all the computations
of the source term must be preserved by the encoding without introducing “new” computations. This
intuition is formalized as follows.

Property 3. A translation J · K : L1 → L2 is operationally corresponding if

• for every S and S ′ such that S Z=⇒1 S ′, it holds that J S K Z=⇒2'2 JS ′K;
• for every S and T such that J S K Z=⇒2 T, there exists S ′ such that S Z=⇒1 S ′ and

T Z=⇒2'2 J S ′ K.

An important semantic issue that an encoding should avoid is the introduction of infinite computa-
tions, written 7−→ω.

Property 4. A translation J · K : L1 → L2 is divergence reflecting whenever J S K 7−→ω
2

implies that S 7−→ω
1 , for every S .

Finally, we require that the source and the translated term behave in the same way with respect
to success, a notion that can be used to define sensible semantic theories [16, 47]. To formulate our
property in a simple way, we follow the approach in [47] and assume that all the languages contain the
same success process

√
; then, we define the predicate ⇓S UCC , meaning reducibility (in some modality,

e.g. may/must/fair-must) to a process containing a top-level unguarded occurrence of
√

. Clearly,
different modalities in general lead to different results; in this paper, proofs will be carried out in a ‘may’
modality, but all our results could be adapted to other modalities. Finally, for the sake of coherence,
we require the notion of success be caught by the semantic theory underlying the calculi, viz. '; in
particular, we assume that ' never relates two processes P and Q such that P ⇓S UCC and Q 6⇓S UCC .

Property 5. A translation J · K : L1 → L2 is success sensitive if, for every S , it holds that
S ⇓S UCC iff J S K ⇓S UCC .

3.1 Derived Properties

In [21] we have shown that some separation result can be proved in the general framework we have
just presented. However, to carry out more proofs, we have to slightly specilise the framework; this is
mainly done by making some assumptions on the behavioural equivalence of the target language, viz.
'2. In particular, in loc.cit. we have considered three alternative settings:
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1. '2 is exact, i.e. T '2 T ′ and T performs an action µ imply that T ′ (weakly) performs µ as well;
moreover, parallel composition must be translated homomorphically, i.e. for every N ⊂ N it
holds that CN

| ( 1; 2) = 1 | 2;

2. '2 is reduction sensitive, i.e. T '2 T ′ and T ′ 7−→2 imply that T 7−→2;

3. the occurrences of '2 in Property 3 are restricted to pairs of kind (E(T ), T ), for E(T ) '2 T .

All these assumptions are discussed and justified at length in [21]. By relying on them, we can
prove a number of auxiliary results that will be useful in carrying out the main proofs of the paper.

Proposition 3.1. Let J · K be an encoding; then, S 7−→/ 1 implies that J S K 7−→/ 2.

Proposition 3.2. Let J · K be an encoding; if there exist two source terms S 1 and S 2 such that
S 1 | S 2 ⇓S UCC , S 1 6⇓S UCC and S 2 6⇓S UCC , then J S 1 | S 2 K 7−→2.

Proposition 3.3. Let J · K : L1 → L2 be an encoding. If there exists two source terms S 1 and S 2 that
do not reduce but such that J S 1 | S 2 K 7−→, then

1. if L2 ∈ {πa-calculus, Dπ}, it can only be that J S 1 K | J S 2 K 7−→;

2. if L2 ∈ {MA, BA, SA}, it can only be that C1(J S 1 K) | C2(J S 2 K) 7−→, where Cf n(S 1,S 2)
| ( 1; 2),

i.e. the context used to compositionally translate S 1 | S 2, is structurally equivalent to
E(C1( 1) | C2( 2)) for some evaluation context E(·) and two contexts C1(·) and C2(·) that are
either empty (viz., · ) or a single top-level ambient containing a top-level hole (viz., m[ · ]).

Theorem 3.4. Assume that there is a L1-process S such that S 7−→/ 1, S 6⇓S UCC and S | S ⇓S UCC;
moreover, assume that every L2-process T that does not reduce is such that T | T 7−→/ 2. Then, there
cannot exist any encoding J · K : L1 −→ L2.

To state the following proof-technique, let us define the matching degree of a language L, written
M(L), as the greatest number of names that must be matched to yield a reduction in L. For example,
the matching degree of Mobile Ambients is 1, whereas the matching degree of Dπ is 2.

Theorem 3.5. If M(L1) > M(L2), then there exists no encoding J · K : L1 −→ L2.

Another derived property, not needed for the results in [21], is the following one.

Proposition 3.6. Let J · K : L1 → L2 be a translation that satisfies Property 2; for every S and
n < f n(S ), it holds that ϕJ K(n) ∩ f n(J S K) = ∅.
Proof. By contradiction, let n′ ∈ ϕJ K(n) ∩ f n(J S K). Let m be such that m < f n(S ) and ϕJ K(m) ∩
f n(J S K) = ∅; moreover, let σ be the permutation that swaps m and n. Trivially, S = Sσ and,
hence, J S K = J Sσ K. However, by Property 2, J Sσ K = J S Kσ′, for σ′ that swaps ϕJ K(m) and ϕJ K(n)
component-wise. The only possible way to have that J S K = J S Kσ′ (that holds because of transitivity)
is to have dom(σ′) ∩ f n(J S K) = ∅ that, however, does not hold, because dom(σ′) = ϕJ K(n) ∪ ϕJ K(m)
and n′ ∈ ϕJ K(n) ∩ f n(J S K): contradiction. �
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4 The Hierarchy, bottom-up

For every pair of languages, we see whether one is more expressive than the other, or if they are incom-
parable. In the first case, we provide an encoding of the less expressive language in the most expressive
one and prove that the converse is not possible. In the second case, we must prove that no encoding of
one in the other exists.

We now give the crucial results underlying the hierarchy in Figure 1. The remaining pairs of lan-
guages can be compared either by transitivity of the encodability relation (for the encodings we are
going to develop, it holds that the composition of two encodings is still an encoding), or by contradic-
tion with one of the impossibility results we are going to prove.

4.1 Technical Preliminaries

To carry out proofs, we found it convenient to exploit the labelled transition systems developed for
some of the languages studied. For space limitations, we cannot give here a full account on this topic;
thus, we informally present only the technicalities strictly needed in our proofs and refer the interested
reader to [34, 30, 6] for full details and for formal proofs.

Proposition 4.1 (Labeled actions for MA). In MA, it holds that P1 | P2 7−→ if and only if one of the
following conditions hold (possibly with P1 and P2 swapped):

1. P1 7−→ 3. P1
enter n−−−−−−→ and P2

amb n−−−−−−→
2. P1

〈−〉−−−→ and P2
(M)−−−→ 4. P1

open n−−−−−−→ and P2
amb n−−−−−−→

where P
〈−〉−−−→ means that P has some top-level datum, P

(M)−−−→ means that P has a top-level input

action, ready to receive any message M, P
amb n−−−−−−→ means that P has a top-level ambient named n,

P
enter n−−−−−−→ means that P has a top-level ambient containing a top-level prefix in n and P

open n−−−−−−→
means that P has a top-level prefix open n.

Proposition 4.2 (Labeled actions for SA). In SA, it holds that P1 | P2 7−→ if and only if one of the
following conditions hold (possibly with P1 and P2 swapped):

1., 2.: like the corresponding points in Proposition 4.1

3. P1
enter n−−−−−−→ and P2

?enter n−−−−−−−→

4. P1
open n−−−−−−→ and P2

?open n−−−−−−−→
where P

µ−−→ , for µ ∈ {?enter n, ?open n}, means that P has a top-level ambient named n containing a
top-level prefix in n or open n.

Proposition 4.3 (Labeled actions for BA). In BA, it holds that P1 | P2 7−→ if and only if one of the
following conditions hold (possibly with P1 and P2 swapped):

1., 2., 3.: like the corresponding points in Proposition 4.1, with 〈−〉?/ (M)? in place of 〈−〉 / (M)

4. P1
〈−〉?−−−−→ and P2

up(M)−−−−−→ 6. P1
〈−〉n−−−−→ and P2

n(M)−−−−→
5. P1

(M)?−−−−→ and P2
up〈−〉−−−−−→ 7. P1

(M)n

−−−−→ and P2
n〈−〉−−−−→
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where P
µ−−→ , for µ ∈ {〈−〉?, (M)?, 〈−〉n, (M)n}, means that P has a top-level action 〈M〉?, (x)?, 〈M〉n

or (x)n; P
µ−−→ , for µ ∈ {up〈−〉, up(M)}, means that P has a top-level ambient containing the top-

level action 〈M〉ˆ̂ or (x)ˆ̂; P
µ−−→ , for µ ∈ {n〈−〉, n(M)}, means that P has a top-level ambient named n

containing the top-level action 〈M〉? or (x)?.

4.2 Dπ and BA are more expressive than πa-calculus

Clearly, πa-calculus can be trivially encoded in Dπ: it suffices to locate the πa-calculus process in a
reserved locality hosting all the channels needed. On the contrary, Dπ cannot be encoded in πa-calculus,
as a corollary of the non-encodability of Dπ in BA (see Theorem 4.8 later on) and of the encodability
of πa-calculus in BA [5]. The latter result is proved by the encoding defined as a homomorphism w.r.t.
all the operators, except for

J u(x).P K , (x)u.J P K
J ū〈v〉 K , (νk)(u[〈v〉?.in k] | k[0]) for k fresh

Also the (choice-free) synchronous π-calculus can be encoded in BA: it suffices to exploit the encoding
of the (choice-free) synchronous π-calculus in πa-calculus developed in [4]. The fact that BA cannot be
encoded in πa-calculus is proved in the following result.

Theorem 4.4. There exists no encoding of BA in πa-calculus.

Proof. Corollary of Theorem 3.4:

• On one hand, notice that, if T is a πa-calculus-process such that T | T 7−→2, then T ≡
(ν̃n)(a(x).T ′ | ā〈b〉 | T ′′) for some a < ñ. Thus, trivially, T 7−→2; hence, every πa-calculus-process
T that does not reduce is such that T | T 7−→/ 2.

• On the other hand, we can find in BA a process S that does not reduce and does
not report success, but such that S | S reports success: it suffices to let S be
(νp)(open p.

√ | n[in n.p[out n.out n]]). �

4.3 MA is more expressive than πa-calculus

First, notice that MA cannot be encoded in πa-calculus, as proved in Theorem 4.4 (the proof of such
result scales well to MA too). We are left with proving that πa-calculus can be encoded in MA; this is
not a trivial task, if we want to satisfy all the properties in Section 3. Indeed, in several papers [11, 10, 9]
there are attempts to encode πa-calculus in MA, but none of them satisfies operational completeness.
To the best of our knowledge, the encoding we are going to present is the first one that fully satisfies
operational correspondence.

The encoding relies on a renaming policy that maps every name a to a triple of pairwise different
names (a1, a2, a3); it is a homomorphism w.r.t. all the operators, except for restrictions, inputs and
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outputs, that are translated as follows:

J (νa)P K , (ν a1, a2, a3)J P K
J ā〈b〉 K , a1[a2[open a3.〈b1, b2, b3〉]]

J a(x).P K , open a1.(νp, q)(open p | a3[in a2.open rest | (x1, x2, x3).in q.p[out q.J P K]]
| q[open a2.rest[! rest[in a3.out q.in a2.open rest]]])

for p and q fresh

where (x1, x2, x3) is a shortcut for (x1).open poly.(x2).open poly.(x3) and 〈b1, b2, b3〉 is a shortcut for
〈b1〉 | poly[〈b2〉 | poly[〈b3〉]], with poly a reserved name.

Our encoding follows the philosophy underlying the encoding of πa-calculus in BA; however, MA
misses the parent-child communication of BA, used to translate an input action. Thus, for every com-
munication along a, the ambient named a3 is used as a ‘pilot’ ambient to enter a2 and consume the
datum associated to b. To reflect the fact that an output along a can be consumed only once, we exploit
the outer ambient a1 and the corresponding open a1 action. To avoid interferences that can arise from
independent communications along channel a, only one a3-ambient will be opened within a2; the (pos-
sible) other ones must be rolled back, i.e. reappear at top-level, ready to enter another ambient a2. This
is done by opening a2 in a restricted ambient q and by leading all the not consumed a3-ambients out
from q via the reserved ambient rest, that also restores the in a2 capability consumed.

The encoding just presented satisfies all the properties of Section 3. The interested reader can find
the (non-trivial) details of this proof in Appendix A.

4.4 SA is more expressive than MA

In [30] MA is translated into SA by mapping all the operators homomorphically, except for

J u[P] K , u[! in u | ! out u | ! open u | J P K]

However, such an encoding does not exactly enjoy all the properties listed in Section 3. The prob-
lem is that the MA process open n | n[0] reduces to 0, whereas J open n | n[0] K can only reduce to
! in n | ! out n | ! open n and the latter process is not barbed equivalent to the encoding of 0 (viz., 0
itself): context n[·] can distinguish the two processes in SA.

This problem can be fixed in two ways. The first way consists in accepting a weaker formulation
of operational correspondence, that only holds up to strong barbed equivalence restricted to translated
contexts (written 'tr). To this aim, it suffices to prove that Pu ,! in u | ! out u | ! open u 'tr 0. To
prove such an equality, we first notice that Pu behaves exactly as Pu | Pu (this can be easily proved). We
now show that C(Pu) and C(0) are barbed bisimilar, whenever C(·) is a translated context. To this aim,
we show that relation

< , {(C(Pu),C(0)) : C(·) is such that every ambient u contains Pu}

is a barbed bisimulation. We distinguish whether the hole is immediately contained in an ambient u
or not. In the first case, C(·) ≡ D(u[· | P]), for some context D(·) and process P; by construction,
P ≡ Pu | P′, for some P′. Hence, u[Pu | P] behaves like u[P]; so, C(Pu) and C(0) are barbed bisimilar.
If the hole is not immediately contained in an ambient u, then Pu does not contribute to the production
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of any barb nor to any reduction; thus, C(Pu) ↓ iff C(0) ↓. Moreover, if C(Pu) 7−→ P′, P′ can only
be C′(Pu), for some C′(·) such that C(·) 7−→ C′(·); then, C(0) 7−→ C′(0) and (C′(Pu),C′(0)) ∈ <, as
desired. Indeed, for any possible reduction, every ambient u in C′(·) contains Pu, since C(·) satisfies this
property, being a translated context.

A second way to fix the problem of the translation given in [30] is to consider a family of encodings
J · KN , for N ⊂ N , with the idea that a MA process P can be encoded via J · KN only if f n(P) ⊆ N. For
every N, J · KN is a homomorphism for all operators, except for

J 0 KN , PN J u[P] KN , u[PN | J P KN]

J (νn)P KN , (νn)J P KN∪{n} J (x).P KN , (x).J P KN∪{x}

where PN ,
∏

n∈N Pn. By exploiting the equivalence !P '!P | !P, it is easy to check that now operational
correspondence holds up to '. It is however worth noting that name invariance must be used with some
care: for J · KN , it makes only sense to use substitutions whose domain and range are contained in N.

We now prove that SA cannot be encoded in MA.

Theorem 4.5. There exists no encoding of SA in MA.

Proof. By contradiction. Consider the pair of SA processes P , n[in n.〈m〉] and Q ,
n[in n.(m[out n.open m.

√
] | out n)] | open m, for n , m; by Proposition 3.2, J P |Q K must reduce

and, because of Propositions 3.3 and 4.1, it can only be

1. either C1(J P K) amb n′−−−−−−→ and C2(JQ K) α−−→ , for α ∈ {enter n′, open n′}

2. or C2(JQ K) amb n′−−−−−−→ and C1(J P K) α−−→ , for α ∈ {enter n′, open n′}.
for some context C1(·) and C2(·) that are empty or have a single top-level ambient containing a top-

level hole. Notice that the reduction cannot happen because of a communication, say J P K 〈−〉−−−→ and

JQ K (M)−−−→ , otherwise, by Property 2, Jm[in m.〈n〉] | Q K would reduce, against Proposition 3.1. For
the same reason, it must be that n′ ∈ ϕJ K(n).

We now prove that both cases are impossible and assume that we fall in case 1 (case 2 is similar).
First, notice that C1(·) must be empty: if it was not, we would have that J n[out n.〈m〉] | Q K 7−→
(recall that C1(·) is part of C{n,m}| ( 1; 2), the context used to encode parallel composition of processes
with free names {n,m}; so, it only depends on parallel composition and such names). Thus, we have

that J P K amb n′−−−−−−→ ; but also this leads to a contradiction. Indeed, by Property 1, it holds that J P K ,
C{n,m}n[ ] (J in n.〈m〉 K); so, the ambient named n′ can be exhibited either by C{n,m}n[ ] (·) or by J in n.〈m〉 K (and,

hence, C{n,m}n[ ] (·) has a top-level hole). In both cases, we can contradict Proposition 3.1: in the first case,

we would have that J n[out n.〈m〉] K amb n′−−−−−−→ and so J n[out n.〈m〉] | Q K 7−→; in the second case, we
would have that J in n.〈m〉 | Q K 7−→. �

4.5 µK is more expressive than Dπ

First, we prove that µK cannot be encoded in Dπ.

Theorem 4.6. There exists no encoding of µK in Dπ.
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Proof. Corollary of Theorem 3.5, since M(µK) = ∞ whereas M(Dπ) = 2. �

It is possible to encode Dπ in µK: indeed, channel-based communications are easy to simulate
via data spaces and pattern matching, as already proved in [20]. The encoding acts homomorphically
on all the operators, except for

J l : P K , l : expandl(J P Kl)

J go u.P Kw , eval(J P Ku)@u.0

J u( x̃ ).P Kw , in(puq, x̃, y)@w.out()@y.J P Kw for y fresh

J ū〈 ṽ 〉.P Kw , (νk)out(u, ṽ, k)@w.in()@k.J P Kw for k fresh

where function expandl turns all the top-level processes prefixed with a out(̃l)@l prefix into a datum
〈̃l〉 at l’s dataspace in parallel with the continuation process (this is needed to respect Proposition 3.1,
e.g. in J l : ā〈b〉 K). We leave to the interested reader the easy task of proving that this encoding enjoys
all the properties listed in Section 3.

4.6 Further Impossibility Results

Proposition 4.7. There exists no encoding of MA and BA in µK.

Proof. This is a corollary of Theorem 3.4 and the proof is similar to Theorem 4.4. �

Proposition 4.8. There exists no encoding of Dπ in SA nor in BA.

Proof. Corollary of Theorem 3.5, since M(Dπ) = 2 whereas M(MA) = M(SA) = M(BA) =

M(πa) = 1. �

Theorem 4.9. There exists no encoding of BA in SA.

Proof. Consider the processes (x)n.
√

and n[〈b〉?], for n , b. Because of Proposition 3.2,
J (x)n.

√ | n[〈b〉?] K must reduce and, because of Propositions 3.3 and 4.2, this can only happen because:

1. either C1(J (x)n.
√ K) enter n′−−−−−−−→ and C2(J n[〈b〉?] K) ?enter n′−−−−−−−−→

2. or C1(J (x)n.
√ K) ?enter n′−−−−−−−−→ and C2(J n[〈b〉?] K) enter n′−−−−−−−→

3. or C1(J (x)n.
√ K) open n′−−−−−−−→ and C2(J n[〈b〉?] K) ?open n′−−−−−−−→

4. or C1(J (x)n.
√ K) ?open n′−−−−−−−→ and C2(J n[〈b〉?] K) open n′−−−−−−−→ .

Indeed, C1(J (x)n.
√ K) and C2(J n[〈b〉?] K) cannot perform a communication, otherwise, by Property 2,

J (x)n.
√ | b[〈n〉?] K would reduce; for the same reason, it must be that n′ ∈ ϕJ K(n).

However, we now prove that all the cases depicted above lead to contradict Proposition 3.1. Let
C2(J n[〈b〉?] K) α−−→ , for α ∈ {?enter n′, enter n′, ?open n′, open n′}. If C2(·) is empty we can work
as follows. First, observe that J n[〈b〉?] K , C{b}n[ ](J 〈b〉? K); if α is produced by C{b}n[ ](·), also J n[〈b〉ˆ̂] K
would exhibit label α; if the production of α involves J 〈b〉? K, we would have that n′ ∈ f n(J 〈b〉? K),
in contradiction with Proposition 3.6. So, assume that C2(·) is not empty; this rules out case 4 above
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and imposes that J n[〈b〉?] K α′−−→ , for α′ ∈ {in n′, in n′, open n′}. We then work like in the case in
which C2(·) is empty to prove that there is no way for J n[〈b〉?] K to produce α′ without contradicting
Proposition 3.1. �

To complete the hierarchy of Figure 1, it suffices to prove that there exists no encoding of MA in
BA. Surprisingly, we have not been able to prove such an expectable result; thus, we leave it open as a
conjecture.

Conjecture 1. There exists no encoding of MA in BA.

However, similarly to Theorem 4.5, we can prove that BA cannot encode SA.

Theorem 4.10. There exists no encoding of SA in BA.

Proof. By contradiction. First, consider the pair of SA processes P , n[in n.〈m〉] and Q ,
n[in n.(m[out n.open m.

√
] | out n)] | open m, for n , m; by Propositions 3.2 and 3.3, it must be

that C1(J P K) α−−→ and C2(JQ K) α′−−→ where, by Proposition 4.3, it can only be that

1. α = amb n′ and α′ ∈ {enter n′, open n′}, or vice versa;

2. α = 〈−〉n′ and α′ = n′(M), or vice versa;

3. α = (M)n′ and α′ = n′〈−〉, or vice versa.

In all cases, n′ ∈ ϕJ K(n). We now prove that the three cases above all lead to a contradiction: the
first case is formally identical to the proof of Theorem 4.5; the second and the third case are simi-
lar, so we only work out case 2. First, notice that C1(·) must be empty; so, α is produced either by
C{n,m}n[ ] (·) or by J P K. In both cases, we can contradict Proposition 3.1: in the first case, it suffices to

note that J n[in m.〈n〉] K α−−→ and so J n[in m.〈n〉] | Q K 7−→; in the second case, we would have that
J in n.〈m〉 | Q K 7−→. �

Thus, there are only two possibilities for resolving the ‘??’ in Figure 1:

SA BA

Dπ MA

<<yyyyyyyy

bbEEEEEEEE

πa

aaDDDDDDDD

<<yyyyyyyy

SA

Dπ MA

OO

BA

πa

bbEEEEEEEE

OO <<yyyyyyyy

according to whether MA is encodable in BA or not. We strongly believe that the right one should hold,
even if we still have not been able to prove it.

5 On the Variety of Ambient-like Languages

The languages MA, SA and BA are just a small set of representatives among the set of ambient-like
languages. A lot of small variations on these three mainstream languages appeared in literature. We
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want to mention here some of these variations and try to compare them with the dialects presented so
far.

To prove some of the following results, we need a further property for our encodings:

Property 6 (Adequacy). An encoding J · K is adequate if Ψ ≡ Ψ′ implies that JΨ K ' JΨ′ K.

This property seems us quite acceptable, since the purpose of structural equivalence is relating different
ways of writing the same process; thus, it is natural to require that the encoding of structurally equivalent
processes behave in the same way. We could have asked for structural equivalence of the encoded terms,
but, because of compositionality, this would have led to a too demanding property. It has to be said that
Property 6 is quite close in spirit to the notion of full abstraction, whereas the proposal in [21] was
defined as an alternative to such a notion. Thus, we would really like to avoid the use of Property 6; this
leaves space for improving our results. Indeed, we believe that the impossibility results we are going to
prove via Property 6 should hold also without it, but we have still not been able to prove them.

5.1 Subjective vs Objective moves in MA

One of the first variations of MA was already proposed in the seminal paper [11]. The idea was that the
movement, instead of being subjective (the moving ambient decides where and when moving), could
be objective (the moving ambient is moved from the outside). We recall here the original semantics
proposed in [11]. In the objective ambient calculus (MAo), actions in n and out n are replaced by
mv in n and mv out n, whose semantics is

mv in n.P1 | n[P2] 7−→ n[P1 | P2]

n[mv out n.P1 | P2] 7−→ P1 | n[P2]

Theorem 5.1. MA is more expressive than MAo: there exists an encoding of MAo in MA; there exists
no encoding of MA in MAo.

Proof. Consider the encoding of MAo in MA provided in [11]:

J n[P] K , n′[J P K | !open in] | !open out

Jmv in n.P K , (νk)k[in n′.in[out k.open k.J P K]] for k fresh

Jmv out n.P K , (νk)k[out n′.out[out k.open k.J P K]] for k fresh

where in and out are reserved names, and n′ = ϕJ K(n). We leave to the reader the easy task of checking
that this encoding satisfies all the properties listed in Section 3.

The fact that MA cannot be encoded in MAo is a corollary of Theorem 3.4. �

Another variation of MA with objective moves is the so called Push and Pull ambient calculus (P)
[43]. Now, actions in n and out n are replaced by pull n and push n, whose semantics is

n[P1] | m[pull n.P2 | P3] 7−→ m[n[P1] | P2 | P3]

m[n[P1] | push n.P2 | P3] 7−→ n[P1] | m[P2 | P3]

Theorem 5.2. MA and P are incomparable: there exists no encoding of P in MA and of MA in P

that satisfy Property 6.
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Proof. For the first claim, consider the P process P | Q, for P , n[pull m.(〈n〉 | push p | p[
√

])],
Q , m[0] | open p and n , m. By Proposition 3.2, its encoding must reduce and, by Propositions 3.3
and 4.1, this can happen in one of the following ways:

• C1(J P K) 〈−〉−−−→ and C2(JQ K) (M)−−−→ (or vice versa): this is not possible otherwise, by Property 2,
we would have that J Pσ | Q K 7−→, for σ the permutation swapping n and m.

• C1(J P K) enter k−−−−−−→ and C2(JQ K) amb k−−−−−→ : if C1(·) was not empty, it must be that J P K in k−−−−→ ;
this is not possible, because otherwise either J pull m.(〈n〉 | push p | p[

√
]) | Q K 7−→

or J n[pull n.(〈m〉 | push p | p[
√

])] | Q K 7−→, according to whether

J pull m.(〈n〉 | push p | p[
√

]) K in k−−−−→ or C{n,m}n[ ] (·) in k−−−−→ . So, it must be that J P K enter k−−−−−−→ ;

we now prove that this implies that either J · K violates Proposition 3.1 or that J ! P K enter k−−−−−−→ω

(and so J ! P | Q K diverges, in violation with Property 4). By Proposition 3.3, we know that
Cf n(P)
| ( 1; 2) ≡ E( 1 | 2): indeed, we have just shown that C1(·) must be empty and also C2(·)

must be empty, otherwise J P | (〈m〉 | open m) K 7−→.

If the hole in E(·) is contained in (at least) one ambient, then either E(·) enter k−−−−−−→ (and in this

case we would have that (m[〈n〉 | 〈p〉] |m[〈n〉 | 〈p〉]) | Q 7−→) or J P K in k−−−−→ , because J (P | P) | Q K
must reduce. It is now easy to prove that every possible way to produce J P K in k−−−−→ leads to
contradict Proposition 3.1; so, the hole in E(·) cannot fall in any ambient, i.e. E(·) ≡ (ν̃n)( · | P).

If k < bn(E(·)), then we can use Property 6 to state that J ! P K ' J P | ! P K ≡
E(J P K | J ! P K) enter k−−−−−−→ E(K | J ! P K), for J P K enter k−−−−−−→ K.1 But then E(K | J ! P K) '
E(K | J P | ! P K) ≡ E(K | E(J P K; J ! P K)) enter k−−−−−−→ E(K | E(K | J ! P K)), and so on; hence,

J ! P K enter k−−−−−−→ω. We now prove that k ∈ bn(E(·)) implies that there must exists a pair of com-

plementary actions α and ᾱ such that: (i) J P K α−−→ ; (ii) JQ K ᾱ−−→ ; and (iii) either α is of kind
〈−〉/(M)/amb h/open h or it is of kind enter h for h < bn(E(·)). It it was not the case, then
J P | ((νb)in b.P | Q) K, that is structurally equivalent to E(J P K | E(J ((νb)in b.P | Q) K)), would
not reduce, in contradiction with Proposition 3.2. Now, points (i) − (iii) allow us to conclude:
if α is of kind 〈−〉/(M)/amb h/open h, we fall in a different case of this Theorem and, hence,
J · K would violate Proposition 3.1; if it is of kind enter h, with h < bn(E(·)), we conclude that

J ! P K enter h−−−−−−→ω.

• C1(J P K) open k−−−−−−→ and C2(JQ K) amb k−−−−−→ : like in the previous case, C1(·) must be empty. If

J pull m.(〈n〉 | push p | p[
√

]) K open k−−−−−−→ then J pull m.(〈n〉 | push p | p[
√

]) | Q K 7−→; if

C{n,m}n[ ] (·) open k−−−−−−→ then J n[pull n.(〈m〉 | push p | p[
√

])] | Q K 7−→.

• C1(J P K) amb k−−−−−→ and C2(JQ K) α−−→ , for α ∈ {enter k, open k}: we work like in the previous
case, with action amb k in place of open k.

1To be precise, K is not a process but it is what in [34] is called a concretion; however, for our purposes, such a notion is
not necessary.
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The second claim can be proved in a very similar way, by letting P ,
n[in m.(〈n〉 | p[out n.out m.

√
])]. Just notice that action enter k must now be replaced by ac-

tion catch k (that in P signals the presence of a top-level ambient containing a top-level prefix

pull k) and that C1(J P K) catch k−−−−−−→ implies that J n[! in m.(〈n〉 | p[out n.out m.
√

])] | ! Q K diverges. �

Notice that the form of objective mobility in P is much more liberal than that in MAo: in the
latter, at every moment at most one movement for every ambient can happen, since the moving am-
bient is blocked by the mv in/mv out prefix. On the other hand, in P the same ambient can undergo
different movements, because of execution of different parallel actions naming the same ambient. Not
incidentally, MA can encode MAo, whereas MA cannot encode P.

5.2 Adding passwords to SA

In [32], SA has been enriched with passwords: an ambient n that aims at entering/exiting/opening
another ambient m must not only be authorized by m via a corresponding co-action (like in SA), but
it must also exhibit some credential to perform the action (credentials are simply names and are called
passwords). Intuitively, passwords are a way to better control ambient movements and openings: for
example, in SA any ambient can open an ambient m that performs a open m action; with passwords,
the action becomes open (m, p) and only the ambients knowing the password p can open m. The
introduction of passwords was needed in [32] mainly to co-inductively characterize barbed equivalence
in a SA-like language; here we prove that passwords enhance the expressive power of the language.

Let SAp be the language defined by the syntax of SA, with

M ::= u
∣∣∣ in (u, v)

∣∣∣ out (u, v)
∣∣∣ open (u, v)

∣∣∣
in (u, v)

∣∣∣ out (u, v)
∣∣∣ open (u, v)

∣∣∣ M.M

and with the reductions rules of SA extended by also matching passwords.

Theorem 5.3. SAp is more expressive than SA: there exists an encoding of SA in SAp; there exists no
encoding of SAp in SA.

Proof. SA is trivially encodable in SAp as follows:

J in n K , in (n, n) J in n K , in (n, n)

J out n K , out (n, n) J out n K , out (n, n)

J open n K , open (n, n) J open n K , open (n, n)

The converse is a corollary of Theorem 3.5. �

The language proposed in [32] (called SAP) differs from SAp in the semantics of the out action:
in SAP, the co-action is not in the ambient left (like in SA and SAp) but is in the receiving ambient.
Formally, the axiom to exit an ambient now becomes:

m[n[out (m, p).P1|P2] | P3] | out (m, p).P4 7−→ n[P1|P2] | m[P3] | P4

We now prove that this slight modification makes SAP incomparable with both SA and SAp; to this
aim, it suffices to prove the following two results. Notice that we have introduced SAp to stress that the
two ways of placing the out primitive are incomparable.
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Theorem 5.4. There exists no encoding of SAP in SAp.

Proof. Consider the processes P1 , m[n[out (m, p)]] and P2 , out (m, p).
√

, for n, m and p pairwise
distinct; J P1 K and J P2 K must interact and can do so in four ways:2

1. either C1(J P1 K) ?enter h,k−−−−−−−−→ and C2(J P2 K) enter h,k−−−−−−−→ ,

2. or C1(J P1 K) enter h,k−−−−−−−→ and C2(J P2 K) ?enter h,k−−−−−−−−→ ,

3. or C1(J P1 K)
?open h,k−−−−−−−−→ and C2(J P2 K)

open h,k−−−−−−−→ ,

4. or C1(J P1 K)
open h,k−−−−−−−→ and C2(J P2 K)

?open h,k−−−−−−−−→ .

In all cases, by Property 2, we have that h ∈ ϕJ K(m) and k ∈ ϕJ K(p), or vice versa. We now show
that all these cases lead to a contradiction; to this aim, notice that, by Property 1, it holds that J P1 K ,
C{n,m,p}m[ ] (J n[out (m, p)] K).
1.,3. Let α =?enter h, k in case 1 and α =?open h, k in case 3. Assume that C1(·) is not empty; it

cannot be that C1(·) α−−→ , otherwise J n[m[out (n, p)]] | P2 K 7−→. Hence J P1 K α′−−→ , for α′ =

in (h, k) in case 1 and α′ = open (h, k) in case 3. We now prove that this can be used to violate
Proposition 3.1.

(a) It cannot be that C{n,m,p}m[ ] (·) α′−−→ , otherwise Jm[m[out (n, p)]] | P2 K 7−→.

(b) It cannot be that J n[out (m, p)] K α′−−→ , otherwise J n[out (m, p)] | P2 K 7−→.

Hence, C1(·) is empty and J P1 K α−−→ ; this can happen in three possible ways, all of them con-
tradicting Proposition 3.1. The first two possibilities are formally identical to sub-cases (a) and
(b) above (with α in place of α′); now, it is also possible that C{n,m,p}m[ ] (·) ≡ (ν̃n)(h[ · | Q1] | Q2)

and J n[out (m, p)] K α′−−→ , for α′ = in (h, k) in case 1 and α′ = open (h, k) in case 3. However,

recall that J n[out (m, p)] K , C{m,p}n[ ] (J out (m, p) K); so, it cannot be that C{m,p}n[ ] (·) α′−−→ , otherwise

J n[out (p,m)] K α′−−→ , nor that J out (m, p) K α′−−→ , otherwise Jm[out (m, p)] K α′−−→ .

2. This case is similar to the previous one, with α = enter h, k and α′ = in h, k.

4. Like before, C1(·) must be empty. Then, it cannot be that C{n,m,p}m[ ] (·) open h,k−−−−−−−→ ,

otherwise Jm[n[out (p,m)]] | P2 K 7−→, nor that J n[out (m, p)] K open h,k−−−−−−−→ , otherwise
J n[out (m, p)] | P2 K 7−→. �

Theorem 5.5. There exists no encoding of SA in SAP.

2For SAp, it suffices to extend Proposition 4.2 in the obvious way, i.e. by letting the label also contain the specified
password.
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Proof. Consider P , m[n[out m.open n] | out m] and Q , open n.
√

, for n , m. We know that
J P | Q K 7−→, and this can happen in six ways:3

1. C1(J P K) enter h,k−−−−−−−→ and C2(JQ K) ?enter h,k−−−−−−−−→ ;

2. C1(J P K) ?enter h,k−−−−−−−−→ and C2(JQ K) enter h,k−−−−−−−→ ;

3. C1(J P K) open h,k−−−−−−−→ and C2(JQ K) ?open h,k−−−−−−−−→ ;

4. C1(J P K) ?open h,k−−−−−−−−→ and C2(JQ K) open h,k−−−−−−−→ ;

5. C1(J P K) exit h,k−−−−−−→ and C2(JQ K) ?exit h,k−−−−−−−→ ;

6. C1(J P K) ?exit h,k−−−−−−−→ and C2(JQ K) exit h,k−−−−−−→ .

We now prove that all these cases are not possible. In cases 3 and 6, it must be that C1(·) is empty,
otherwise Jm[out m.open n | out m] | Q K 7−→, and J P K α−−→ , for α ∈ {open h, k , ?exit h, k}.
By Property 1, J P K , C{n,m}m[ ](J P′ K), where P′ , n[out m.open n] | out m. How-

ever, it cannot be that C{n,m}m[ ](·) α−−→ , otherwise Jm[] | Q K 7−→, nor that J P′ K α−−→ , otherwise

Jm[out m.open n | out m] | Q K 7−→; thus, cases 3 and 6 are impossible.
In the remaining cases, we can work as follows. First, suppose that C1(·) is not empty; thus,

C1(·) , a[ · | R] and J P K α′−−→ , for α′ ∈ {in h, k , in h, k , open h, k , out h, k}. Like be-
fore, we can prove that there is no way for J P K to perform α′ without contradicting Proposi-
tion 3.1. Hence, it must be that C1(·) is empty. Again, J P K , C{n,m}m[ ](J P′ K) and J P K α−−→ ,

for α ∈ {enter h, k , ?enter h, k , ?open h, k , exit h, k}. If C{n,m}m[ ](·) α−−→ or J P′ K α−−→ , we

can work like for cases 3 and 6 above. So, it must be that C{n,m}m[ ](·) ≡ (ν p̃)(a[ · | R1] | R2) and

J P′ K α′−−→ , for α′ ∈ {in h, k , in h, k , open h, k , out h, k}. Furthermore, by Property 1, J P′ K ≡
C{n,m}| (J n[out m.open n] K; J out m K); thus, J P′ K α′−−→ can happen in three ways:

• C{n,m}| (·) α′−−→ ;

• J n[out m.open n] K α′−−→ ;

• J out m K α′−−→ .

All these cases lead to contradict Proposition 3.1: in the first two cases, it is easy to prove that also
Jm[n[0] | out m] | Q K 7−→; in the third case, we would have that Jm[out m.open n | out m] | Q K 7−→.

�
3For SAP, Proposition 4.2 must be extended by letting the label also contain the specified password and by adding the pair

of complementary actions exit h, k and ?exit h, k: the former one signals the presence, within a top-level ambient h, of some
ambient that want to exit from h by exhibiting password k; the latter one signals the presence of a top-level out (h, k) action.
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To conclude, notice that SAp and SAP are more expressive than Dπ: the latter cannot encode SAp

because it cannot encode SA (as a corollary of Proposition 4.7); Dπ cannot encode SAP since, by
working like in Proposition 4.7, we can easily prove that SAP cannot be encoded in µK. On the
contrary, Dπ can be encoded both in SAp and in SAP: this is possible because, thanks to passwords,
both SAp and SAP can atomically match two names, viz. the name of the channel where the Dπ
processes communicate and the locality hosting them.

The main idea is that an output over channel u located at w is represented as an occurrence of am-
bient w that can be entered by a pilot ambient p by using u as password; once entered, the pilot ambient
must be opened, the communication takes place locally and the continuation processes are activated
(notice that the continuation of the output must be activated after consumption of the output message;
this is the aim of the synchronizing ambient go). Formally, the encoding acts homomorphically on all
the operators, except for

J l : P K , J P Kl′

J ū〈v〉.P Kw , (νk)(w[in (w, u′).open (p, p).
(〈v′〉 | go[open (go, go).open (w, k)]) ] for k fresh

| open (w, k).J P Kw)

J u(x).P Kw , p[in (w, u′).open (p, p).(x′).open (go, go).J P Kw]

J go u.P Kw , (νk)(k[open (k, k)] | open (k, k).J P Ku′) for k fresh

where p and go are reserved names and, consequently, l′, u′, v′ and x′ are the renamings of l, u, v and
x, respectively. It can be proved that this encoding enjoys all the Properties listed in Section 3.

Thus, we have proved the following hierarchy of languages:

SAp SAP

6

@
@

@@I 6

SA Dπ

5.3 Shared vs Localized Channels in BA

Parent-child communications can be modeled in (at least) two ways: the first one exploits shared chan-
nels (i.e., communications can happen either within the same ambient or via a channel shared by the
parent and its child); the second one exploits localized channels (i.e., communications can happen ei-
ther within the same ambient or via a channel owned by either the parent or the child). Both these
approaches have been adopted in some presentations of BA; we now formally compare them.

Formally, BAs is the calculus derived from BA by letting the four reduction rules for remote com-
munications be replaced by:

(x)n.P1 | n[〈M〉ˆ̂.P2|P3] 7−→ P1{M/x} | n[P2|P3]

〈M〉n.P1 | n[(x)ˆ̂.P2|P3] 7−→ P1 | n[P2{M/x}|P3]

BAs provides a more controlled form of communication, since it rules out the interferences that can
arise, e.g., in

(x)n | n[〈M〉? | (y)? | m[(z)ˆ̂]]
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where message M can be consumed by three different input actions placed in different ambients. How-
ever, as we now prove, the two forms of communication are incomparable.

Theorem 5.6. BAs and BA are incomparable: there exists no encoding of BAs in BA and there exists
no encoding of BA in BAs that satisfies Property 6.

Proof. We start with the non-encodability of BA in BAs. Consider the following pair of BA processes:
P1 , (x)n.(b[0] | √) and P2 , n[〈b〉?]. By Proposition 3.2, J P1 | P2 K must reduce; this can only happen
in three possible ways4:

a) Ci(J Pi K) enter n′−−−−−−−→ and C j(J P j K) amb n′−−−−−−→ , for {i, j} = {1, 2};

b) Ci(J Pi K)
〈−〉n′−−−−→ and C j(J P j K)

n′(M)−−−−−→ , for {i, j} = {1, 2};

c) Ci(J Pi K)
(M)n′

−−−−−→ and C j(J P j K)
n′〈−〉−−−−−→ , for {i, j} = {1, 2}.

Indeed, by Property 2, no other form of interaction can take place; moreover, it must be that n′ = ϕJ K(n).
We now prove that only cases (b) and (c) with i = 1 and j = 2 do not contradict Proposition 3.1.

• Concerning case (a), we can prove, like in previous proofs, that both C1(·) and C2(·) must

be empty. Moreover, it could only be i = 1 and j = 2, with C{b}
(x)n′ (·)

amb n′−−−−−−→ , C{b}n[ ](·) ≡
(ν̃h)(h[ · | Q1] | Q2) and J b[0] | √ K in n′−−−−→ ; but the latter fact is not possible, thanks to Propo-
sition 3.6.

• Concerning cases (b) and (c), with i = 2 and j = 1, we have that α (that is 〈−〉n′ in case (b) and
(M)n′ in case (c)) cannot be produced: indeed, if C1(·) α−−→ , then C1(b[〈n〉?])

α−−→ ; if C{b}n[ ](·)
α−−→ ,

then C1(n[〈b〉ˆ̂]) α−−→ ; finally, J 〈b〉ˆ̂ K α−−→ is not possible because of Proposition 3.6.

Hence, it must be that C2(J P2 K) α−−→ , for α ∈ {n′(M), n′〈−〉}. Again, the only way to respect Proposi-
tion 3.1 is when C2(·) is empty, C{b}n[ ](·) ≡ (ν̃n)(n′[ · | Q1] | Q2) and J 〈b〉? K α1−−→ , for α1 ∈ {(M)ˆ̂, 〈−〉ˆ̂}.

Now, consider processes P3 , 〈b〉n.
√

and P4 , n[(x)?]. With a similar reasoning, we have that
J (x)? K α2−−→ , for α2 ∈ {(M)ˆ̂, 〈−〉ˆ̂}. Moreover, α2 must be of a different kind from α1: indeed, it they
were both inputs (outputs), then we would have that J P3 | n[〈b〉?] K 7−→.

Now, consider processes P5 , (x)?.
√

and P6 , n[〈b〉ˆ̂]. The possible interactions between their

encodings are C1(J P5 K) α−−→ and J P6 K ᾱ−−→ , for α ∈ {amb m, 〈−〉m, (M)m} and, correspondingly, ᾱ ∈
{enter m,m(M),m〈−〉}. Indeed, C2(·) must be empty and J P6 K cannot perform α. Moreover, it must be
that C{b}n[ ](·) ≡ (ν̃k)(k[ · | R1] | R2) and J 〈b〉ˆ̂ K α3−−→ , for α3 ∈ {in m, (M)ˆ̂, 〈−〉ˆ̂} respectively. However,
this allows us to conclude that J · K is not an encoding that respects Property 6: if α3 = in m, we can
conclude that J P5 | ! P6 K diverges, by a reasoning similar to the one in the proof of Theorem 5.2; if
α3 ∈ {(M)ˆ̂, 〈−〉ˆ̂}, we have that either J P1 | P6 K 7−→ or J P2 | P6 K 7−→, according to whether α3 is of
the same kind as α1 or of α2.

4For BAs, Proposition 4.3 must be updated as follows: (i) ignore points 4 and 5; (ii) let labels n(M) and n〈−〉 mean that
there is a top-level ambient n with a top-level action (x)ˆ̂ or 〈M〉ˆ̂.
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For the non-encodability of BAs in BA, we work in a similar way. First, consider the BAs processes
P1 , (x)n.

√
and P2 , n[〈b〉ˆ̂]. Like in the non-encodability of BA in BAs, we have that J 〈b〉ˆ̂ K α1−−→ , for

α1 ∈ {(M)?, 〈−〉?}. Second, consider P3 , 〈b〉n.
√

and P2 , n[(x)ˆ̂]; again, we have that J (x)ˆ̂ K α2−−→ ,
for α2 ∈ {(M)?, 〈−〉?}. We are now ready to violate Proposition 3.1 (so, in this case Property 6 is not
needed): if α1 and α2 are of the same kind, then J P1 | P4 K 7−→; otherwise, J (x)ˆ̂ | 〈b〉ˆ̂ K 7−→. �

5.4 Alternative Mobility Primitives in BA: SBA and NBA

Safe Boxed Ambient (SBA) A first extension of BA is SBA (Safe BA, [33]): it is BA extended with
co-actions to better control ambient movements, in the same spirit as SA. However, SBA co-actions
can either allow any ambient enter/exit a given ambient n (and this is similar to SA), or can selectively
allow movements (this resembles SAP, though no password appears in SBA). Formally, the reductions
for ambient movements are:

n[in m.P1 | P2] | m[in δ.P3 | P4] 7−→ m[n[P1 | P2] | P3 | P4]

m[n[out m.P1 | P2] | P3] | out δ.P4 7−→ n[P1 | P2] | m[P3] | P4

for δ ∈ {∗, n}. Also notice that the out action is placed outside the ambient left, like in SAP.

Remark 5.1. For SBA, Proposition 4.3 must be adapted as follows:

(i) case 3 now involves labels n : enter m and m :?enter n, where the first label means that there
is a (possibly restricted) top-level ambient n containing a top-level prefix in m and the second
label means that there is a top-level ambient m containing a top-level prefix in ∗ or in n;

(ii) introduce case 8, that holds if P1
n:exit m−−−−−−−→ and P2

?n:exit m−−−−−−−−→ , where the first label means that
there is a top-level ambient m containing a (possibly restricted) top-level ambient n containing a
top-level prefix out m and the second label means that there is a top-level prefix out ∗ or out n;

(iii) leave all the remaining cases exactly as in Proposition 4.3.

It is quite easy to prove that of SBA is more expressive than BA.

Theorem 5.7. SBA is more expressive than BA: there is an encoding of BA in SBA, whereas there is
no encoding of SBA in BA.

Proof. It is easy to prove that SBA∗ can encode BA: it suffices to translate every operator homomor-
phically, except for J u[P] K , ! out ∗ | u[! in ∗ | J P K] and J 0 K , ! out ∗. The converse is a corollary
of Theorem 3.5. �

New Boxed Ambient (NBA) [6] presents an evolution of BA, called NBA (New BA) that adopts the
shared-channel form of communication of BAs, it introduces passwords in mobility actions (similarly
to SAP) and let co-actions dynamically learn the name of the ambient that performed the corresponding
action. As we have shown in Theorem 5.6, located channels cannot be encoded in shared channels nor
vice versa; thus, to compare NBA with BA and SBA, we consider the variant of NBA with localised
channels that we call NBAl. Formally, its distinctive reduction rules are:

n[in (m, p).P1 | P2] | m[in (x, p).P3 | P4] 7−→ m[n[P1 | P2] | P3{n/x} | P4]

m[n[out (m, p).P1 | P2] | P3] | out (x, p).P4 7−→ n[P1 | P2] | m[P3] | P4{n/x}
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Remark 5.2. For NBAl, Proposition 4.3 must be adapted as follows:

(i) case 3 now involves labels n : enter m, p and m :?enter n, p, where the first label means that
there is a (possibly restricted) top-level ambient n containing a top-level prefix in (m, p) and the
second label means that there is a top-level ambient m containing a top-level prefix in (x, p) and
n has been used to replace x in the process prefixed by the action;

(ii) introduce case 8, that holds if P1
n:exit m,p−−−−−−−−→ and P2

?n:exit m,p−−−−−−−−−→ , where the first label means that
there is a top-level ambient m containing a (possibly restricted) top-level ambient n containing a
top-level prefix out (m, p) and the second label means that there is a top-level prefix out (x, p)
and n has been used to replace x in the process prefixed by the action;

(iii) leave all the remaining cases exactly as in Proposition 4.3.

We now prove that NBAl is more expressive than BA.

Theorem 5.8. NBAl is more expressive than BA: there is an encoding of BA in NBAl, whereas there
is no encoding of NBAl in BA.

Proof. NBAl can encode BA: it suffices to translate every operator homomorphically, except for

J 0 K , ! out (x, p) J u[P] K , ! out (x, p) | u[! in (x, p) | J P K]
J in u.P K , in (u, p).J P K J out u.P K , out (u, p).J P K

for some predefined and fixed (constant) password p. The converse is a corollary of Theorem 3.5. �

The hierarchy of BA-derived languages We have shown that both SBA and NBAl are more expres-
sive than BA; it remains to understand the relationships between NBAl and SBA. We now prove that
the two languages are incomparable.

Theorem 5.9. There is no encoding of NBAl in SBA.

Proof. Consider the processes P , n[in (m, p).〈q〉?] and Q , m[in (x, p).〈 〉∗] | ( )m.
√

, for n, m, p and

q pairwise distinct. Their encodings must interact: C1(J P K) µ−−→ and C2(JQ K) µ′−−→ , for some µ and µ′.
By Property 2, it must be that f n(µ) = f n(µ′) = {m′, p′}, for m′ ∈ ϕJ K(m) and p′ ∈ ϕJ K(p); hence, since
m′ , p′, it must be that µ = h : enter k and µ′ = k :?enter h (or vice versa, that is handled similarly),
for {h, k} = {m′, p′}; alternatively, we could have µ = h : exit k and µ′ = k :?exit h (or vice versa), but
the reasoning would be similar.

First, notice that C1(·) must be empty, otherwise either C1(J n[in (p,m).〈q〉?] K) µ−−→ or

C1(J in (p,m).〈q〉?.〈n〉? K) µ−−→ , according to whether C{m,p,q}n[ ] (·) in k−−−−→ or J in (m, p).〈q〉? K in k−−−−→ .

Hence, J P K µ−−→ ; this can happen in three ways:

• C{m,p,q}n[ ] (·) µ−−→ , but then J n[in (p,m).〈q〉?] | Q K 7−→;

• J in (m, p).〈q〉? K µ−−→ , but then J in (m, p).〈q〉? | Q K 7−→;
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• C{m,p,q}n[ ] (·) ≡ (ν̃n)(h[ · | Q1] | Q2) and J in (m, p).〈q〉? K in k−−−−→ . In this case, let σ be the permuta-

tion that swaps m with q, if k = p′, and that swaps p with q, otherwise. Then, J Pσ K µ−−→ and so
J Pσ | Q K 7−→, in contradiction with Proposition 3.1. �

Theorem 5.10. There is no encoding of SBA in NBAl.

Proof. Consider the processes P , n[in m] and Q , m[in n.〈 〉∗] | ( )m.
√

, for n , m. Their encodings

must interact: C1(J P K) µ−−→ and C2(JQ K) µ′−−→ , for some µ and µ′. By Property 2, it must be that
f n(µ) = f n(µ′) = {m′, n′}, for m′ ∈ ϕJ K(m) and n′ ∈ ϕJ K(n); hence, it must be that µ = h : enter (k, p)
and µ′ = k :?enter (h, p) (or vice versa, that is handled similarly), for {k, p} = {m′, n′}; alternatively,
we could have µ = h : exit (k, p) and µ′ = k :?exit (h, p) (or vice versa), but the reasoning would be
similar.

First, C1(·) must be empty, otherwise C1(J n[〈m〉?] K) µ−−→ ; indeed, because of Proposition 3.6, it

cannot be that J in m K in (k,p)−−−−−−→ , since {k, p} ∩ ϕJ K(n) , ∅ but n < f n(in m). Hence, J n[in m] K µ−−→ ;
this can happen in three ways:

• C{m}n[ ](·)
µ−−→ , but then J n[〈m〉?] | Q K 7−→;

• J in m K µ−−→ , but then J in m | Q K 7−→;

• C{m}n[ ](·) ≡ (ν̃n)(h[ · | Q1] | Q2) and J in m K in (k,p)−−−−−−→ : again, because of Proposition 3.6, the latter
fact is not possible. �

To sum up, we have the following hierarchy for BA-derived calculi:

NBAl SBA

@
@

@I

¡
¡

¡µ

BA

6 Conclusions and Related Work

We have comparatively studied several mainstream calculi for mobility and some of their variants,
namely the asynchronous π-calculus, a distributed π-calculus, a distributed version of L, Mobile
Ambients (and two dialects with objective moves), Safe Ambients (and its dialect with passwords) and
Boxed Ambients (and some variations of its primitives). We have organized all these languages in a
clear hierarchy based on their relative expressive power. To this aim, we have exploited the criteria
presented and discussed in [21], but we believe that they should also hold under different ‘reasonable’
encodability criteria.

In our opinion, the most important of our positive results is the encodability of πa-calculus in MA:
indeed, to the best of our knowledge, no such encoding has even been presented before ours (in par-
ticular, none of the encodings of πa-calculus in MA satisfied operational soundness). It has to be said
that our encoding is quite complex (the encoding of a single communication in πa-calculus requires 14
reduction steps in MA) because some ingenuity is needed to handle the possible interferences that can
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arise between the encoding of different actions on the same channel. Notice that the encoding of πa-
calculus in SA [30] is simpler (just 5 reductions to mimic a single communication), since co-actions can
be exploited to reduce such interferences; this is a further evidence of SA’s expressive power. Moreover,
an equally good encoding (though sensibly more complex) holds also in SA without the communication
primitives [49]; we believe that such a result is not possible in MA. Finally, we also want to remark
that the encoding of πa-calculus in BA [5] is even simpler: thanks to parent-child communications,
just 2 reductions are needed to mimic a single communication. These remarks can be used to argue
that co-actions and, even more, remote communications are more suitable to implement channel-based
communications in ambient-like languages. Of course, to make this claim formal, we should prove that
no more efficient encoding of πa-calculus in MA is possible; we leave this aspect for future work.

It is surprising that some expected separation results were so difficult to prove. A paradigmatic
sample of this fact is Conjecture 1: we have not been able to prove such (expectable) result. Indeed,
remote communications should not be enough to reasonably implement the open primitive of MA.

It is now worth discussing the notion of expressiveness we have considered when comparing these
languages. One might intuitively consider a language more expressive than another one if the former al-
lows more sophisticated inter-process interactions than the latter; moreover, it could also be expectable
that systems in the former language should be expressible with a more compact syntax and simpler
operational semantics than in the latter one. Quite surprisingly, the notion of expressiveness put for-
ward by our results in some cases clashes with this intuition. For example, SA and SAP, defined to
limit the possible computations of MA, turned out to be more expressive than MA (a similar situation
holds for SBA and NBA w.r.t. BA). Moreover, objective moves, that in [11] are defined ‘dangerous’
(because they can be used to entrap an ambient in a restricted ambient and leave it there for ever), turned
out to be less expressive than the subjectives moves of MA. This apparent contradiction is related to
operational soundness, viz. the second item of Property 3. Not incidentally, by ignoring it, more and
simpler encodability results do hold (see, e.g., the various encodings of πa-calculus in MA presented in
[11, 10, 9]).

Finally, the throughout comparison between the different dialects of ambient-based calculi has also
clarified some important issues. In some cases, we have discovered that the dialect proposed is com-
parable, in terms of expressive power, with the language it comes from: for example, MAo reduces the
expressiveness of MA, whereas SA and NBA/SBA enhance the expressiveness of MA and BA, respec-
tively. In other cases, we have discovered that the dialect and its original language are incomparable,
i.e. no relative encoding exists: the most notable cases are P vs MA, BAs vs BA and SAP vs SA.
In these cases, we must be aware that the dialect is not an enhancement of the original language nor a
minor variation on it, as it is sometimes believed.

Related work. To conclude, we want to mention some strictly related results. First, [49] provides
an encoding of the synchronous π-calculus in ‘pure’ SA, i.e. SA without communications, and claims
that the same cannot be done in ‘pure’ MA; our encoding of πa-calculus in MA confirms this intuition,
since communications in πa-calculus are translated by exploiting communications in MA. Second, [29]
provides an encoding of BAs in a variant of SA that exploits mobility primitives similar to those in SBA.
The encoding respects all our criteria but the target language is still another variant of the languages
we have presented. Third, the results in [8] entail that Dπ cannot be encoded in πa-calculus, under
properties similar to ours; notably, they need homomorphism w.r.t. parallel composition whereas we
just rely on compositionality. Fourth, [42, 43] are inspired by Palamidessi’s work on electoral systems
[40] and separate several calculi for mobility according to the possibility of solving the problem of
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leader election. Though their approach is different from ours, our results confirm theirs. However, our
approach is more informative than theirs, since we are also able to compare pairs of languages in which
leader election is possible/impossible (e.g., SA and MA, or πa-calculus and Dπ).

Finally, calculi for mobility have been a workbench for investigations on the expressiveness of
operators like restriction, communication primitives, non-deterministic choice and replication ([7, 31,
40, 20, 15], just to cite some samples). These works are quite orthogonal to ours, since they compare
different sub-calculi of the same language, whereas we aimed at comparing of different programming
paradigms.

Acknowledgments. Thanks to Iain Phillips that introduced me to [42, 43]; thanks also to Rosario
Pugliese, Ivano Salvo and Maria Grazia Vigliotti that read a preliminary version of this work.

A Properties of the encoding of πa-calculus in MA

All the properties of Section 3 are easy to prove, except for Properties 3 and 4. To carry out the
proofs, we found it useful to assign a number to the actions of the encoding, to refer them easily later
on. Moreover, for the sake of simplicity, we assume triadic communications in MA, so that a datum
〈b1, b2, b3〉 can be consumed by an action (x1, x2, x3) in just one reduction step.

©3 ©4’

J ā〈b〉 K , a1[a2[open a3.〈b1, b2, b3〉]]

©1 ©9 ©2 ©7 ©4” ©5 ©8
J a(x).P K , open a1.(νp, q)(open p | a3[in a2.open rest | (x1, x2, x3).in q.p[out q.J P K]]

©6 ©10 ©11

| q[open a2.rest[! rest[in a3.out q.in a2.open rest]]])

In what follows, we denote with ©4 the simultaneous execution of actions ©4’ and ©4” . Actions ©1 / . . . /
©9 are used to mimic a communication in the source term; moreover, note that action ©7 is not needed,
if no interference arises. However, in the presence of interferences between the encoding of different
communications along the same channel, action ©7 becomes fundamental. In such a case, some actions
(viz, ©7 , ©10 and ©11 ) are needed to restore the interfering a3 ambients at top-level, ready to complete their
task. However, the corresponding computations are spurious, in the sense that they do not correspond
to original reductions in πa-calculus and are only performed to remedy some interference.

Formally, a reduction arising from the encoding of a πa-calculus process is called spurious if

• it is of kind ©2 , but leads an a3 ambient within an a2 ambient that has already been entered by (at
least) another a3 ambient;

• it is of kind ©7 and is executed within an a3 ambient;

• it is of kind ©10 or ©11 .

In the first two cases above, we denote the step with ©2s and ©7s , to emphasize its spurious nature and
distinguish it from a step performed to mimic a reduction in πa-calculus.

To ease reading, let us denote with PR
©k , s2, s10, s7
a the process arising from J ā〈b〉 | a(x).P K, for some

b, x and P, after the execution of the non-spurious action ©k and that contains: s2 ambients named a3
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that have executed only a ©2s action; s10 ambients named a3 that have also executed a ©10 action; s7
ambients named a3 that have also executed a ©7s action. Moreover, we denote with PRa the encoding of
ā〈b〉, for some b, with its enclosing a1 ambient dissolved. Finally, PRs2, s10, s7

a denotes the process

(νq)(q[ ! rest[in a3.out q.in a2.open rest] |
s2∏

i=1
a3[open rest | (x1, x2, x3). · · ·])

|
s10∏
i=1

a3[open rest | (x1, x2, x3). · · · | rest[out q. · · ·]])

|
s7∏

i=1
a3[(x1, x2, x3). · · · | out q. · · ·] )

We now give a simple proposition that describes some syntactic and operational properties of the
processes we have just defined; the proof directly follows from the definition of the processes.

Proposition A.1.

1. PR
©1 , s2, s10, s7
a is such that s2 = s10 = s7 = 0; moreover, it is structurally equivalent to a process of

the form PRa | a3[in a2.open rest | (x1, x2, x3). · · ·]; finally, it can evolve by either performing a
©2 and becoming PR

©2 , 0, 0, 0
a , or performing a ©2s and becoming PRa, with its a3 ambient that enters

in a sibling a2 ambient that has already been entered by (at least) another a3.

2. PR
©k , s2, s10, s7
a , for k ∈ {2, 3, 4}, is such that s10 = s7 = 0; moreover, it can evolve by either

performing a ©k+1 and becoming PR
©k+1 , s2, 0, 0
a , or undergoing to a ©2s and becoming PR

©k , s2+1, 0, 0
a .

3. PR
©k , s2, s10, s7
a , for k ∈ {5, 6}, is such that s10 = s7 = 0; moreover, it can only evolve by performing

a ©k+1 and becoming PR
©k+1 , s2, 0, 0
a .

4. PR
©k , s2, s10, s7
a , for k ∈ {7, 8} can evolve by either performing a ©k+1 and becoming PR

©k+1 , s2, s10, s7
a ,

or performing a ©10 and becoming PR
©k , s2−1, s10+1, s7
a (provided that s2 > 0), or performing a

©7s and becoming PR
©k , s2, s10−1, s7+1
a (provided that s10 > 0), or performing a ©11 and becoming

PR
©k , s2, s10, s7−1
a | a3[in a2.open rest | (x1, x2, x3. · · · )] (provided that s7 > 0).

5. PR
©9 , s2, s10, s7
a is structurally equivalent to a process of the form PR

s2, s10, s7
a | J P{b/x} K, for some b,

x and P; moreover, it can evolve by either performing a ©10 and becoming PR
©9 , s2−1, s10+1, s7
a (pro-

vided that s2 > 0), or performing a ©7s and becoming PR
©9 , s2, s10−1, s7+1
a (provided that s10 > 0), or

performing a ©11 and becoming PR
©9 , s2, s10, s7−1
a | a3[in a2.open rest | (x1, x2, x3. · · · )] (provided

that s7 > 0).

6. PR0, 0, 0
a ' 0, where ‘'’ denotes strong barbed equivalence.

Operational completeness (i.e. the first item of Property 3) is now a trivial corollary of the previous
proposition. To prove operational soundness (i.e. the second item of Property 3), it suffices to prove the
following lemma. There and in what follows, we denote with na

©k , for k ∈ {1, . . . , 11, 2s, 7s}, the number
of actions of kind ©k originated from the encoding of a communication along a in a given sequence of n
reductions; n©k stands for

∑
a∈N na

©k .
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Lemma A.2. Let P be a πa-calculus process and Q be a MA process such that J P K 7−→n Q, for
n =

∑11
k=1 n©k + n©2s + n©7s . Then,

Q ≡ (νm̃1, m̃2, m̃3)
(
JR K | ∏

a∈N


na
©2s

+na
©10

+na
©7s∏

k=1
PRa |

na
©1∏

k=1
PR
©1 , 0, 0, 0
a |

8∏
k=2

na
©k∏

i=1
PR
©k , na

2ski
, na

10ki
, na

7ski
a |

na
©9∏

i=1
PR

na
2s9i

, na
109i

, na
7s9i

a


)

for some m̃1, m̃2, m̃3 of the same length, for some πa-calculus process R, for na
10ki

= na
7ski

= 0 (k < 7)

and for n©2s =
∑

a∈N
∑9

k=2
∑na
©k

i=1 na
2ski

, n©10 =
∑

a∈N
∑9

k=7
∑na
©k

i=1 na
10ki

, n©7s =
∑

a∈N
∑9

k=7
∑na
©k

i=1 na
7ski

.

Proof. By induction on n. The base step is trivial; the inductive step relies on Proposition A.1. �

Theorem A.3 (Operational soundness). Let P be a πa-calculus process and Q be a MA process such
that J P K 7−→n Q. Then, P 7−→n©1 P′, for some πa-calculus process P′ such that Q Z=⇒' J P′ K.
Proof. By induction on n. The base step is trivial; the inductive step relies on Lemma A.2. �

We now exploit the previous result to prove that the encoding does not introduce divergence; the
fact that it preserves divergence is a trivial corollary of operational soundness. To this aim, we first need
a preliminary result that relates the number of spurious actions with the number of initial actions (i.e.,
actions of kind ©1 ), since only spurious actions can introduce divergence. It turns out that there are at
most polynomially many spurious actions, and this easily leads us to divergence freedom.

Lemma A.4. Let J P K 7−→n; then the number of spurious actions (i.e., n©2s + n©10 + n©7s + n©11 ) is at most
2 · (n©1 )2 + n©1 .

Proof. The worst case is when all the n©1 actions are on the same channel, say a, and can be obtained
as follows. Put all the n©1 a3 ambients in the same a2 ambient; this introduces n©1 − 1 spurious actions
of kind ©2s and the corresponding 3 · (n©1 −1) actions (of kind ©10 , ©7s and ©11 ) to remedy this choice. Then,
put all the remaining n©1 − 1 a3 ambients in the same a2 ambient; this introduces 4 · (n©1 − 2) spurious
actions. And so on. Thus, the overall number of spurious actions is at most

n©1∑

k=1

4 · (k − 1) = 4 · n©1 · (n©1 + 1)
2

− n©1 = 2 · (n©1 )2 + n©1
�

Theorem A.5 (Divergence freedom). If J P K 7−→ω, then P 7−→ω.

Proof. Let J P K 7−→n and observe that n > 0 implies that n©1 > 0. Moreover, for every k ∈ {2, . . . , 9},
it holds that n©k ≤ n©1 ; thus, by Lemma A.4, n → ∞ implies that n©1 → ∞. So, by Theorem A.3, we
easily conclude. �

31



References
[1] R. M. Amadio, I. Castellani, and D. Sangiorgi. On bisimulations for the asynchronous π-calculus. Theoret-

ical Computer Science, 195(2):291–324, 1998.

[2] S. Arun-Kumar and M. Hennessy. An efficiency preorder for processes. Acta Informatica, 29(8):737–760,
1992.

[3] L. Bettini, R. De Nicola, and R. Pugliese. K: a Java Package for Distributed and Mobile Applications.
Software – Practice and Experience, 32:1365–1394, 2002.

[4] G. Boudol. Asynchrony and the π-calculus (note). Rapport de Recherche 1702, INRIA Sophia-Antipolis,
May 1992.

[5] M. Bugliesi, G. Castagna, and S. Crafa. Access Control for Mobile Agents: the Calculus of Boxed Ambi-
ents. ACM Trans. on Programming Languages and Systems, 26(1):57–124, 2004.

[6] M. Bugliesi, S. Crafa, M. Merro, and V. Sassone. Communication and Mobility Control in Boxed Ambients.
Information and Computation, 202(1):39–86, 2005.

[7] N. Busi and G. Zavattaro. On the expressive power of movement and restriction in pure mobile ambients.
Theoretical Computer Science, 322(3):477–515, 2004.

[8] M. Carbone and S. Maffeis. On the expressive power of polyadic synchronisation in π-calculus. Nordic
Journal of Computing, 10(2):70–98, 2003.

[9] L. Cardelli, G. Ghelli, and A. D. Gordon. Mobility types for mobile ambients. Proc. of ICALP, vol. 1644
of LNCS, pages 230–239, 1999.

[10] L. Cardelli and A. D. Gordon. Types for mobile ambients. In Proc. of POPL, pages 79–92. ACM, 1999.

[11] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer Science, 240(1):177–213, 2000.

[12] F. de Boer and C. Palamidessi. Embedding as a tool for language comparison. Information and Computa-
tion, 108(1):128–157, 1994.

[13] R. De Nicola, G. Ferrari, and R. Pugliese. K: a Kernel Language for Agents Interaction and Mobility.
IEEE Trans. on Software Engineering, 24(5):315–330, 1998.

[14] R. De Nicola, G. Ferrari, R. Pugliese, and B. Veneri. Types for access control. Theoretical Computer
Science, 240(1):215–254, 2000.

[15] R. De Nicola, D. Gorla, and R. Pugliese. On the Expressive Power of KLAIM-based Calculi. Theor. Comp.
Science, 356(3):387–421, 2006.

[16] R. De Nicola and M. Hennessy. Testing equivalence for processes. Theoretical Computer Science, 34:83–
133, 1984.
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