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Abstract. Concurrent Pattern Calculus (CPC) is a minimal calculus whose com-
munication mechanism is based on a powerful form of symmetric pattern unifi-
cation. However, the richness of patterns and their unification entails some flex-
ibility in the challenge-reply game that underpins bisimulation. This leads to an
ordering upon patterns that is used to define the valid replies to a given chal-
lenge. Such a theory can be smoothly adapted to accomplish other, less symmet-
ric, forms of pattern matching (e.g. those of Linda, polyadic π-calculus, and π-
calculus with polyadic synchronization) without compromising the coincidence
of the two equivalences.

1 Introduction

Concurrent Pattern Calculus [20] is a minimal process calculus that uses symmetric
pattern unification as the basis of communication. CPC’s expressive power is obtained
by extending the messages sent during interaction from traditional names to a class of
patterns that are unified in an intensional manner (i.e., inspecting their internal struc-
ture). This unification supports equality testing and bi-directional communication in an
atomic step.

The exploration of intensionality in the concurrent setting is inspired by the in-
creased expressive power that the intensional S F-calculus has over λ-calculus [23].
Since intensionality, as captured by pattern matching, is more expressive in sequential
computation, it is natural to explore the expressiveness of intensionality, as captured
by pattern unification, in concurrent computation. Indeed, CPC formally generalises
both the sequential intensional computation of S F-calculus and the traditional (non-
intensional) concurrent computation of π-calculus [18]. The expressive power of CPC
is also testified to by the possibility of encoding some well-known process languages
[20, 18]: π-calculus [26], Linda [16] and Spi-calculus [2]. CPC’s symmetric form of
communication has similarities to Fusion [28]; however, the two calculi are unrelated
(neither one can be encoded in the other) [20, 18]. Finally, CPC has been implemented
in [17].

The main features of CPC are illustrated in the following sample trade interaction:

(ν sharesID)pABCSharesq • sharesID • λx→ 〈charge x for sale〉
| (ν bankAcc)pABCSharesq • λy • bankAcc→ 〈save y as proof 〉

7−→ (ν sharesID)(ν bankAcc)(〈charge bankAcc for sale〉 | 〈save sharesID as proof 〉)
3 NICTA is funded by the Australian Government as represented by the Department of Broad-

band, Communications and the Digital Economy and the Australian Research Council through
the ICT Centre of Excellence program.



The first line models a seller that will synchronise with a buyer, using the protected
information ABCShares, and exchange its shares (sharesID) for bank account informa-
tion to charge (bound to x). The second line models a buyer. Notice that the information
exchange is bidirectional and simultaneous: sharesID replaces y in the (continuation of
the) buyer and bankAcc replaces x in the (continuation of the) seller. Moreover, the two
patterns pABCSharesq • sharesID • λx and pABCSharesq • λy • bankAcc also specify
the details of the shares being traded, that must be matched for equality in the pattern
matching as indicated by the syntax p·q.

Pattern unification in CPC is even richer than indicated in this example, as
unification may bind a compound pattern to a single name; that is, patterns
do not need to be fully decomposed in unification. For example, the bank ac-
count information could be specified, and matched upon, in much more detail.
The buyer could provide the account name and number such as in the following
pattern: (ν accName)(ν accNum)pABCSharesq • λy • (name • accName • number •
accNum). This more detailed buyer would still match against the seller, now yielding
〈charge name • accName • number • accNum for sale〉. Indeed, the seller could also
specify a desire to only accept bank account information that includes a name and num-
ber with the following pattern: pABCSharesq•sharesID•(pnameq•λa•pnumberq•λb) and
continuation 〈charge a b for sale〉. This would also match with the detailed buyer infor-
mation by unifying name with pnameq, number with pnumberq, and binding accName
and accNum to a and b respectively. The second seller exploits the intensionality of
CPC to only interact with a buyer whose pattern is of the right structure (four sub-
patterns) and contains the right information (the protected names name and number,
and shared information in the other two positions). CPC is built up around this rich
form of pattern unification by using three standard operators taken from the π-calculus:
name restriction, parallel composition and replication (not used in this simple example).

The focus of this paper is the investigation of the behavioural theory for CPC. As
usual in concurrency theory, this is done by first defining a notion of barbed congruence
and then capturing this via a labelled bisimulation-based equivalence. The main diffi-
culty relies in the richness of the pattern unification mechanism adopted, that entails
some flexibility in the challenge-reply game underlying the definition of the bisimula-
tion. For example, the challenge λx•λy can be replied to by λz, because of the non-fully
decomposing form of pattern matching. (Such as the seller who accepts anything as
bank account information.) Indeed, every pattern matching the challenge has the form
p•q, where p and q are communicable (i.e., they do not contain protected names pnq nor
binding names λw), yielding the substitution {p/x, q/y}. The same pattern also matches

λz, now yielding the substitution {p • q/z}. Of course, for P
λx•λy
−−−−→ P′ to be simulated

by Q
λz
−→ Q′, it must be that {p/x, q/y}P′ is bisimilar to {p • q/z}Q′. Another subtlety

is in the unification of shared information n with protected information pnq. Since the
latter is a request for the communicating party to also know this information, the two
patterns unify. (Such as the more careful seller checking that the buyer provides name
and number for a bank account.) These ideas are formalised via an ordering on patterns
that characterises the valid replies to a given challenge: every pattern ‘greater than’ the
challenge is a valid reply, provided that, by applying the resulting substitutions to the
respective continuations, bisimilar processes are obtained.
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The form of pattern unification adopted in CPC generalises other forms of pattern
matching already presented in the literature. It is then desirable that CPC’s theory and
results can be adapted to such simpler forms. Section 4 shows that this job is rather
straightforward for the form of pattern matching underlying Linda, for two simple ex-
tensions of Linda, for the polyadic π-calculus, and for the π-calculus with polyadic
synchronization. This provides a complete behavioural theory for the languages adopt-
ing such forms of pattern matching. Moreover, for the π-calculus, the result coincides
with the usual notions of barbed congruence and early bisimulation congruence; this
can be seen as a confirmation of the validity of the theory presented here.

2 Concurrent Pattern Calculus

Suppose a countable set of names N (meta-variables n,m, x, y, z, . . . – even if
in the examples symbolic names will be used). The patterns (meta-variables
p, p′, p1, q, q′, q1, . . .) are built using names and have the following forms:

p ::= λx | x | pxq | p • p

Binding names λx denote information sought by a trader; variable names x represent
such information. Protected names pxq represent recognised information that cannot be
traded. A compound p • q combines the two patterns p and q; compounds are left
associative.

Given a pattern p the sets of: variables names, denoted vn(p); protected names,
denoted pn(p); and binding names, denoted bn(p), are as expected with the union being
taken for compounds. The free names of a pattern p, written fn(p), is the union of the
variable names and protected names of p. A pattern is well formed if its binding names
are pairwise distinct and different from the free ones. All patterns appearing in the rest
of this paper are assumed to be well formed.

As protected names are limited to recognition and binding names are being sought,
neither should be communicable to another process. Thus, a pattern is communi-
cable, able to be traded to another process, if it contains no protected or binding
names. Protection of a name can be extended to a communicable pattern p by defin-
ing pp • qq = ppq • pqq.

A substitution σ is defined as a partial function from names to communicable pat-
terns. The domain of σ is denoted dom(σ); the free names of σ, written fn(σ), is given
by the union of the sets fn(σx) where x ∈ dom(σ). The names of σ, written names(σ),
are dom(σ) ∪ fn(σ). Notationally, given two substitutions σ and θ, denote with θ[σ]
the composition of σ and θ, with domain limited to the domain of σ, i.e. the substitu-
tion mapping every x ∈ dom(σ) to θ(σ(x)). For later convenience, define the identity
substitution on a set of names X, written idX: it maps every name in X to itself.

Substitutions are applied to patterns as follows:

σx =

{
σ(x) if x ∈ dom(σ)
x otherwise σpxq =

{
pσ(x)q if x ∈ dom(σ)
pxq otherwise

σ(λx) = λx σ(p • q) = (σp) • (σq)

3



The symmetric matching (or unification) of two patterns p and q, written {p ‖ q},
attempts to unify p and q by generating substitutions for their binding names. When
defined, the result is a pair of substitutions whose domains are the binding names of p
and of q, respectively. The rules to generate the substitutions are:

{x ‖ x} = {x ‖ pxq} = {pxq ‖ x} = {pxq ‖ pxq} def
= ({}, {})

{λx ‖ q} def
= ({q/x}, {}) if q is communicable

{p ‖ λx} def
= ({}, {p/x}) if p is communicable

{p1 • p2 ‖ q1 • q2}
def
= (σ1 ∪ σ2 , ρ1 ∪ ρ2) if {pi ‖ qi} = (σi, ρi) for i ∈ {1, 2}

Variable and protected names unify if they are the same name. A binding name unifies
with any communicable pattern to produce a binding for its bound name. Two com-
pounds unify if their corresponding components do; the resulting substitutions are given
by taking the union of those produced by unifying the components (necessarily disjoint,
as patterns are well-formed). Otherwise the patterns cannot be unified and the matching
is undefined. Notice that pattern matching is deterministic because of left-associativity
of compounds.

The processes of CPC are given by:

P ::= 0 | P | P | !P | (νx)P | p→ P

The null process 0 is the inactive process; P | Q is the parallel composition of processes
P and Q, allowing the two processes to evolve independently or by interacting; the
replication !P provides as many parallel copies of P as desired; (νx)P declares a new
name x, visible only within P and distinct from any other name. The traditional input
and output primitives of process calculi are replaced by the case, viz. p → P, that has
a pattern p and a body P. A case with the null process as the body may also be written
by only specifying the pattern. For later convenience, ñ denotes a collection of names
n1, . . . , ni; for example, (νn1)(. . . ((νni)P)) will be written (ν̃n)P.

The free names of processes, denoted fn(P), are defined as usual for all the tradi-
tional primitives and fn(p→ P) = fn(p)∪ (fn(P)\bn(p)) for the case, where the binding
names of the pattern bind their free occurrences in the body.

The structural equivalence relation ≡ is defined just as in π-calculus [25]: it includes
α-conversion and its defining axioms are:

P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R !P ≡ P | !P

(νn)0 ≡ 0 (νn)(νm)P ≡ (νm)(νn)P P | (νn)Q ≡ (νn)(P | Q) if n < fn(P)

The operational semantics of CPC is formulated via a reduction relation between
pairs of processes. Its defining rules are:

(p→ P) | (q→ Q) 7−→ (σP) | (ρQ) if {p ‖ q} = (σ, ρ)

P 7−→ P′

P | Q 7−→ P′ | Q

P 7−→ P′

(νn)P 7−→ (νn)P′
P ≡ Q Q 7−→ Q′ Q′ ≡ P′

P 7−→ P′
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CPC has one interaction axiom, stating that, if the unification of two patterns p and q
is defined and generates (σ, ρ), the substitutions σ and ρ are applied to the bodies P
and Q, respectively. If the matching of p and q is undefined then no interaction occurs.
The interaction rule is then closed under parallel composition, restriction and structural
equivalence in the usual manner.

3 Behavioural Theory

This section follows a standard approach in concurrency to defining behavioural equiv-
alences, beginning with a barbed congruence and following with a labelled transition
system (LTS) and a definition of bisimulation for CPC. Some properties of patterns will
be explored as a basis for showing coincidence of the semantics.

3.1 Barbed Congruence

The first crucial step is to characterise the interactions a process can participate in via
barbs. Since a barb is an opportunity for interaction, a simplistic definition could be the
following:

P ↓ iff P ≡ p→ P′ | P′′, for some p, P′ and P′′ (1)

However, this definition is too strong: for example, (νn)(n→ P) does not exhibit a barb
according to (1), but it can interact with an external process, e.g. λx → 0. Thus, an
improvement to (1) is as follows:

P ↓ iff P ≡ (ν̃n)(p→ P′ | P′′), for some ñ, p, P′ and P′′ (2)

Now, this definition is too weak. Consider (νn)(pnq → P): it exhibits a barb according
to (2), but cannot interact with any external process. A further refinement on (2) could
be:

P ↓ iff P ≡ (ν̃n)(p→ P′ | P′′), for some ñ, p, P′, P′′ s.t. pn(p) ∩ ñ = ∅ (3)

This definition is not yet the final one, as it is not sufficiently discriminating to have
only a single kind of barb (the contexts in Definition 9 use two kinds of barbs, to define
success and failure). Thus, like in CCS and π-calculus [27], barbs must be indexed, e.g.
on some names that give an abstract account of the matching capabilities of the process.
Because of the rich form of interactions, CPC barbs also include the set of names that
may be tested for equality in an interaction, not just those that must be equal.

Definition 1 (Barb). Let P ↓m̃ mean that P ≡ (ν̃n)(p → P′ | P′′) for some ñ, p, P′ and
P′′ such that pn(p) ∩ ñ = ∅ and m̃ = fn(p)\̃n.

Using this definition, a barbed congruence can be defined in the standard way [21],
by requiring three properties. Let < denote a binary relation on processes and let a
context C(·) be a process with the hole ‘ · ’ replacing one instance of the null process.

Definition 2 (Barb preservation). < is barb preserving iff, for every (P,Q) ∈ <, it
holds that P ↓m̃ implies Q ↓m̃.
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case : (p→ P)
p
−→ P resnon :

P
µ
−→ P′

(νn)P
µ
−→ (νn)P′

n < names(µ)

resin :
P

(ν̃n)p
−−−→ P′

(νm)P
(ν̃n,m)p
−−−−−→ P′

m ∈ vn(p) \ (̃n ∪ pn(p) ∪ bn(p)) rep :
!P | P

µ
−→ P′

!P
µ
−→ P′

match :
P

(νm̃)p
−−−−→ P′ Q

(ν̃n)q
−−−→ Q′

P | Q
τ
−→ (νm̃, ñ)(σP′ | ρQ′)

{p ‖ q} = (σ, ρ)
m̃ ∩ fn(Q) = ñ ∩ fn(P) = ∅

m̃ ∩ ñ = ∅

parext :
P

(ν̃n)p
−−−→ P′

P | Q
(ν̃n)p
−−−→ P′ | Q

(̃n ∪ bn(p)) ∩ fn(Q) = ∅ parint :
P

τ
−→ P′

P | Q
τ
−→ P′ | Q

Fig. 1. LTS (the symmetric version of parint and parext have been omitted)

Definition 3 (Reduction closure). < is reduction closed iff, for every (P,Q) ∈ <, it
holds that P 7−→ P′ implies Q 7−→ Q′, for some Q′ such that (P′,Q′) ∈ <.

Definition 4 (Context closure). < is context closed iff, for every (P,Q) ∈ < and for
every context C(·), it holds that (C(P),C(Q)) ∈ <.

Definition 5 (Barbed congruence). Barbed congruence, ', is the largest symmetric,
barb preserving, reduction and context closed binary relation on processes.

Barbed congruence equates processes with the same behaviour, as captured by
barbs: two equivalent processes must exhibit the same behaviours, and this property
should hold along every sequence of reductions and in every execution context. This
defines the strong version of barbed congruence; its weak counterpart can be obtained
in the usual manner [26, 27], with more complex contexts for proving the completeness
theorem.

The problem in proving (strong/weak) barbed congruence is its closure under any
context. As is typical we solve this by giving an easier to reason about coinductive
(bisimulation-based) characterization using an alternate operation semantics; an LTS.

3.2 Labelled Transition System

The following is an adaption of the standard late LTS for the π-calculus [26]. Labels are
defined as follows:

µ ::= τ | (ν̃n)p

Labels are used in transitions P
µ
−→ P′ between processes, whose defining rules are

given in Figure 1. Rule case states that a case’s pattern can be used to interact with
external processes. Rule resnon is used when a restricted name does not appear in the
names of the label: it simply maintains the restriction on the process after the transition.
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By contrast, rule resin is used when a restricted name occurs in the label: as the re-
stricted name is going to be shared with other processes, the restriction is moved from
the process to the label (this is called extrusion, by using a π-calculus terminology).
Of course an extruded name cannot already be restricted, cannot be protected (as this
would prevent interaction), and cannot be a binding name. Rule match defines when
two processes can interact to perform an internal action: this can occur whenever the
processes exhibit labels with unifiable patterns and with no possibility of clash or cap-
ture due to restricted names. Rule rep unfolds the replicated process to infer the action.
Rule parint states that, if either process in a parallel composition can transition by an
internal action, then the whole process can transition by an internal action. Rule parext
is similar, but is used when the label is visible: when one of the processes in parallel ex-
hibits an external action, then the whole composition exhibits the same external action,
as long as the restricted or binding names of the label do not appear free in the parallel
component that does not generate the label.

Note that α-conversion is always assumed to satisfy the side conditions whenever
needed and the symmetric rules have been omitted for brevity.

The presentation of the LTS is concluded with the following two results. First,
the LTS is structurally image finite, i.e. for every P and µ, there are finitely many ≡-
equivalence classes of µ-reducts of P (Proposition 1). Second, the τ’s in the LTS induce
the same operational semantics as the reductions (Proposition 2).

Proposition 1. The LTS defined in Figure 1 is structurally image finite.

Proposition 2. If P
τ
−→ P′ then P 7−→ P′. Conversely, if P 7−→ P′ then there exists P′′

such that P
τ
−→ P′′ ≡ P′.

3.3 Bisimulation

The next step is to develop a bisimulation relation that equates processes with the same
interactional behaviour as captured by the labels of the LTS. The complexity is that the
labels for external actions contain patterns, and some patterns are ‘more general’ than
others, in terms of their matching capabilities. Two examples can clarify the point.

Example 1. Consider the processes P = λx•λy→ x•y and Q = λz→ z. Every process
that can interact with P (by exhibiting a pattern matching against λx • λy) can interact
with Q, but not vice versa: e.g., n→ 0 can interact with Q but not with P. In this sense,
the pattern λz is considered ‘more general’ than λx • λy.

Example 2. Consider the processes P = pnq → 0 and Q = n → 0. Every process that
can interact with P can interact with Q, but not vice versa: consider, e.g., λx→ 0. Thus,
the pattern n is considered ‘more general’ than pnq.

Now define an order relation on patterns that can be used to develop the bisimu-
lation. In most process calculi, a challenge is replied to with an identical action [26].
However, there are situations in which an exact reply would make the bisimulation
equivalence too fine for characterising barbed congruence [3, 12]. This is due to the
impossibility for the language contexts to force barbed congruent processes to execute
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the same action; in such calculi more liberal replies must be allowed, as here for CPC.
To this aim, define σ̂ as a normal substitution, except that it operates on binding names
rather than on free ones. Formally:

σ̂x = x σ̂pxq = pxq σ̂(λx) =

{
σ(x) if x ∈ dom(σ)
λx otherwise σ̂(p • q) = (σ̂p) • (σ̂q)

Definition 6. Let p, q, σ and ρ be such that bn(p) = dom(σ) and bn(q) = dom(ρ). De-
fine inductively that p is compatible with q by σ and ρ, denoted p, σ � q, ρ, whenever:

p, σ � λy, {σ̂p/y} if fn(p) = ∅ n, {} � n, {}

pnq, {} � pnq, {} pnq, {} � n, {}

p1 • p2, σ1 ∪ σ2 � q1 • q2, ρ1 ∪ ρ2 if pi, σi � qi, ρi, for i ∈ {1, 2} .

The next result captures the idea behind the definition of compatibility: the patterns
matched by p are a subset of the patterns matched by q.

Lemma 1. p, σ � q, ρ and {p ‖ r} = (σ, θ) implies {q ‖ r} = (ρ, θ).

Moreover, compatibility preserves information used for barbs, is stable under substitu-
tion composition, is reflexive and transitive.

Proposition 3. If p, σ � q, ρ then fn(p) = fn(q) and fn(σ) = fn(ρ). Moreover, vn(p) ⊆
vn(q) and pn(q) ⊆ pn(p).

Lemma 2. If p, σ � q, ρ then p, θ[σ] � q, θ[ρ], for every θ.

Proposition 4. Given p and σ such that dom(σ) = bn(p), then p, σ � p, σ.

Proposition 5. p, σ � q, ρ and q, ρ � r, θ imply p, σ � r, θ.

Definition 7 (Bisimulation). A symmetric binary relation on processes< is a bisimu-
lation if, for every (P,Q) ∈ < and P

µ
−→ P′, it holds that:

– if µ = τ, then Q
τ
−→ Q′, for some Q′ such that (P′,Q′) ∈ <;

– if µ = (ν̃n)p, for (bn(p) ∪ ñ) ∩ fn(Q) = ∅, then for all σ with dom(σ) = bn(p) and

fn(σ) ∩ ñ = ∅ there exist q, Q′ and ρ such that Q
(ν̃n)q
−−−→ Q′ and p, σ � q, ρ and

(σP′, ρQ′) ∈ <.

Denote with ∼ the largest bisimulation closed under any substitution.

The definition is inspired by the early bisimulation congruence for the π-calculus
[26]: first of all, to be a congruence, we need to consider its closure under all possible
substitutions (otherwise, it would not be closed under prefixes). Then, for every possible
instantiation σ of the binding names, there exists a proper reply from Q. Of course, σ
cannot be chosen arbitrarily: it cannot use in its range names that were restricted in P.
Also the action µ cannot be arbitrary, as in the π-calculus: its restricted and binding
names cannot occur free in Q.
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Differently from the π-calculus, however, the reply from Q can be different from the
challenge from P: this is due to the fact that CPC contexts are not powerful enough to
enforce an identical reply (as highligthed in Examples 1 and 2). Indeed, this notion of
bisimulation allows a challenge p to be replied to by any compatible q, provided that σ
is properly adapted (yielding ρ, as described by the compatibility relation) before being
applied to Q′. This feature somehow resembles the symbolic characterization of open
bisimilarity given in [29, 6]. There, labels are pairs made up of an action and a set of
equality constraints. A challenge can be replied to by a smaller (i.e. less constraining)
set. However, the action in the reply must be the same (in [29]) or becomes the same
once we apply the name identifications induced by the equality constraints (in [6]).

3.4 Soundness and Completeness of Bisimulation

Soundness is proved by showing that the bisimilarity relation is included in barbed
congruence; this is done by showing that ∼ is an equivalence, it is barb preserving,
reduction closed and context closed. All the details can be found in [19].

Theorem 1 (Soundness of bisimilarity). ∼ ⊆ '.

Completeness is proved by showing that barbed congruence is a bisimulation. First,
is to show that barbed congruence is closed under substitutions.

Lemma 3. If P ' Q then σP ' σQ, for every σ.

Second, is to show that, for any challenge, a proper reply can be yielded via closure
under an appropriate context. When the challenge is an internal action, the reply is also
an internal action; thus, the empty context suffices, as barbed congruence is reduction
closed. The complex scenario is when the challenge is a pattern together with a set of
restricted names, i.e., a label of the form (ν̃n)p. Observe that in the bisimulation such
challenges also fix a substitution σ whose domain is the binding names of p.

First of all, define a notion of success and failure that can be reported. A fresh name
w is used for reporting success, with a barb ↓w indicating success, and ⇓w indicating a
reduction sequence that eventually reports success. Failure is handled similarly using
the fresh name f . A process P succeeds if P ⇓w and P 6⇓ f ; P is successful if P ≡
(ν̃n)(pwq • p | P′), for some ñ, p and P′ such that w < ñ and P′ 6⇓ f . P becomes successful
if it can reduce to a successful process.

Now develop a reply for a challenge of the form ((ν̃n)p, idbn(p)); the general setting
(with an arbitrary σ) will be recovered by relying on Lemma 2. The context for forcing
a proper reply is developed in three steps. The first step presents the specification of a
pattern and a set of names N (to be thought of as the free names of the processes being
compared for bisimilarity); this is the information required to build a reply context.
The second step develops auxiliary processes to test specific components of a pattern,
based on information from the specification. The third step combines these into a reply
context that becomes successful if and only if it interacts with a process that exhibits
a proper reply to the challenge. In what follows, we use the first projection fst(−) and
second projection snd(−) of a set of pairs.
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Definition 8. The specification specN(p) of a pattern p with respect to a finite set of
names N is defined as follows:

specN(λx) = x, {}, {} specN(pnq) = pnq, {}, {}

specN(n) =

λx, {(x, n)}, {} if n ∈ N and x < N ∪ {n}

λx, {}, {(x, n)} if n < N and x < N ∪ {n}

specN(p • q) = p′ • q′, Fp ] Fq,Rp ] Rq if
{

specN(p) = p′, Fp,Rp

specN(q) = q′, Fq,Rq

where Fp ] Fq denotes Fp ∪ Fq, provided that fst(Fp)∩ fst(Fq) = ∅ (a similar meaning
holds for Rp ] Rq).

Given a pattern p, the specification specN(p) = p′, F,R of p with respect to a set of
names N has three components: (1) p′, called the complementary pattern, is a pattern
used to ensure that the context interacts with a process that exhibits a pattern compatible
with p; (2) F is a collection of pairs (x, n) made up by a binding name in p′ and the
expected (free) name it will be bound to; finally, (3) R is a collection of pairs (x, n)
made up by a binding name in p′ and the expected (restricted) name it will be bound
to. Observe that can be assumed p′ well formed as all binding names can be taken as
(pairwise) different.

From now on, adopt the following notation: if ñ = n1, . . . , ni, then pwq • ñ denotes
pwq • n1 • . . . • ni. Moreover, θ(̃n) denotes θ(n1), . . . , θ(ni); hence, pwq • θ(̃n) denotes
pwq • θ(n1) • . . . • θ(ni).

Definition 9. The characteristic process charN(p) of a pattern p with respect to a finite
set of names N is charN(p) = p′ → testsN

F,R where specN(p) = p′, F,R and

testsN
F,R

def
= (νw̃x)(νw̃y)(

pwx1q→ . . .→ pwxiq→ pwy1q→ . . .→ pwy jq→ pwq • x̃
|
∏

(x,n)∈R equalityR(x, n,wx)
|
∏

(y,n)∈F free(y, n,wy)
|
∏

(y,n)∈R restN(y,wy) )

where x̃ = {x1, . . . , xi} = fst(R) and ỹ = {y1, . . . , y j} = fst(F) ∪ fst(R).

Although the details of the tests are omitted here (see [19] for details), their be-
haviour is described by the following Lemmas.

Lemma 4. Let θ be such that {n,w}∩dom(θ) = ∅; then, θ(free(x, n,w)) succeeds if and
only if θ(x) = n.

Lemma 5. Let θ be such that (N ∪ {w, f }) ∩ dom(θ) = ∅; then, θ(restN(x,w)) succeeds
if and only if θ(x) ∈ N \ N.

Lemma 6. Let θ be such that (snd(R) ∪ {w, f ,m}) ∩ dom(θ) = ∅; then,
θ(equalityR(x,m,w)) succeeds if and only if, for every (y, n) ∈ R, m = n if and only
if θ(x) = θ(y).

10



Definition 10. A reply context CN
p (·) for the challenge ((ν̃n)p, idbn(p)) with a finite set of

names N such that ñ is disjoint from N is defined as follows:

CN
p (·) def

= charN(p) | ·

It can be proved (see [19]) that the minimum number of reductions required for
CN

p (Q) to become successful (for any Q) is the number of reduction steps for θ(testsN
F,R)

to become successful plus 1; this number only depends on N and p, i.e. not on θ. Denote
this number as Lb(N, p). The main feature of CN

p (·) is described by the following key
Lemma.

Lemma 7. Suppose given a challenge ((ν̃n)p, idbn(p)), a finite set of names N, a process
Q and fresh names w and f such that (̃n ∪ {w, f }) ∩ N = ∅ and (fn((ν̃n)p) ∪ fn(Q)) ⊆

N. If Q
(ν̃n)q
−−−→ Q′ and there exists ρ such that p, idbn(p) � q, ρ, then CN

p (Q) 7−→k

(ν̃n)(ρQ′ | pwq • ñ | Z), where k = Lb(N, p) and Z ' 0. Conversely, if CN
p (Q) becomes

successful in Lb(N, p) reduction steps, then there exist q, Q′ and ρ such that Q
(ν̃n)q
−−−→ Q′

and p, idbn(p) � q, ρ.

The last result needed for proving Theorem 2 is an auxiliary Lemma that allows us
to remove success and dead processes from both sides of a barbed congruence, while
also opening the scope of the names exported by the success barb.

Lemma 8. Let (νm̃)(P | pwq • m̃ | Z) ' (νm̃)(Q | pwq • m̃ | Z), for w < fn(P,Q, m̃) and
Z ' 0; then P ' Q.

Theorem 2 (Completeness of the bisimulation). ' ⊆ ∼.

4 On Variations of Pattern Matching

The form of pattern unification used so far in CPC is very rich. More limited forms
of pattern matching have been used in the literature; as shown below, they can all be
adopted in our language without compromising the coincidence of barbed congruence
and bisimilarity.

The first variant is the form of pattern matching used in Linda [16]. Differently
from CPC, Linda distinguishes between input and output patterns (the latter are usually
called tuples in a tuplespace):

p ::= π | $ π ::= λx | pxq | π • π $ ::= x | $ •$

Thus, communication is asymmetric; consequently, the pattern matching function is
defined only between an input and an output pattern and yields a single substitution. It
is defined as:

{pxq ‖ x} def
= {} {λx ‖ n} def

= {n/x} {π • π′ ‖ $ •$′}
def
= {π ‖ $} ∪ {π′ ‖ $′} (4)

11



From the second rule, it is apparent that communicable patterns in Linda are single
variable names. The operational rules for matching in the reductions and in the LTS are
the following:

(π→ P) | ($→ Q) 7−→ σP | Q if {π ‖ $} = σ
P

π
−→ P′ Q

(ν̃n)$
−−−−→ Q′

P | Q
τ
−→ (ν̃n)(σP′ | Q′)

{π ‖ $} = σ
ñ ∩ fn(P) = ∅

The theory of bisimulation is simplified in this setting, as � is the identity. Barbed
congruence can be defined as in Section 3.1 and the two equivalences do coincide.

Two interesting extensions of Linda’s pattern matching (intermediate between
Linda’s and CPC’s ones) are:

1. Accept a “non-fully decomposing” form of pattern matching; e.g., λx can match
n •m. In this case, it suffices to modify the definition of pattern matching by gener-
alizing the second axiom in (4) to

{λx ‖ n1 • . . . • nk}
def
= {n1 • . . . • nk/x}

(i.e., by rolling back to the original definition of communicable patterns as se-
quences of variable names) and by defining � as in Definition 6, except for the
fourth axiom (that must be ignored).

2. Allow the output process to specify which names can be passed and which ones
can only be used for testing equality; e.g., n • pmq can be matched by λx • pmq, but
not by λx • λy. In this case, output patterns are defined as

$ ::= x | pxq | $ •$

This is resolved by adding to (4) the axiom {pxq ‖ pxq} def
= {} and by defining� as in

Definition 6, except for the first axiom (that must be ignored).

In both cases, reductions and LTS are like Linda’s ones; barbed congruence and bisim-
ulation are defined as in Section 3 and, again, they do coincide.

Another well-known form of pattern matching is the one underlying the polyadic
π-calculus [25]. In this case, (input and output) patterns have the form

π ::= paq • λx1 • . . . • λxk $ ::= paq • n1 • . . . • nk

for any k > 0 (these are usually written as a(x1, . . . , xk) and ā(n1, . . . , nk)). Now pat-
tern matching is defined as in (4), but with {pxq ‖ pxq} def

= {} in place of the first axiom.
Reductions, LTS and compatibility are like in Linda. Notice that the first two relations
are the usual ones for the polyadic π-calculus; similarly, the bisimulation arising in this
framework is the same as the standard early bisimulation congruence defined for the
calculus. It is worth noticing that the barbs we exploit are different from the traditional
ones for the π-calculus [27], where only the channel and the kind of action (either input
or output) are observed. In our formulation of the polyadic π-calculus, input and output
barbs can be usually distinguished: paq•λx generates ↓{a} whereas paq•n generates ↓{a,n}
(the two are indistinguishable only if n = a). In general, our barbs are more informative
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than π-calculus’ ones, since they also observe the argument of the output. However,
since this barbed congruence coincides with the early bisimulation (that, in turn, co-
incides with the barbed congruence relying on the “standard” π-calculus’ barbs), by
transitivity we obtain that the two kinds of barbs yield the same congruence.

Similarly, also the form of pattern matching underlying the π-calculus with polyadic
synchronization [8] can be easily rendered. It suffices to take

π ::= pa1q • . . . • pakq • λx $ ::= pa1q • . . . • pakq • n

(usually written a1 · . . . ·ak(x) and a1 · . . . · ak(n)). Pattern matching, reductions, LTS and
compatibility are then the same as in polyadic π-calculus.

5 Conclusions and Future Work

CPC demonstrates the expressive power possible with a minimal process calculus
whose interaction is defined by symmetric pattern unification. The behavioural theory
required to capture CPC turns out to have some interesting properties based on patterns
and pattern matching. Perhaps, the most curious one is that a symmetric relation (viz.,
bisimilarity) is defined by an (asymmetric) ordering upon patterns. Indeed, the result-
ing bisimulation can be smoothly and modularly adapted to cope with other forms of
pattern matching and other process calculi.

Related work. To the best of our knowledge, there are very few notions of be-
havioural equivalences for process calculi that rely on pattern matching. We start with
a few calculi based on a Linda-like pattern matching. A first example is [13], where the
authors develop a testing framework; however, no coinductive and label-based equiva-
lence is provided. Another paper where a Linda-like pattern matching is explored for
bisimulation is [12]; however, there the focus is on the distribution and connectivity of
processes and, consequently, the pattern matching is simplified by relying on patterns
of length 1. A similar choice is taken in other works, e.g. [7, 10, 11]. Of course, this
choice radically simplifies the theory.

Recently, Psi [4] has emerged as a rich framework that can encode different process
calculi, including calculi with sophisticated forms of pattern matching. However, CPC
and Psi are uncomparable: CPC cannot encode formulae (e.g. the indirect computation
of channel equality), while Psi cannot encode self-matching processes (same as π, see
[20]). The same holds for the applied π-calculus [1], because of the presence of active
substitutions.

A more complex notion of bisimulation is the one for the Join calculus [14] given in
[15]. The difficult part lays in the definition of the LTS, since some names can be marked
as visible from outside their definition and, consequently, interact with the execution
context. The definition of bisimilarity is then standard and, hence, the interplay with
pattern matching is totally hidden within the LTS. We prefer to make it explicit in the
bisimulation, both to keep the LTS as standard as possible and for showing the exact
impact that pattern matching has on the semantics of processes. By the way, the form
of pattern matching used in Join cannot be rendered in CPC. Indeed, in a process like
def a(x) | b(y) . P in R, process R can independently produce the outputs on a and b
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needed to activate P. This would correspond to some form of “unordered and multiparty
pattern matching” that is far from the design choices of CPC.

Other complex notions of bisimulation equivalences for process calculi are [5, 30].
However, these exploit environmental knowledge, whereas in our work we do not have
such knowledge and need only satisfy compatibility.

Future work. One interesting path of further development is to introduce types
into CPC and extend the pattern unification mechanism by taking types into account, as
done e.g. in [9]. The study of typed equivalences would then be the most natural path to
follow, by combing the theory in this paper with the assumed types. Another intriguing
direction is the introduction of richer forms of pattern matching, based, e.g., on regular
expressions [22]; in this case, it would be very challenging to devise the ordering on
patterns that defines the ‘right’ bisimulation. A natural way to follow is Kozen’s axiom-
atization for inclusion of regular language [24]. Indeed, in this proof system, a regular
expression e1 is smaller than e2 if and only if every string belonging to the language
generated by e1 also belongs to the language generated by e2. This corresponds to the
same intuition as our ordering on patterns (Lemma 1), once we consider the language
generated by a pattern as the set of patterns that it matches, together with the associated
substitutions.
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