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Abstract
The topic of this paper is the rôle-based trust-management language
RT0, a formalism inspired by logic programming that handles trust
in large scale, decentralised systems. We provide a purely opera-
tional semantics for the language in which credentials can be es-
tablished using a simple set of inference rules. We then extend
RT0 to include time validity and boolean guards that control the
availability of credentials. In such an extended framework, creden-
tials are conditional on the availability of supporting credentials
in the execution context. In addition to a set-theoretic and a logic-
programming semantics, we develop for the extended language a
series of increasingly powerful inference systems for establishing
these conditional credentials. By means of simple but realistic ex-
amples, we demonstrate the expressiveness and usability of our
language, warranting its integration into existing trust-management
tools.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.2 [Logics and Mean-
ing of Programs]: Semantics of Programming Languages; D.4.6
[Operating Systems]: Security and Protection

General Terms Languages, Security.

Keywords trust-management, rôle-based access control, infer-
ence systems, logic programming with negation.

1. Introduction
One of the current challenges in computer science is the devel-
opment of theoretically-based and practically-implementable ap-
proaches to access control and authorisation in large-scale, distrib-
uted systems. Such problems arise, for example, when indepen-
dent users or organisations collaborate to achieve common goals,
since collaborations are highly dynamic and usually heterogeneous:
membership, resources and policies vary in time and are usually lo-
cally controlled by each collaborating principal; normally no form
of centralisation exists.

Trust-management [6] is an approach to distributed access con-
trol where decisions are based on policy statements made by mul-
tiple principals. A key aspect of trust-management is delegation: a
principal may transfer limited authority on one or more resources
to other principals. Usually, this is done by means of credentials,
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i.e. pieces of information, passed from one principal to another and
used to establish the sending principal’s access rights. A chain of
one or more credentials acts as a capability, granting permissions
to principals.

Traditionally, access control takes decisions by relying on the
identity of the resource requester. Unfortunately, when resource
owner and requester are unknown to each other, such a form
of access control does not work. For this reason, in [20] trust-
management has been integrated with rôle-based access control
(RBAC) [27]. RBAC is a policy-neutral access control technology,
whose flexibility and expressiveness arise from the notion of rôle,
interposed in the assignment of permissions to users. Users are au-
thorised to use the permissions assigned to the rôles they belong to;
thus, in contrast with traditional access control mechanisms, RBAC
regulates access to resources on the basis of the activities users ex-
ecute in the system, and not on their identity.

A Rôle-based Trust-Management Language. RT is a family of
rôle-based trust-management languages able to express statements
on policies in a succinct and intuitive way. It is inspired by trust-
management languages such as SPKI/SDSI [9, 8] and includes ba-
sic operations to perform complex forms of delegation. RT0 is the
most basic language of the family; it is the “core” language, in that
it only includes the key aspects of RT and ignores programming
features, such as data types or constraints, whose only aim is to
make the task of programming more flexible.

We present the key features of RT0 via the following simple
example.

EXAMPLE 1. An auditor can inspect an enterprise only if he is a
member of a society authorised by the government. In the UK, au-
diting societies are chosen among those which are legally registered
and fair. Assuming that B is a member of a society BSoc that is both
legally registered and fair for the UK standards, then B can become
an auditor for an enterprise Ent. This scenario can be modelled by
the following RT0-credentials:

Ent.auditor ← UK.auditor (1)
UK.auditor ← UK.authSoc.member (2)

UK.authSoc ← UK.legalSoc u UK.fairSoc (3)
UK.legalSoc ← BSoc (4)

UK.fairSoc ← BSoc (5)
BSoc.member ← B (6)

¤

The basic statement of RT0 takes the form A.r ← B (cf. (4),
(5) and (6) in Example 1): it states that the principal B belongs to
the rôle r governed by principal A. The basic form of delegation is
expressed in RT0 by means of a credential A.r ← B.s (cf. (1) in
Example 1), stating that all members of rôle s governed by B also
belong to rôle r governed by A. Delegation can also be partial, viz.



in A.r ← B.s u C.t (cf. (3) above): in this case, only the members
of both B’s rôle s and of C’s rôle t belong to rôle r governed by A.
Finally, delegation itself can also be delegated, viz. in A.r ← B.s.t
(cf. (2)): in this case, all members of C’s rôle t also belong to rôle
r governed by A, for every C belonging to B’s rôle s.

Two equivalent semantics of RT0 are presented in [22, 20]: in
the first paper, the semantics of a set of RT0-credentials is given via
a set-theoretic interpretation; this resembles a denotational seman-
tics and is explicitly based on a fixpoint construction. In the second
paper, the semantics is given indirectly: RT0 credentials are trans-
lated into a logic program and their semantics is obtained as the
minimal Herbrand model of the translation. The main intention of
this second approach is to provide an implementation of credential
resolution.

The first contribution of our paper is a purely operational in-
terpretation of RT0 credentials; we give a simple set of inference
rules for deriving credentials from a set of RT0 statements. This
inference system is an explicit formalisation of the intuitive mean-
ing of RT0 statements and provides a convenient way of working
with them. The judgements of the inference system take the form
P�c, whereP is a set of RT0 credentials and c is a RT0-credential.
Thus, in the context of Example 1, we will be able to derive that
{(1), (2), (3), (4), (5), (6)} � Ent.auditor ← B.

RT0 is intended as a model for real-life trust management; it
is therefore desirable to extend it with realistic features, while pre-
serving its nature of “core” formalism. The main contribution of
this paper is in this direction: we add time validity and (possibly
negative) boolean conditions to limit the use of RT0-credentials.
We call the resulting formalism context-dependent credentials
(CDCs, for short), since the availability of a RT0-credential now
depends on the context where it is exhibited, that is the time of eval-
uation and the information inferable from other credentials avail-
able in the execution context.

Context-dependent credentials, informally. Example 1 can be
made more realistic by including timing information; indeed, sev-
eral authors advocate credentials that are valid only for some fixed
periods of time (see, e.g., [28, 23, 26]). In our auditing scenario,
it is quite natural to assume that B is a member of BSoc only for
a fixed period of time, say υ2; moreover, UK’s fairness certificates
are usually valid only for a period of time, say υ1; finally, BSoc be-
comes a legal society only after its registration that happens, say, at
time τ . Thus, credentials (4), (5) and (6) should be generalised to

UK.legalSoc ← BSoc in [τ, +∞) (7)
UK.fairSoc ← BSoc in υ1 (8)
BSoc.member ← B in υ2 (9)

stating that (4), (5) and (6) are only available after τ , during υ1 and
during υ2, respectively. On the other hand, credentials (1), (2) and
(3) are always valid, as they express some time-independent facts.
Now, by using (1), (2), (3), (7), (8) and (9), we want to be able to
derive that B can be an auditor for Ent during all of the period

υ1 ∩ υ2 ∩ [τ, +∞). (10)

Another powerful feature which would be useful to model more
realistic policies is the ability to parameterise the validity of a cre-
dential on the the availability/non-availability of other credentials
in the execution context. This can be useful to enforce, e.g., mutual
exclusion or separation of duties. These principles are easy to im-
plement in RBAC [12] and thus it is then desirable to have them
also in RT .

For example, in Example 1 it would be very natural to require
that the auditor to inspect Ent is not one of Ent’s employees. Thus,

credential (1) should be replaced by

if B ∈ UK.auditor ∧ B /∈ Ent.employees
then Ent.auditor ← B (11)

Now, from (2), (3), (7), (8), (9) and (11), we will be able to infer
that B can inspect Ent during all υ1 ∩ υ2 ∩ [τ, +∞) only if the
execution context does not provide any credential proving that B is
an employee of Ent in such a period, i.e., only if it is not possible
to infer from the context the RT0-credential

Ent.employees ← B (12)

The presence of negative premises makes the theory of CDCs
considerably more complex than that of RT0. We avoid potential
inconsistencies by following the well-known path put forward by
the stable model semantics [14]; using this technique we extend
the standard semantics of RT0 by providing both a set-theoretic
semantics for CDCs and a translation into logic programming. We
then adapt our inference system for RT0 to CDCs; as with RT0,
we believe that this approach gives a very intuitive interpretation to
CDCs. However, since the inference system has negative premises,
we have to be careful to avoid the same unfoundedness problems
present in the logic programming and in the set theoretic approach.
Following the ideas in [7], we define an inference system allow-
ing negative premises by following the construction of stable mod-
els for general logic programs (i.e., logic programs with negative
atoms). Then because the same construction is used in all the three
semantics for CDCs, we can claim and prove that all these ap-
proaches do coincide.

The extended inference system now relies on judgements of the
form ℵ `τ c, where ℵ is a set of CDCs and c is a RT0-credential.
Intuitively, it means that c can be inferred, at time τ , from ℵ, mean-
ing that ℵ has enough information to satisfy all the positive guards
of the CDCs used in the inference and none of their negative guards.
For example, we will have that {(2), (3), (7), (8), (9), (11)} `τ

Ent.auditor ← B, for every τ ∈ υ1 ∩ υ2 ∩ [τ, +∞). On the
other hand, it will not be possible to derive Ent.auditor ← B from
{(2), (3), (7), (8), (9), (11), (12)} at any time.

As a final contribution, we then enhance the judgements ℵ `τ c
in two ways. Firstly, we define the judgement ℵ °υ c, stating that
c can be inferred from ℵ at any time τ ∈ υ; in other words, we
calculate the maximal set of times in which the inference ℵ `τ c
holds. Secondly, we define the judgement ℵ °φ

τ c, stating that c
can be inferred from ℵ at time τ in any context that provides enough
information to satisfy the logical formula φ; essentially φ describes
what can be inferred from the context and what cannot. This is
useful in distributed systems, where it would be unreasonable to
assume that all users know at all times the credentials currently
available. Thus, when a user wants to construct a certificate chain,
he can rely on the credentials he owns (typically, those created
by himself and those granted to him by someone else); these are,
however, rarely sufficient to complete the chain. So, ℵ °φ

τ c could
be used to describe the contexts in which the user can obtain the
privilege desired.

EXAMPLE 2. Let us clarify this last point by means of a simple ex-
ample. The access to Alice’s mail can be described by the following
CDC:

if Alice /∈ Ent.active
then Alice.readMail ← Ent.secr (13)

It states that whenever Alice is not an active worker of the enterprise
(maybe because she is on vacation or because she is no longer
working for it), the enterprise’s secretary can read Alice’s mail.
Clearly, Alice’s status is described by the execution context where
the credential is used. Hence, the credential Alice.readMail ←
Ent.secr is available if the execution context provides a set of



credentials where Ent.active ← Alice cannot be inferred. For
example, imagine that the execution context provides the credential

Ent.active ← Alice in υ (14)

where υ is a proper time validity. Then, the credential set
{(13), (14)} makes available the credential Alice.readMail ←
Ent.secr at any time not included in υ. Now, what are the creden-
tials a user Bob should provide to read Alice’s mail? In other words,
we need to find a set of CDCs that, together with (13) and (14), al-
lows Bob to derive the following goal:

Alice.readMail ← Bob (15)

A possibility would be the context

Ent.secr ← Bob and τ ∈ (−∞, +∞) \ υ (16)

i.e., Bob can read Alice’s mail provided that Bob is one of the en-
terprise’s secretaries while Alice is not an active worker of the en-
terprise (by (14), Alice is an active worker only during υ; thus,
she is not an active worker during (−∞, +∞) \ υ). Notice that
context (16) works well only if υ ⊂ (−∞, +∞); otherwise cre-
dential (13) cannot be used because credential (14) states that Alice
is a permanently active worker. In this latter case, we can only rely
on a context providing a credential set that permits to directly infer
Alice.readMail ← Bob. ¤

Finally, we also discuss the close correspondence between our
enhanced inference systems for inferring CDCs and abductive logic
programming [16]. This is a variant of logic programming which,
given a logic program (corresponding, in our case, to a set of CDCs)
and a goal (corresponding, in our case, to the privilege desired),
returns the minimal set of facts (corresponding, in our case, to the
execution context) enabling the derivation of the goal.

Structure of the paper. The paper is structured as follows. In Sec-
tion 2 we recall some elements from the theory of logic program-
ming, since, as we have already mentioned, several constructions
are taken from this field. In Section 3 we briefly recall RT0 and
its two known semantics, namely the set-theoretic and the logic-
programming one. Then, we present our inference system and state
its equivalence with respect to the previous two semantics. In Sec-
tion 4 we present CDCs and their set-theoretic, logic-programming
and inference system semantics. In Section 5 we present the en-
hanced inference systems for CDCs and their abductive logic pro-
gramming counterpart. Finally, in Section 6 we conclude the pa-
per by touching upon related work. Due to space limitations, some
proofs are omitted and can be found in a technical report [15].

2. Elements of Logic Programming

We briefly recall the main definitions from the field of logic pro-
gramming used in the paper. For the sake of simplicity, several de-
finitions will be tailored to our needs; for a full presentation, see
[2, 4].

We assume three numerable and pair-wise disjoint sets:
variables, ranged over by ξ, ζ, . . .; constants, ranged over by
A, B, C, . . .; and (binary) relations, ranged over by r, s, t, . . ..
Atoms, ranged over by α, are triples consisting of a relation and
two variables or constants; for example, r(A, ξ) is an atom. Atoms
are called ground whenever they do not contain any variable. Liter-
als, ranged over by λ, are either atoms or negated atoms. General
logic clauses take the form

α :− λ1, · · · , λk

for k ≥ 0; when k = 0, we use the term unit clause. All variables
occurring in a clause are meant to be universally quantified and a

comma between two literals stands for their conjunction. Thus, for
example,

r(A, ξ) :− s(B, ξ) ,¬t(D, C)

denotes the following first-order logic formula

∀ξ .¬t(D, C) ∧ s(B, ξ) ⇒ r(A, ξ)

General logic programs, ranged over by P, are finite sets of general
logic clauses. A logic program is a finite set of clauses that do not
contain negated atoms.

The semantics of a general logic program is given by its models.
A model is a triple formed by a nonempty set U, called universe,
and two functions that associate an element of the universe to each
constant of the language and a subset of U × U to each relation
of the language, respectively; moreover, such associations must
respect the logical constraints imposed by the program clauses.
The canonical model of a program is usually chosen among its
Herbrand models. These are models whose universe is the set of
constants of the language and whose constants are interpreted by
the identity function. A Herbrand model is completely determined
by the ground atoms that are true in it; we shall usually identify
it with the set of these atoms. A Herbrand model is minimal if no
proper subset of it is a Herbrand model of the program.

The semantics of a logic program (without negations) P is given
by means of its minimal Herbrand model, written Ψ(P), that always
exists and is unique [30]. However, for general logic programs the
Herbrand model may not be unique or may not even exist at all.
Problems arise in programs such as

{ r(A, B) :− ¬ r(A, B) } (17)

{ r(A, B) :− ¬ s(C, D) ,
s(C, D) :− ¬ r(A, B) } (18)

where validity of r(A, B) (possibly indirectly) relies on the non-
validity of r(A, B) itself. Several proposals have been appeared in
literature to give a semantics to general logic programs. However,
as clearly stated in [14], “researchers seem to agree that there can
be no useful definition of canonical models for arbitrary programs.”
Among all the available proposals, one of the most general and
intuitive is the stable model semantics [14].

DEFINITION 2.1 (Stable Model Semantics). Let K be a set of
ground atoms from P.1 Then,

1. the logic program P|K is obtained from P by deleting
• each clause that has a negative literal ¬α with α ∈ K, and
• all negative literals in the remaining clauses;

2. K is a stable model of P if K = Ψ(P|K);
3. the stable model semantics of P is Ψ(P|K), provided that it

exists and it is the only stable model of P.

The stable model semantics is one of the most general semantics
for general logic programs in the sense that it assigns a semantics
to quite a large number of programs. Indeed, it has been proved
[14, 4] that stable models subsume the iterated fixpoint semantics
of stratified programs [3], the well-founded semantics [31] and the
perfect models of locally stratified programs [24], while it overlaps
with perfect models for programs that are not locally stratified.
Moreover, it coincides with the well-supported model semantics
of [11]; this is a very reasonable semantics as it only allows to infer
atoms whose ‘explanation’ does not rely on themselves. However,
stable models still leave some programs without a semantics. For
example, (17) has no semantics, as it has no stable model, whereas
(18) has no semantics, as it has two different stable models (viz.,
{r(A, B)} and {s(C, D)}).

1 A set of ground atoms from a general logic program P is any subset of
R× C× C, where R and C are the relations and the constants occurring in P.



ENTITY NAMES A, B, C, · · · ∈ E
RÔLE NAMES r, s, t, · · · ∈ R
RÔLES A.r, B.s, C.t, · · · ∈ E ×R
RÔLE EXPRESSIONS e ::= B

�� B.s
�� B.s.t

�� B.s u C.t

CREDENTIALS c ::= A.r ← e

Table 1. Syntax of RT0

3. The Language RT0

We start by briefly recalling the language RT0 from [21] which,
in turn, is a generalisation of SPKI/SDSI [9, 8]. We then present
an inference system for RT0 that captures precisely the existing se-
mantics of the language, given by both a set-theoretic interpretation
and a logic programming interpretation.

Syntax. The syntax of RT0 is depicted in Table 1. We assume
two countable and pair-wise disjoint sets, E and R, of entity and
rôle names, respectively. Entity names start with (or simply are)
capital letters, while rôle names start with (or simply are) lower
case letters. Rôles are compound entities made up of an entity name
and a rôle name, separated by a dot.

In RT0 there are four kinds of rôle expressions, ranged over by
e, that yield four kinds of credentials, ranged over by c. Intuitively,
credential A.r ← B means that A defines B to be a member of
A’s r rôle. Credential A.r ← B.s means that A defines its r rôle
to include (all members of) B’s s rôle; this represents a delegation
from A to B, since B may affect who is a member of the rôle
A.r by issuing statements. Credential A.r ← B.s.t means that A
defines A.r to include every member of C.t, for every C that is a
member of B.s. Finally, credential A.r ← B.s u C.t means that
A defines A.r to include every principal who is a member of both
B.s and C.t; this represents partial delegations from A to B and
to C.

In what follows, P denotes a finite set of RT0-credentials.

Semantics. We now recall from [19] two equivalent ways of
giving a semantics to RT0.

DEFINITION 3.1. The set-theoretic semantics of P , denoted as
JPK, is the least fixpoint (w.r.t. point-wise set inclusion) of the
following sequence of functions, mapping rôles to sets of entity
names:

R0 is the function mapping every rôle to ∅
Ri+1 ,

L
c∈P f(Ri, c)

where ‘⊕ ’ is the point-wise extension of a function and f is
a function that, given a (partial) semantics Ri and a credential
A.r ← e, returns all the entity names that should be added to
Ri(A.r), as governed by e:

f(Ri, A.r ← B) , {A.r 7→ {B}}
f(Ri, A.r ← B.s) , {A.r 7→ Ri(B.s)}

f(Ri, A.r ← B.s.t) , {A.r 7→ S
C∈Ri(B.s) Ri(C.t)}

f(Ri, A.r ← B.s u C.t) , {A.r 7→ Ri(B.s) ∩Ri(C.t)}
DEFINITION 3.2. The logic-programming semantics of P , de-
noted as 〈|P|〉, is the minimal Herbrand model of LP(P), the logic
program defined as

LP(P) ,
[

c∈P
lc(c)

(RT1)
c ∈ P

P � c

(RT2)
P �A.r ← B.s P �B.s ← C

P �A.r ← C

(RT3)
P �A.r ← B.s.t P �B.s ← C P � C.t ← D

P �A.r ← D

(RT4)
P �A.r ← B.s u C.t P �B.s ← D P � C.t ← D

P �A.r ← D

Table 2. An Inference System for RT0

where function lc(·) translates every credential to a logic program
clause as follows:

lc(A.r ← B) , r(A, B) :−
lc(A.r ← B.s) , r(A, ξ) :− s(B, ξ)

lc(A.r ← B.s.t) , r(A, ξ) :− s(B, ζ), t(ζ, ξ)

lc(A.r ← B.s u C.t) , r(A, ξ) :− s(B, ξ), t(C, ξ)

PROPOSITION 3.1 (see [19]). r(A, B) ∈ 〈|P|〉 if and only if B ∈
JPK(A.r).

Inference system. We now provide an operational semantics for
RT0 via a very intuitive inference system. The four kinds of cre-
dentials are handled by the four rules in Table 2, where judgement
P � c should be read as: “using the credentials in P , we can infer
the credential c.” The rules should be self-explanatory.

We can now prove that the inference system provides an alter-
native way of presenting the semantics of RT0. (The proof is in
[15]).

PROPOSITION 3.2 (Soundness and Completeness). P�A.r ← B
if and only if B ∈ JPK(A.r).

EXAMPLE 3 (Example 1, formalised). We use the inference sys-
tem to formally derive a credential authorising B to inspect Ent.
To save space, we shorten Ent as E, auditor as a, authSoc as aS,
member as m, legalSoc as l, fairSoc as f and BSoc as BS. Let
P , {(1), (2), (3), (4), (5), (6)}; then,

P � (1)

P � (2)

P � (3) P � (4) P � (5)

P � UK.aS ← BS P � (6)

P � UK.a ← B

P � E.a ← B

where the leaf-nodes hold by rule (RT1), the top inference by rule
(RT4), the middle inference by rule (RT3) and the bottom one by
rule (RT2). ¤

4. Context-dependent credentials

We now extend RT0 by adding boolean guards and time validity;
the syntax is in Table 3. A guard is either the always-satisfiable
guard tt, the atomic statements B ∈ A.r and B /∈ A.r or a
conjunction of guards. Time validity is defined as expected, with
τ ranging over time constants; we assume the obvious arithmetic



Everything from Table 1, plus

GUARDS:
g ::= tt

�� B ∈ A.r
�� B /∈ A.r

�� g1 ∧ g2

TIME VALIDITY:
υ ::= [τ1, τ2]

�� [τ1, τ2)
�� (τ1, τ2]

�� (τ1, τ2)
�� (−∞, τ ]�� (−∞, τ)

�� [τ, +∞)
�� (τ, +∞)

�� (−∞, +∞)�� υ1 ∪ υ2

�� υ1 ∩ υ2

�� υ1 \ υ2

CONTEXT-DEPENDENT CREDENTIALS:
χ ::= if g then c in υ

Table 3. Syntax of Context-dependent Credentials

on validity. In particular, notice that

(−∞, +∞) \ (−∞, +∞) = ∅
where ∅ can be represented in our syntax, e.g., as (τ1, τ2) with
τ2 < τ1.

Context-dependent credentials (CDCs, for short) take the form
if g then c in υ, meaning “the credential c is available during υ,
provided the guard g is satisfied by the execution context.” Finite
sets of CDCs are denoted by ℵ. To make notation lighter, we
write “if g then c” to denote the CDC “if g then c in (−∞, +∞).”
Similarly, we write “c in υ” for “if tt then c in υ.” Finally, we
write “c” to denote “if tt then c in (−∞, +∞).”

4.1 Logic-programming semantics

As with RT0, we shall now give three semantics to sets of CDCs.
We start with the logic-programming approach, since the subse-
quent constructions will be inspired by it. The semantics is calcu-
lated at a precise time instant, by only considering those CDCs that
are valid at that moment.

DEFINITION 4.1. The logic-programming semantics of ℵ at time
τ , denoted as 〈|ℵ|〉τ , is the stable model semantics of GLPτ (ℵ), the
general logic program defined as

GLPτ (ℵ) ,
[

if g then c in υ∈ℵ
τ∈υ

glc(if g then c in υ)

where glc(if g then c in υ) , lc(c), cond(g) with

cond(tt) , ∅
cond(B ∈ A.r) , r(A, B)

cond(B /∈ A.r) , ¬ r(A, B)

cond(g1 ∧ g2) , cond(g1), cond(g2)

and lc(c) as in Definition 3.2.

We chose the stable model semantics because, apart from being
one of the most generous semantics for general logic programs (cf.
Section 2), it can be seen as “the sets of belief that a rational agent
might hold” [14]. Quoting from [14]:

“if K is the set of atoms I consider true, then any clause that
has a subgoal ¬α with α ∈ K is, from my point of view,
useless; furthermore, any subgoal ¬α with α /∈ K is, from
my point of view, trivial. Then, I can simplify the clauses in
GLPτ (ℵ). If K happens to be precisely the set of atoms that
logically follow from the simplified set of clauses, then I am
‘rational’.”

The ‘rational agent’ explanation of the stable model semantics
given above can be readily rephrased to intuitively justify the se-
mantics for CDCs. Indeed, if K is the entities-to-rôles assign-
ment that should hold, then any credential whose guard contains
B /∈ A.r, with r(A, B) ∈ K, is useless as its guard is not sat-
isfied; furthermore, any guard B /∈ A.r with r(A, B) /∈ K is
trivially satisfied.

4.2 Set-theoretic semantics

An alternative way to define the semantics of CDCs is to directly
state which entities belong to every rôle. This can be done by
adapting Definition 3.1 to the current framework. Again, to avoid
inconsistencies, we shall follow the approach put forward by [14]
and exploit the stable model construction. Moreover, like before,
the semantics will be parameterised with the evaluation time.

In the following definition, we shall exploit two auxiliary nota-
tions; let R be a function mapping rôles to sets of entity names.
Then, ℵ|R is the set of CDCs obtained from ℵ by deleting (a)
each credential containing a negative guard B /∈ A.r, with B ∈
R(A.r), and (b) all negative guards in the remaining credentials.
Moreover, predicate R |= g is defined as follows:

R |= tt always
R |= B ∈ A.r iff B ∈ R(A.r)
R |= B /∈ A.r iff B /∈ R(A.r)
R |= g1 ∧ g2 iff R |= g1 and R |= g2

DEFINITION 4.2. The set-theoretic semantics of ℵ at time τ , de-
noted as JℵKτ , is the function mapping rôles to sets of entity names
R such that:

1. R is stable for ℵ at time τ , i.e. it coincides with the least fixpoint
(w.r.t. point-wise set inclusion) of the following sequence of
functions:

R0 is the function mapping every rôle to ∅
Ri+1 ,

L if g then c in υ∈ℵ|R
s.t. Ri|=g ∧ τ∈υ f(Ri, c)

where ‘⊕ ’ and f are defined in Definition 3.1.
2. R, if exists, is the only stable function for ℵ at time τ .

The coincidence of these two semantics can be established via
the following Lemma (whose proof is given in [15]).

LEMMA 4.1.

1. Let R be a stable function for ℵ at time τ ; then, the set K ,
{y(X, Z) : Z ∈ R(X.y)} is a stable model of GLPτ (ℵ).

2. Let K be a stable model of GLPτ (ℵ); then, the function R that
maps every A.r to {B : r(A, B) ∈ K} is a stable function
for ℵ at time τ .

PROPOSITION 4.2 (Coincidence of the Semantics). r(A,B)∈〈|ℵ|〉τ
if and only if B ∈ JℵKτ (A.r).

Proof: For the ‘if’ part (the ‘only if’ part is proved similarly),
let R = JℵKτ . We know, by Lemma 4.1(1), that the set K ,
{ y(X, Z) : Z ∈ R(X.y) } is a stable model of GLPτ (ℵ); we
now prove that it is its only stable model. By contradiction, let
K′ be a different stable model of GLPτ (ℵ); by Lemma 4.1(2), we
know that the function R′ mapping A.r to {B : r(A, B) ∈ K′}
is stable for ℵ at time τ . But this contradicts the fact that R
is the only stable function for ℵ at τ , that instead holds since
R = JℵKτ . Now, assume that B ∈ JℵKτ (A.r); by construction,
r(A, B) ∈ K = 〈|ℵ|〉τ . ¥



(CDC1)

if
^

i Bi ∈ Ai.ri ∧
^

j B′j /∈ A′j .r′j then c in υ ∈ ℵ

∀ i .ℵ `τ Ai.ri ← Bi ∀ j .ℵ 0τ A′j .r′j ← B′j

τ ∈ υ

ℵ `τ c

(CDC2)
ℵ `τ A.r ← B.s ℵ `τ B.s ← C

ℵ `τ A.r ← C

(CDC3)
ℵ `τ A.r ← B.s.t ℵ `τ B.s ← C ℵ `τ C.t ← D

ℵ `τ A.r ← D

(CDC4)
ℵ `τ A.r ← B.s u C.t ℵ `τ B.s ← D ℵ `τ C.t ← D

ℵ `τ A.r ← D

Table 4. An Inference System for Context-dependent Credentials

4.3 Inference system

We now adapt the inference system of Table 2 to take guards and
validity into account. To simplify notation, in what follows we
shall equate guards up-to commutativity, associativity and idem-
potency of ∧, and up-to absorption of tt-conjuncts. Thus, every
CDC if g then c in υ will be considered in a ‘normal form’ like

if
^

i∈I Bi ∈ Ai.ri ∧
^

j∈J B′
j /∈ A′j .r

′
j then c in υ

for finite (and possibly empty) index sets I and J , with g logically
equivalent to

V
i∈I Bi ∈ Ai.ri ∧

V
j∈J B′

j /∈ A′j .r
′
j .

The inference system for guarded credentials is given in Ta-
ble 4; it mainly extends the inference rules given in Table 2 by re-
placing (RT1) with (CDC1) and by considering only valid CDCs.
Rule (CDC1) requires that, to use a guarded credential, all its pos-
itive guards should be inferable and none of its negative guards
can be inferred. However, the latter requirement is far from be-
ing innocuous: the presence of negative premises can undermine
the well-foundedness of the inference system. Moreover, as in the
logic-programming framework, sets of rules of the proposed form
do not necessarily define a unique relation. To deal with these prob-
lems, we slightly adapt the well-known theory developed in [7] for
transition systems with negative premises.

First, notice that inference systems are usually defined via infer-
ence system specifications (as in Tables 2 and 4); these are (small)
collections of rule schemata, i.e. “meta-rules” which use names as
placeholders; that is, they are implicitly universally quantified. If
the rule schemata have no negative premises, they uniquely deter-
mine an inference set, i.e. the set of all judgements derivable from
them via a finite depth inference. More precisely, given a ‘positive’
inference system specification I, we first instantiate the placehold-
ers in I with any possible name, thus obtaining a (possibly infinite)
set of (closed) inference rules I ′; then, the inference set associated
to I is FinInf(I ′), the set formed by all the judgements derivable
via a finite depth inference using rules from I ′.

With negative premises, things become more delicate, because
of well-foundedness problems: the associated inference set can be
defined in several ways and, according to the definition chosen, an
inference system specification can determine zero, one or several
inference sets. We now adapt the approach of [7] to define an
inference set for the inference system specification in Table 4.

Given a set of guarded credentials ℵ and a time τ , we aim at
defining a set of RT0-credentials ([ℵ])τ such that, if c ∈ ([ℵ])τ , then
c is inferable from ℵ at time τ . Hence, we guess a set of RT0-
credentials P (the candidate inference set) and use the ‘implicit’
definition put forward by stable models to define the inference
set associated to the inference system. Like in the stable model
approach, P plays the rôle of an ‘oracle,’ stating what is inferable
from ℵ at τ and what is not.

In what follows, we let POS(g) and NEG(g) contain, respec-
tively, the positive and negative guards occurring in g, with tt be-
longing to POS(g). Moreover, we use the shortcut ℵ `τ g, defined
as follows:

ℵ `τ tt , ∅
ℵ `τ B ∈ A.r , ℵ `τ A.r ← B

ℵ `τ B /∈ A.r , ℵ 0τ A.r ← B

ℵ `τ g1 ∧ g2 , ℵ `τ g1 ∧ ℵ `τ g2

Finally, we shall say that an inference rule holds in `τ for ℵ if it is
obtained by replacing the placeholders of a rule schema in `τ with
any rôle and entity name occurring in ℵ.

DEFINITION 4.3. Given a set of CDCs ℵ, a time τ and the infer-
ence system specification `τ of Table 4, the inference set associated
with `τ under ℵ, written ([ℵ])τ , is the set of RT0-credentialsP such
that

1. P is stable for ℵ and `τ , i.e.

P = FinInf(Strip(`τ ,ℵ,P))

where Strip(`τ ,ℵ,P) is the set formed by all the instances of
(CDC2), (CDC3) and (CDC4) that hold in `τ for ℵ and all
the rules

if g then c in υ ∈ ℵ τ ∈ υ ℵ `τ POS(g)

ℵ `τ c

such that
if g then c in υ ∈ ℵ τ ∈ υ ℵ `τ g

ℵ `τ c

holds in `τ for ℵ and A.r ← B /∈ P , for all B /∈ A.r
belonging to NEG(g).

2. P , if exists, is the only stable set for ℵ and `τ .

Soundness and completeness of the inference system w.r.t. the
two semantics presented in the previous subsections can be estab-
lished as a consequence of the following Lemma (whose proof is
in [15]).

LEMMA 4.3.

1. Let P be stable for ℵ and `τ ; then, the set K , {y(X, Z) :
X.y ← Z ∈ P} is a stable model of GLPτ (ℵ).

2. Let K be a stable model of GLPτ (ℵ); then, the set P ,
FinInf(Strip(`τ ,ℵ, {A.r ← B : r(A, B) ∈ K})) is stable
for ℵ and `τ .

PROPOSITION 4.4 (Soundness and Completeness). r(A, B) ∈
〈|ℵ|〉τ if and only if A.r ← B ∈ ([ℵ])τ .

Proof: Like the proof of Proposition 4.2, but relying on Lemma 4.3.
¥



EXAMPLE 4 (Example 1, continued). We now use the inference
system to formally justify (10) and (12). Let υ = [τ, +∞) be
the time validity of (4). Now, let ℵ , {(2), (3), (7), (8), (9), (11)}
and use the abbreviations introduced in Example 3, plus e for
employees; then, pick any τ ∈ υ ∩ υ1 ∩ υ2 and, by rule (CDC1),
infer

(11) ∈ ℵ
ℵ `τ (2)

ℵ `τ (3) ℵ `τ (7) ℵ `τ (8)

ℵ `τ UK.aS ← BS ℵ `τ (9)

ℵ `τ UK.a ← B

ℵ 0τ E.e ← B

ℵ `τ E.a ← B

Clearly E.e ← B cannot be inferred from ℵ (at any time) and, like
before, the leaf-nodes hold by rule (CDC1), the top inference by
rule (CDC4), the middle inference by rule (CDC3) and the bottom
one by rule (CDC2).

Now, consider ℵ′ , ℵ∪{(12)}; in this case, the inference shown
above no longer holds because now, trivially, ℵ′ `τ E.e ← B. If
we assume (12) be valid only in υ′, then the inference shown above
holds only in (υ ∩ υ1 ∩ υ2) \ υ′. ¤

To conclude, let us point out two aspects of the last example.
Firstly, (11) is still an approximation of realistic auditing behaviour,
since it is also reasonable to let B become an Ent’s auditor not only
if he is not a current employee of Ent, but also if he has not been
an employee recently. This feature can be modelled with CDCs as
follows: add the credential

Ent.recentEmpl ← B in [τ ′, τ ′ + τ ′′]

where τ ′ is the instant in which B stops to be an employee of Ent
and τ ′′ is the offset after which it is assumed that B can inspect
Ent. Moreover, replace (11) with

if B ∈ UK.auditor ∧ B /∈ Ent.employees ∧ B /∈ Ent.recentEmpl
then Ent.auditor ← B

Secondly, there is some room for improvements is the definition of
(11); compared with (1), its weakness is that we must specialise
the credential to every possible B. A better solution would be
something like

Ent.auditor ← UK.auditor u ¬Ent.employee

We do not believe that such a feature would radically change the
theory presented in this paper; nonetheless, we leave its investiga-
tion for future research.

5. Deriving Contexts for Execution

Context-dependent credentials, as the name suggests, depend on
the context where the credential is exhibited, namely the other
credentials available and the exact time of evaluation. So it is of
interest, given a set of CDCs, to determine some constraints on
the execution context that enable a desired inference, whenever
possible. This turns out to be fundamental in large-scale distributed
systems where users have partial views of their execution context.

As we have already discussed in Section 1, a context is a pair
〈ℵ; τ〉 that defines the set of CDCs made available and the time of
the evaluation. The problem we now want to solve is the following:

given a set of CDCs ℵ (representing the credentials available
to a user) and a goal c, which are the assumptions that

(TV1)

if
^

i Bi ∈ Ai.ri ∧
^

j B′j /∈ A′j .r′j then c in υ ∈ ℵ
∀ i . ℵ °υi

Ai.ri ← Bi ∀j . ℵ °υj
A′j .r′j ← B′j

ℵ °(υ ∩ T i υi) \
S

j υj
c

(TV2)
ℵ °υ1

A.r ← B.s ℵ °υ2
B.s ← C

ℵ °υ1 ∩ υ2
A.r ← C

(TV3)
ℵ °υ1

A.r ← B.s.t ℵ °υ2
B.s ← C ℵ °υ3

D.t ← D

ℵ °υ1 ∩ υ2 ∩ υ3
A.r ← D

(TV4)
ℵ °υ1

A.r ← B.s u C.t ℵ °υ2
B.s ← D ℵ °υ3

C.t ← D

ℵ °υ1 ∩ υ2 ∩ υ3
A.r ← D

(TV5)
ℵ °υ1

c ℵ °υ2
c

ℵ °υ1 ∪ υ2
c

Table 5. Inferring Time Validity

should be made on the execution context in order to derive
the goal?

As in the previous sections, we shall follow two lines of work:
firstly, we adapt the inference system of Section 4.3 to also derive
constraints on the environment, both on the execution time and on
the CDCs it must provide or not provide; secondly, we enhance the
logic-programming semantics of Section 4.1 with features taken
from the field of abductive logic programming.

5.1 Adapting the Inference System

For the sake of presentation, we shall give the inference system
in two steps: we first give an inference system that calculates the
maximal time validity in which a certain RT0-credential can be
inferred from a given set of CDCs; then, we give an inference
system that calculates a minimal set of CDCs that must be added
to the given set of CDCs to infer a certain RT0-credential. Clearly,
the two systems can be combined, but this would complicate the
presentation. Moreover, a nice feature of these inference systems is
that they have no negative premises; this makes it trivial to define
the inference set associated with them.

Inferring Time Validity. The revised inference system enhances
judgements of the form ℵ `τ c to yield the new judgements

ℵ °υ c

Intuitively, ℵ °υ c means that, at any time τ ∈ υ in which ℵ has a
semantics, it is possible to derive the credential c from ℵ.

The inference rules are in Table 5. The key rule is (TV1): it
states that a CDC can be exploited whenever it is valid, whenever
its positive premises are satisfied, but not when any of its negative
premises may hold. Clearly, the base case of the inference system
is (TV1) involving a CDC whose guard is tt. Rules (TV2), (TV3)
and (TV4) simply state that an inference rule can be applied only



if all its premises hold. Finally, rule (TV5) states that, if a RT0

credential c can be inferred both with validity υ1 and with validity
υ2, then c can be inferred with validity υ1 ∪ υ2.

Notice that °υ generalises `τ : indeed, the former coincides
with the latter whenever υ = [τ, τ ]. Moreover, since in general
there are several possible ways to infer a certain RT0 credential c
from ℵ, rule (TV5) can be used several times to enlarge c’s validity.
We now want to isolate all those inferences in which (TV5) has
been used to enlarge as much as possible the validity.

DEFINITION 5.1. An inference terminating in ℵ °υ c is called
maximal if and only if

1. there exists no υ′ ⊃ υ such that ℵ °υ′ c, and
2. every its sub-inference terminating in ℵ °υ′ c′, for c′ 6= c, is

maximal.

The first requirement ensures that (TV5) has been used as much
as possible to infer the validity of c. The second requirement of
the Definition ensures that this property is propagated through all
the inference tree. We are interested in maximal inferences since
they guarantee that the υi and υj in the premise of (TV1) are
the maximal time validity for Ai.ri ← Bi and A′j .r

′
j ← B′

j ,
respectively; thus, for these inferences we can prove soundness and
completeness of °υ , by means of Proposition 5.2 whose proof
relies on the following Lemma.

LEMMA 5.1. ℵ `τ c implies that there exists a υ containing τ
such that ℵ °υ c.

Proof: It suffices to mimic the derivation for ℵ `τ c by replacing
every application of rule (CDCi) with an application of rule (TVi);
υ will be the intersection of the validity of all the CDCs used in the
inference and will be at least [τ, τ ]. ¥

PROPOSITION 5.2. Let ℵ °υ c be a maximal inference and ([ℵ])τ

be defined. Then, ℵ `τ c if and only if τ ∈ υ.

Proof: By induction on the depth of ℵ °υ c. For the base case,
ℵ must contain a CDC if tt then c in υ. If τ ∈ υ, we trivially
conclude thanks to (CDC1). Vice versa, assume by contradiction
that there is a τ ′ /∈ υ such that ℵ `τ ′ c; but then the inference
leading to ℵ °υ c would not be maximal, because of Lemma 5.1.

For the inductive step, we reason by case analysis on the last rule
used; the most difficult cases are when using (TV1) and (TV5). In
the first case, we have that ℵ contains a CDC if

V
i Bi ∈ Ai.ri ∧V

j B′
j /∈ A′j .r

′
j then c in υ′, with υ = (υ′ ∩ T

i υi) \
S

j υj .
By induction, ℵ `τ Ai.ri ← Bi if and only if τ ∈ υi and ℵ `τ

A′j .r
′
j ← B′

j if and only if τ ∈ υj ; hence, ℵ 0τ A′j .r
′
j ← B′

j if
and only if τ /∈ υj . We then work like in the base case. If ℵ °υ c
terminates with an application of (TV5), then υ = υ1 ∪ υ2. This
case is less straightforward, because judgements ℵ °υ1 c and
ℵ °υ2 c are, in general, not maximal.2 Let ℵ `τ c; by Lemma 5.1,
there exists a υ′ containing τ such that ℵ °υ′ c. Now, it must be
that υ′ ⊆ υ, otherwise ℵ °υ c would not be maximal; we trivially
conclude. Vive versa, let τ ∈ υ and let ℵ °υ′ c be the deepest
sub-inference of ℵ °υ c whose premises do not entail c (hence,
ℵ °υ′ c has been obtained via an application of (TVi), for i 6= 5)
and such that τ ∈ υ′. By definition of the rules in Table 5, each
of these premises has a validity containing τ ; since these premises
have been obtained via maximal inferences, by induction we can
replace °... with `τ . Now, apply (CDCi) and easily conclude. ¥

2 They can be maximal whenever υ1 ⊆ υ2 or vice versa, i.e. when the
inference terminates with a ‘trivial’ application of (TV5), that is always
possible. In this case, the proof relies on a straightforward induction.

EXAMPLE 5 (Example 2, formalised). Consider the set of CDCs
ℵ = {(13), (14)}; when does it make the credential
Alice.readMail ← Ent.secr available (if ever)? As we said infor-
mally before, such a credential can be used at any time not included
in υ. We now formally derive this statement. By using (TV1), this
can be done easily:

(13) ∈ ℵ ℵ °υ Ent.active ← Alice

ℵ °(−∞,+∞)\υ Alice.readMail ← Ent.secr

Indeed, (13) is a time-independent credential, i.e. it holds in all
(−∞, +∞).

Now, consider the credentials

Ent.active ← Ent.inMission (19)
Ent.inMission ← Alice in υ′ (20)

and the set ℵ′ = ℵ ∪ {(19), (20)}. Intuitively, (19) states that
employees of Ent that are out on a mission are still active, whereas
(20) states that Alice is in mission during υ′. Now, the inference
previously shown becomes (with the obvious shorthands for entity
and rôle names, plus ° standing for °(−∞,+∞))

(13) ∈ ℵ′
ℵ′ °υ E.a ← A

ℵ′ ° E.a ← E.i ℵ′ °υ′ E.i ← A

ℵ′ °υ′ E.a ← A

ℵ′ °υ∪υ′ E.a ← A

ℵ °(−∞,+∞)\(υ∪υ′) A.r ← E.s

and states that Ent.secr can read Alice’s mail only outside υ ∪ υ′.
¤

Inferring Environmental CDCs. The second inference system
enhances judgements of the form ℵ `τ c to yield judgements like

ℵ °φ
τ c

Intuitively, ℵ °φ
τ c means that it is possible to derive the credential

c from ℵ at time τ in any execution context providing enough CDCs
to satisfy φ. Here, we let φ range over propositional formulae over
the atoms B ∈ A.r, i.e.

φ ::= tt
�� B ∈ A.r

�� ¬φ
�� φ1 ∧ φ2

�� φ1 ∨ φ2

We shall equate propositional formulae up-to commutativity, asso-
ciativity and idempotency of both ∧ and ∨, and up-to absorption of
identity elements.

The aim of propositional formulae is to characterise sets of
CDCs. Formally, the satisfiability relation is defined as follows:

ℵ ²τ tt iff JℵKτ exists
ℵ ²τ B ∈ A.r iff B ∈ JℵKτ (A.r)
ℵ ²τ ¬φ iff ℵ 2τ φ
ℵ ²τ φ1 ∧ φ2 iff ℵ ²τ φ1 and ℵ ²τ φ2

ℵ ²τ φ1 ∨ φ2 iff ℵ ²τ φ1 or ℵ ²τ φ2

The inference rules are in Table 6. The key rule is (ENV1):
it states that a CDC can be exploited whenever it is valid and in
any context enabling the inference of its positive premises but not
enabling the inference of its negative premises. However, notice
that we can always trivially infer A.r ← B if the context provides
it at time τ ; this justifies the new rule (ENV0).

Also in this case, notice that °φ
υ generalises `τ : the former

coincides with the latter whenever φ is tt, up-to absorption of
boolean constants. Moreover, a rule similar to (TV5)

ℵ °φ1
τ c ℵ °φ2

τ c

ℵ °φ1∨φ2
τ c



(ENV0)

ℵ °B∈A.r
τ A.r ← B

(ENV1)

if
^

i Bi ∈ Ai.ri ∧
^

j B′j /∈ A′j .r′j then c in υ ∈ ℵ

τ ∈ υ ∀ i . ℵ °φi
τ Ai.ri ← Bi

ℵ °
V

i φi ∧
V

j ¬(B′j∈A′j .r′j)
τ c

(ENV2)

ℵ °φ1
τ A.r ← B.s ℵ °φ2

τ B.s ← C

ℵ °φ1 ∧φ2
τ A.r ← C

(ENV3)

ℵ °φ1
τ A.r ← B.s.t ℵ °φ2

τ B.s ← C ℵ °φ3
τ C.t ← D

ℵ °φ1 ∧φ2 ∧φ3
τ A.r ← D

(ENV4)

ℵ °φ1
τ A.r ← B.s u C.t ℵ °φ2

τ B.s ← D ℵ °φ3
τ C.t ← D

ℵ °φ1 ∧φ2 ∧φ3
τ A.r ← D

Table 6. Inferring Environmental Credentials

could also be introduced in this inference system. However, it
would only make ℵ °φ

τ c more descriptive, in the sense that the
formula φ would describe different possible contexts enabling the
inference of c from ℵ at time τ . Indeed, differently from °υ (where
rule (TV5) was crucial to prove Proposition 5.2), we can prove
soundness and completeness of °φ

τ without any requirement on
the strategy used in the inference of ℵ °φ

τ c.

PROPOSITION 5.3 (Soundness). If ℵ °φ
τ c, then ℵ ∪ ℵ′ `τ c,

for any set of CDCs ℵ′ such that ℵ ∪ ℵ′ ²τ φ.

Proof: First, notice that ℵ∪ℵ′ ²τ φ implies that ℵ∪ℵ′ has a (logic-
programming/set-theoretic/inference-based) semantics; thus, `τ is
meaningful. The proof is by induction on the depth of ℵ °φ

τ c. We
have two possible base cases:

• (ENV0): in this case, c = A.r ← B. By definition of |=τ ,
ℵ ∪ ℵ′ ²τ B ∈ A.r implies that B ∈ Jℵ ∪ ℵ′Kτ (A.r); by
Propositions 4.2 and 4.4, this entails ℵ ∪ ℵ′ `τ A.r ← B.

• (ENV1): by hypothesis, ℵmust contain a CDC if tt then c in υ,
for υ 3 τ and φ = tt. Then, trivially, ℵ ∪ ℵ′ `τ c.

For the inductive step, we reason by case analysis on the last rule
used; we only consider the case in which the inference terminates
with (ENV1), since the other ones rely on a simple induction. In this
case, we have that ℵ contains a CDC if

V
i Bi ∈ Ai.ri ∧

V
j B′

j /∈
A′j .r

′
j then c in υ and that ℵ °φi

τ Ai.ri ← Bi, for every
i; moreover, φ =

V
i φi ∧

V
j ¬(B′

j /∈ A′j .r
′
j). By induction,

ℵ ∪ ℵ′ |=τ φi (that holds since ℵ ∪ ℵ′ |=τ φ) implies that
ℵ ∪ ℵ′ `τ Ai.ri ← Bi. If we prove that ℵ ∪ ℵ′ 0τ Aj .rj ← Bj ,
for every j, we can conclude by (CDC1). By contradiction, assume
that there exists a j such that ℵ ∪ ℵ′ `τ Aj .rj ← Bj ; then, by
Propositions 4.2 and 4.4, ℵ ∪ ℵ′ |=τ B′

j ∈ A′j .r
′
j , in contradiction

with ℵ ∪ ℵ′ |=τ φ. ¥

PROPOSITION 5.4 (Completeness). If ([ℵ ∪ ℵ′])τ exists and ℵ ∪
ℵ′ `τ c, then there exists a φ such that ℵ ∪ ℵ′ ²τ φ and ℵ °φ

τ c.

Proof: If c = A.r ← B, the proof is simple: by Propositions 4.2
and 4.4, Jℵ∪ℵ′Kτ exists and associates B to A.r; hence, ℵ∪ℵ′ ²τ

B ∈ A.r and, by rule (ENV0), ℵ °B∈A.r
τ A.r ← B. Let

c 6= A.r ← B; in this case, it must be that ℵ ∪ ℵ′ contains
χ , if

V
i Bi ∈ Ai.ri ∧

V
j B′

j /∈ A′j .r
′
j then c in υ such that

τ ∈ υ, ℵ ∪ ℵ′ `τ Ai.ri ← Bi, for every i, and ℵ ∪ ℵ′ 0τ

A′j .r
′
j ← B′

j , for every j. We now prove that we can always find
a χ such that ℵ ∪ ℵ′ ²τ

V
j B′

j /∈ A′j .r
′
j . By contradiction,

suppose that every χ entailing c have at least one j such that
ℵ ∪ ℵ′ ²τ B′

j ∈ A′j .r
′
j . This fact, together with Proposition 5.3

and (ENV0), would imply that ℵ ∪ ℵ′ `τ A′j .r
′
j ← B′

j ; thus, we
would have no means to infer ℵ ∪ ℵ′ `τ c. So, choose one of
the χ’s whose negative guards are not satisfied by ℵ ∪ ℵ′ (as we
have just proved, at least one exists). As proved before, for every i
there exist a φi such that ℵ ∪ ℵ′ ²τ φi and ℵ °φi

τ Ai.ri ← Bi;
trivially, ℵ ∪ ℵ′ ²τ

V
i φi ∧

V
j ¬(B′

j ∈ A′j .r
′
j) and, by (ENV1),

ℵ °
V

i φi ∧
V

j ¬(B′j∈A′j .r′j)
τ c, as desired. ¥

EXAMPLE 6 (Example 2, formalised). Consider again the set of
CDCs ℵ = {(13), (14)}; which constraints should be put on the
environment to let Bob read Alice’s mail (if possible)? As we
have already informally said, the context must provide enough
information to infer that Bob is a secretary of Ent while Alice is
not active. We now formally derive this statement. Let τ /∈ υ; by
using (ENV1), (ENV0) and (ENV2), we have

ℵ °A/∈E.a
τ A.r ← E.s ℵ °B∈E.s

τ E.s ← B

ℵ °A/∈E.a ∧ B∈E.s
τ A.r ← B

where A /∈ E.a is the obvious shortcut for ¬(A ∈ E.a).
On the contrary, pick up τ ∈ υ. Now, since ℵ |=τ A ∈ E.a,

there exists no ℵ′ such that ℵ ∪ ℵ′ |=τ A /∈ E.a; hence, in no
context, the Ent’s secretaries can read Alice’s mails when she is
active, as desired. ¤

5.2 Abductive Logic Programming

The inference system given in Section 4.3 provides a way to decide,
given a set of CDCs, which knowledge can be derived from it; as
we have proved, such an inference system closely corresponds to
the stable model semantics of a general logic program originating
from the set of CDCs, see Proposition 4.4. The inference systems
presented in Section 5.1 extend the system of Section 4.3 by pro-
viding more information, i.e. they describe the requirements an ex-
ecution context should satisfy in order to derive a given goal. It is
then natural to look for a logic-programming counterpart of such
inference systems.

There is an intimate correspondence between the inference sys-
tems of Section 5.1 and a variant of logic programming, called
abductive logic programming (ALP) [16]. Apart from theoretical
interest, such a correspondence is also of practical use, since well-
established proof procedures [17, 13, 10] and tools [1] for ALP
provide us with a more tractable and automatable way of working
with CDCs.

Informally, ALP seeks to derive, given a general logic program
P and a goal r(A, B), a set of unit clauses P′ such that:

• from P ∪ P′, we can derive r(A, B), and
• P ∪ P′ satisfies some form of ‘consistency.’



More precisely, we have the following definition.

DEFINITION 5.2 (Abducible explanation). Given a general logic
program P and a goal r(A, B), an abducible explanation of
r(A, B) in P is a set of unit clauses P′ such that the stable model
semantics of P ∪ P′ contains r(A, B).

Intuitively, P ∪ P′ is ‘consistent’ if it has a stable model semantics
(i.e., it has a semantics according to Definition 2.1); moreover, it
can be used to derive r(A, B) only if its stable model contains such
an atom.

Relationship between the semantics. We now prove a correspon-
dence result between the semantics defined by the inference system
in Table 6 and the abducible explanations of Definition 5.2. To this
end, we first need to convert a set of unit clauses into a set of CDCs.
This is carried out by function UC-CDC(·), whose formal definition
is:

UC-CDC(∅) , ∅
UC-CDC(r(A, B) :− ) , A.r ← B

UC-CDC(P1 ∪ P2) , UC-CDC(P1) ∪ UC-CDC(P2)

Moreover, we say that φ respects ℵ at time τ if there is a set of
CDCs ℵ′ of the form A.r ← B (with a tt-guard and a (−∞, +∞)
time validity) such that ℵ′ |=τ φ and Jℵ ∪ ℵ′Kτ exists.

PROPOSITION 5.5. If P is an abducible explanation of r(A, B)
in GLPτ (ℵ), then ℵ °φ

τ A.r ← B, for some φ such that
ℵ ∪ UC-CDC(P) ²τ φ.

PROPOSITION 5.6. If ℵ °φ
τ A.r ← B and φ respects ℵ at time τ ,

then there exists an abducible explanation P of r(A, B) in GLPτ (ℵ)
such that ℵ ∪ UC-CDC(P) ²τ φ.

Exploiting Tools for ALP. We now show how to exploit the CIFF
tool [10, 1] for ALP to automate the inference systems of Tables 5
and 6. To this end, we first need to introduce time validity of CDCs
in their translation to logic clauses; this can be achieved by exploit-
ing constraints, that have been introduced in ALP in [18] and that
can be handled by CIFF. Now, general logic clauses can have in
their premises more general predicates, like tests for equality or or-
dering relations among values and variables of arbitrary data types,
such as integers or reals. Moreover, to reduce the space search,
CIFF also uses some integrity constraints (not to be confused with
constraints over data types) of the form λ1, · · · , λk ⇒ α. Intu-
itively, integrity constraints are used to select, among all the ab-
ducible explanations, only those which satisfy all such implica-
tions. In our framework, we shall exploit very simple integrity con-
straints, but more sophisticated scenarios could also be considered.

To include timing information in the translation of sets of
CDCs, from now on we shall always work with ternary rela-
tions r(A, B, ζ). Intuitively, r(A, B, ζ) extends r(A, B) in that
the constraints involving variable ζ in the definition of the pred-
icate r define the validity of the atom. For example, the CDC
if tt then A.r ← B in [τ, +∞) is translated into the clause
r(A, B, ζ) :− ζ ≥ τ , meaning that B belongs to A.r at any time
ζ not less than τ . We denote with 〈|ℵ|〉 the translation derived from
that presented in Definition 4.1 with this extra feature, that allows
us to ignore the evaluation time in defining the logic program asso-
ciated to ℵ.

Two further technical devices are needed for CIFF to work
properly.

1. Firstly, the clauses must be given as so-called iff-definitions.
Intuitively, given a general logic program P, the iff-definition
associated with it is obtained by grouping all the clauses for the
same atom r(·, ·, ·) in P

r(·, ·, ·) :−D1 , · · · , r(·, ·, ·) :−Dk

into the iff-definition

r(·, ·, ·) :− : D1 ∨ · · · ∨Dk

where Di denotes a conjunction of literals and constraints. The
resulting set of iff-definitions is denoted as IFF(P). Clearly,
to do so, we first need to remove any constant from the left-
hand side of a general logic clause; this can be easily done by
using a (new) variable in the definition and adding an equality
constraint stating that the new variable must be equal to the old
constant. For example,

r(A, B, ζ) :− ζ ≥ τ

becomes

r(ξ1, ξ2, ζ) :− ξ1 = A, ξ2 = B, ζ ≥ τ.

This task can be easily carried out automatically.

2. The second technical point required by the CIFF proof proce-
dure is to clearly distinguish predicates that are abducible from
those defined by the given logic program. This is needed to en-
sure that all the results returned by the procedure are minimal.
To this aim, we exploit the integrity constraints and add to them
(that are initially empty) the implication

δr(ξ1, ξ2, ζ) ⇒ r(ξ1, ξ2, ζ)

where δr is a new relation symbol. We denote by IC(P) the
resulting set of integrity constraints and let δr be an abducible
predicate.

As a consequence, we need to translate the given goal A.r ←
B accordingly, i.e. as δr(A, B, ζ) where here ζ is meant to be
existentially quantified. We denote with G(A.r ← B) such a
translation. Intuitively, an abducible explanation for G(A.r ←
B) induces a time validity (derived from the constraints over ζ)
and some knowledge that must be provided by the environment
(derived from the abducible predicates) under which the goal can
be inferred.

The input of CIFF is derived from a given set of CDCs and a
goal A.r ← B and takes the form

(IFF(〈|ℵ|〉); IC(〈|ℵ|〉); G(A.r ← B))

as described above. The CIFF proof procedure essentially manipu-
lates sets of formulas that are either atoms or implications. It cal-
culates a tree of such sets (thus called nodes) with the property that
each node is obtained from its father by applying one rule to the
formulas occurring in the father. There are several rules; for a pre-
cise discussion of them, see [10]. The procedure terminates when
all nodes are final, i.e. they contain sets of formulas to which no
more rule can be applied. A final node is successful if it does not
contain contradictions; otherwise, it is called failed.

The root of the tree is formed by the goal and by all the in-
tegrity constraints. The output of CIFF is a set of pairs of the
form (P; Γ), one for each successful node of the computed tree;
P contains the abducible atoms in the node and Γ its constraints.
It has been proved in [10] that, for every returned (P; Γ), there ex-
ists an abducible explanation of the goal δr(A, B, ζ) in 〈|ℵ|〉; such
an explanation is P′σ, where P′ is obtained from P by removing
δr(A, B, ζ) and σ is any substitution of values for variables satis-
fying Γ. Vice versa, in [10] it is also proved that, if all the deriva-
tions in CIFF are finite and failing, then no abducible explanation
for the given input exists.

EXAMPLE 7 (Example 2, by means of CIFF). To conclude, let us
show in some detail how Example 2 is handled by CIFF; this should
also informally illustrate the rules underlying CIFF. The original
setting provides the set of CDCs {(13), (14)} and the goal (15),



with υ = [0, 10] in (14), for example. This is translated to the
following input for CIFF:3

(P; IC; δr(A, B, ζ))

where P is the following general logic program in iff-form, associ-
ated to {(13), (14)}

P ,
�

r(ξ1, ξ2, ζ) :− : ξ1 = A, s(E, ξ2, ζ),¬ a(E, A, ζ)
a(ξ3, ξ4, ζ) :− : ξ3 = E, ξ4 = A, ζ ≥ 0, ζ ≤ 10

�

and IC is the following set of integrity constraints.

IC ,
�

δr(ξ1, ξ2, ζ) ⇒ r(ξ1, ξ2, ζ)
δa(ξ3, ξ4, ζ) ⇒ a(ξ1, ξ2, ζ)

�

CIFF now builds the following tree. The root node is

N0 : δr(A, B, ζ) , IC.

It then uses δr(A, B, ζ) and the first integrity constraint from IC
(by means of unification and modus ponens) to derive

N1 : δr(A, B, ζ) , r(A, B, ζ) , IC.

It then replaces r(A, B, ζ) with the body of its iff-definition in P
and derives

N2 : δr(A, B, ζ), A = A, s(E, B, ζ),¬a(E, A, ζ), IC

that can be simplified to

N3 : δr(A, B, ζ), s(E, B, ζ),¬a(E, A, ζ), IC.

Then, it replaces a(E, A, ζ) with the body of its iff-definition in P
and derives

N4 : δr(A, B, ζ), s(E, B, ζ), IC,
¬(E = E, A = A, ζ ≥ 0, ζ ≤ 10).

This node has four children; two of them are failure nodes

N1
5 : δr(A, B, ζ), s(E, B, ζ), E 6= E, IC

N2
5 : δr(A, B, ζ), s(E, B, ζ), A 6= A, IC

while the other two ones are successful
N3

5 : δr(A, B, ζ), s(E, B, ζ), ζ < 0, IC
N4

5 : δr(A, B, ζ), s(E, B, ζ), ζ > 10, IC.

From N3
5 and N4

5 , we infer that an abducible explanation for
A.read ← B is the context 〈{Ent.secr ← B}; τ〉, for τ ∈
(−∞, 0) ∪ (10, +∞); this exactly coincides with (16). ¤

6. Conclusions and Related Work

The main contribution of our work is the extensions we have pro-
posed for introducing dynamic considerations into RT0. The avail-
ability of CDCs is intermittent, either because their time validity
can (temporarily or permanently) expire or because formerly avail-
able CDCs, required to satisfy their guards, can become (temporar-
ily or permanently) not available. This feature reflects timed privi-
leges [28, 23, 26] and consequently makes mechanisms to explic-
itly introduce/remove credentials redundant.

An important source of expressiveness of an access control
model is the temporal dimension that permissions have in many
real-world situations: permissions are often limited in time or may
hold only for specific periods of time. Moreover, permissions can
also be issued/revoked according to the context where they are
calculated. Context-dependent credentials, presented in this paper,
are a simple but powerful way to model both these features.

3 To save space, we have shortened Alice as A, Bob as B, Ent as E, active
as a, readMail as r and secr as s.

It has to be said that the temporal dimension is present in the
RT family from its birth (see the language RT1 in [20]). However,
every form of negation has been always intentionally omitted, to
keep the semantical development of the language simple. As shown
in the examples throughout this paper, we believe that some policy
specifications intrinsically rely on negative requirements; thus, we
believe that the use of negation will have to be confronted if the goal
is a highly flexible model capable of supporting the specification of
complex protection requirements.

Unfortunately, the presence of negation creates problems when
defining the semantics of a language. Usually, there are legal terms
that either have no semantics or whose semantics is not uniquely
definable. The stable model approach assigns a semantics to all
those terms whose derivability does not depend on themselves as
assumptions. As an example, in our framework every set of CDCs
containing if B /∈ A.r then A.r ← B in υ will have no (stable
model) semantics. However, this is acceptable, since the previous
CDC must not be read as “if B is still not a member of A.r, then
include B in A.r” (that could be meaningful, in some cases) but
it must be read as “B is a member of A.r whenever B is not
a member of A.r”, that sounds contradictory. Similarly, sets of
CDCs containing if B /∈ A.r then C.s ← D in υ and if D /∈
C.s then A.r ← B in υ have similar problems. However, we
believe that policy specifications relying on these kinds of CDCs
are ‘ill-formed’ and should not be considered in the implementation
of actual security systems.

Finally, we want to stress the usefulness of the inference sys-
tems in Section 5.1: it is really desirable to have automatic tools
that assist in the definition of security specifications. The inference
systems we have presented in this paper are simple, but theoreti-
cally well-founded, aids to the definition of the proper validity of
certificates, or of the contextual information required for the proper
functioning of a set of certificates. This turns out to be fundamen-
tal mainly in large-scale distributed systems where users only have
partial views of their execution context.

Related work. A different approach that makes the policies de-
fined by RT0-credentials dynamic is given in [29]; this contains a
security-typed imperative language whose main feature is the pos-
sibility of programming policy modifications. The main focus of
the paper is on controlling information flow, but security levels are
expressed by means of rôles, whose membership is made dynamic
by the possibility of modifying rôle-definitions during execution.
This approach embeds policy modifications for RT0 into a full-
fledged programming language and exploits the resulting frame-
work for purposes different from ours; for this reason, they take an
orthogonal approach and exploit type systems to rule out unwanted
information flow.

Default logic [25] is one of the pioneering work in the field of
non-monotonic reasoning (an example of which is also logic pro-
gramming with negation). In default logic, there are ordinary in-
ference rules and default rules, that are triples of the form “(pre-
requisites, justifications, conclusion)” stating that the conclusion
can be derived from the pre-requisites, provided that there is no
evidence that the justifications might be false. To increase expres-
siveness, both pre-requisites and justifications can contain nega-
tive judgements; hence, also in default logic there are problems
in giving semantics to a set of default rules: there can be zero,
one or more than one possible semantics for a given set of rules.
Again, like in logic programming, several choices could be taken
to solve this problem, one of which strongly resembles the stable
model approach. Default rules are quite similar to the rule (CDC1),
where the positive premises correspond to pre-requisites and nega-
tive premises to justifications.

A somewhat related work is [5] where an access control model
with periodic temporal intervals associated to authorisations is



given. An authorisation is automatically granted in the specified in-
tervals and revoked when such intervals expire. Deductive tempo-
ral rules with periodicity are provided to derive new authorisations
based on the presence or absence of other authorisations in specific
periods of time. Like in our approach, possible inconsistencies de-
riving from negative requirements are handled by the stable models
approach; however, [5] does not consider the powerful form of del-
egation put forward by linked rôles, such as A.r.s in RT0.

RT0 is the most basic language of the RT family. In [20], all
the members of the family are presented: RT1 adds to RT0 pa-
rameterised rôles, which can express attribute fields; RT2 adds to
RT1 logical objects, which can group logically related objects to-
gether so that permissions about them can be assigned together;
RT T provides manifold rôles and rôle-product operators, which
can express threshold and separation-of-duty policies; RT D pro-
vides delegation of rôle activations, which can express selective use
of capacities and delegation of these capacities. The semantics of
all these languages is given via a translation from credentials to
negation-free logic programs; thus, we do not foresee any problem
in applying our enhancements of RT0 to the other members of the
RT family.

To conclude, notice that in this paper we have only considered
what in [21] is called ‘membership queries’, that is, our guards
only test whether a given entity belongs to a given rôle or not.
More sophisticated queries are considered in that paper and could
be integrated in our framework; for example, two other reasonable
guards could be A.r ⊆ {B1, . . . , Bk} and A.r ⊆ B.s, or their
negations. We leave such an integration for future work.
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