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Abstract to compromise its integrity through code modification or its secrecy

We present a programming notation aiming at protecting the se- through leak of sensitive data.
crecy of both host and agent data in global computing applications. ~ Therefore, to enhance its appropriateness for global computing
The approach exploits annotations with sets of node addressesapplications, a programming language should come equipped with
called regions. A datum can be annotated with a region that speci-a solid foundational model that also encompasses security features.
fies the network nodes that are allowed to interact with it. Network The proof that an application is ‘safe’ could then be done by relying
nodes come equipped with two region annotations specifying the on formal methods. To be realistic and useful for global computing,
nodes that can send data and spawn processes over them. The lahe language security model sholg) consider existence of mis-
guage semantics guarantees that computation proceeds accordingehaving entities in the execution environment of applications, and
to these region constraints. To minimize the overhead of runtime (b) rely only on a local knowledge of such environment. Condition
checks, a static compilation phase is exploited. The proposed ap-(b) is necessary because it is impossible in practice to collect global
proach is largely independent of a specific programming language; information in a network of millions of users (like the Internet), that
however, to put it in concrete form, here we focus on its integration are under the control of different administration authorities and can
within the process languag&LAIM . We prove that in compiled ~ be malicious.
UKLAIM nets, data can be manipulated only by authorized users. The major contribution of this paper is the definition of an ap-
We also give a more local formulation of this property, where only proach that permits protecting the secrecy of both host and agent
asubnet is compiled. Finally, we use our theory to model the secure data in global computing applications by relying on additional pro-

behaviour of a UNIX-like multiuser system. gramming notation. The approach we propose, that is inspired by
ConfinedA [13], exploits program annotations witlegions i.e.
1 Introduction sets of node addresses, as follows. A datum can be annotated with

. . . aregion that specifies the network nodes that are allowed to interact
In the design of programming languages for global computing with it. This mechanism allows programmers to control the nodes

applications, the integration of security mechanisms is a major chal- that can share specific data, and to avoid them to be visible to other
lenge and a great effort has been recently devoted to embed Suc_fhodes. Moreover, nodes come equipped with two region annota-

g}:ﬁgﬁgf %Zggzgdsézgﬂ?ig ggﬁ;i;ﬂ rgslnk?af\;eeattl)g:ﬁ. psrgggrs%l dS?nnfrI] jons specifying the nodes that can send data and spawn processes

literature, including type systems [12, 3, 5, 10], control and data ver them. This mechanism allows the administrator of a nodg to

flow anallysis [11, 15, 6, 2], in-lined reference rﬁonitoring [8] and control the data/processes the node can host, and to refuse malicious
TSR agents and undesired data. The language semantics guarantees that

g;zo;—c():;rrglrr;gd ?noﬁleg][lgr;] es;)nrgirof égle;et otedcerl/rg%ue; I:Le li,::a(!j/tzhea(i(:omputation proceeds according to these region constraints. For
P : jorg p guag example, a procesB can access a datutnonly if P’s execution

is both flexible, expressive and safe; unfortunately, these require- S . :

- ’ - ..~ does not export outside its region (namely, P does not writet
ments are often in contrast. For example, the_ pOSS|b|I|ty of exp!0|t- ina networkpnode not includeg irs r(egion gr similarly, ifP does
ing mobile code deeply increased the flexibility of programming not bringt with itself while migrating to a noéle not inc’ludedtils
languages, but introduced new problems concerning the Securltyregion). Enforcing similar requirements implies some form of code

ng((::(l)ellJSI’]Stglegniitti\}olrrllgezgi,sfg:’]%ee ?rl]oﬁ%l gﬂ\rﬂ%unt'rggnﬁzsf tﬂ?;ﬁlc(; L'g[o inspection, that would be too expensive to be entirely performed
P ’ at runtime. Therefore, to minimize the runtime checks thus mak-

principals must be considered that can put security of data at risk. . : . - : -
For instance, one can easily imagine malicious mobile processes a9 Fhe oper_atlpnal semantics as_efflment as possible, a preliminary
; h : static compilation phase is exploited.
tempting to access private data of the network node hosting them. . ) . .
Similarly, a malicious node can threaten a mobile process by trying ~ Our approach is largely independent of a specific programming
language; however, to put it in concrete form, in this paper we fo-
*Work partially supported by EU FET - Global Computing ini-  CuS on its integration within the process languad@ Aim [10].

tiative, project MIKADO 1ST-2001-32222, and by MIUR project ~MKLAIM is at the core oKLAIM (Kernel Language for Agents In-
NAPOLI. teraction and Mobility, [5]), an experimental language specifically

designed to program distributed systems made up of several mobile
components interacting through multiple distributed tuple spaces.
The tuple space paradigm, that was firstly introduced by the coordi-
nation languagé& INDA [9], defines auple spaceo be a multiset of
tuples that are sequences of information items. Tuplesaa@ny-
mousand associativelyselected from tuple spaces by means of a




N = I, C | Ni|IN2 NETS V used to refer to the whole sétU U. The set of all region®.
together with the relatio@ forms a poset whose top element/is
Cuo= () [ P GIG COMPONENTS Tk?us, e.g.r1Urz is v if and only if rli orryisV. Sinﬁ)ilarly, Lev
P = nil | aP | P[P, | X | recX.P PROCESSES holds always true. For the sake of readability, we shall omit the
_ region annotation whenever it
a = ACTIONS . . . .
out(t)@¢ (output) Processesre bunt up fro_m the inactive processl and f_r_om
| in(T)@¢ (input) the ba_5|c operations by using pref_lxmg, paral_lel composition and
. recursion. uKLAIM supplies four different basic operations, also
| evalP)@r (spawning) calledactions to put/remove tuples from TSs, to spawn processes
| newloqu) (creation) in execution and to create new nodes. The last operation is not
t o= (6 [ |t TUPLES indexe_d with an_a_ddr_es; because it alw_ays acts locally; all the other
r rhe operations explicitly indicate the (possibly remote) address where
et i== V|, | [l]; | etr,etx EVALUATED TUPLES they will take place.
_ Variables occurring in process terms canbmind more pre-
T o= eltlix|TT TEMPLATES cisely, prefixin(T)@ZgP bir?ds the variables in the formal fierl)ds of
e 1= V]z|.. EXPRESSIONS T, prefix newloqu).P bindsu andrecX.P binds X. In all these

casesP is the scope of the bindings. A variable that is not bound is
calledfree The setssv(P) and Fv(P) (of bound and free variables,
pattern-matchingnechanismKLAIM handles multiple distributed ~ resp., ofP) are defined accordingly, and sodisconversion In the
tuple spaces by placing a tuple space on eaxteof anet Differ- sequel, we shall assume that bound variables in processes are all
ently from other programming notations enabling process distribu- distinct and different from the free variables (this is always possi-
tion and mobility, inKLAIM the network infrastructure (set up by  ble by usinga-conversion). Moreover, we extend functions(-)
someadministrator$ is clearly distinguishable from user processes andBV(-) to templates in the obvious way.
(written by programmer¥and is explicitly modelled, which we be- Netsare finite collections of nodes where processes and data can
lieve gives a more accurate description of the computer systems webe allocated. Anodeis a quadruplé r,::r, C, where localityl is
are interested to. Moreover, in [7] several messaging models for the address (i.e. network reference) of the n@lis the (parallel)
mobile processes are examined and it is shown thatltekboard component located dtandrg/ry is the data/process trust region
approach, that encompasses the one based on tuple spaces, is oé&the node (i.e. the set of localities of nodes that can respectively
of the most suitable, also because of its flexibility. General evi- write data al’s TS and spawn processesljas established by the
dence of the success gained by the multiple tuple spaces paradigmnode administrator. In general, C rg since accepting processes
is given by the many run-time systems that implement it, both from is, in general, more dangerous than accepting data; however, we do
industries (e.g. SUN JavaSpaces [1] and IBM T Spaces [20]) and not impose any restriction on this. In the sequel, we only take into
from universities (e.g. PageSpace [4], WCL [18], Lime [17] and accountlosednets, i.e. nets only containing processes without free
TuCSoN [16]). variables and whose node regions only contains localities (similarly
The results we prove ensure that execution of nets resulting from to many real compilers, we consider terms containing free variables
the compilation phase always respects the data annotations therein@S programming errors).
thus data can be seen only by authorized users. However, we cannot The original presentation giKLAIM [10] mainly differs from
assume knowledge of the whole net, thus we also prove a morethe present one in two aspects. Firstly, the typing annotations in
general result stating that if only a subnet is compiled, then, during the language are different (because the types in [10] were designed
the evolution of the whole net, no violations of data annotations will to control process actions). Secondly, to save space, we omitted
ever occur in that subnet. The paper ends with an application of our the LINDA primitive read (to access data in TSs without removing
approach to model the secure behaviour of a UNIX-like multiuser them) because thread actions behave similarly tim actions.

system and with comparisons to related work. . A
3 A Preliminary Compilation

The language presented in the previous section is a mean to pro-
gram applications where, during the computation, a datum can only
appear in localities contained in its region annotation. The main
goal of the runtime semantics is to enforce this requirement. How-
ever, in order to make the semantics as efficient as possible, a pre-
liminary compilation phase is introduced. The activities of the static
compilation deal with the following requirements:

1. a datum can be seen at (i.e. can pass throdghj is con-
tained in the region annotation of the datum;

Table 1. Syntax

2 The Syntax of the Language

The language we use in this paper is a minor variatiqu<afaim
[10] and its syntax is reported in Table 1. We assume the following,
pairwise disjoint, countable set&:, process variableganged over
by X, X', Xq,...; L, localities ranged over by,l’,11,...; U, locality
variables, ranged over hyu',us,...; ¥/, basic valuesranged over
byV,V’,V1,...; Z, value variablesranged over by,Z,z,.... We
let  to range overL U U andx to range overlU Z.

The syntax ofexpressionsranged over by, is deliberately not S S
specified; we just assume that expressions contain, at least, basic 2+ & Process retrieving a datum cannot send the datum outside its
values and variablegocalities! are the addresses of nod@siples region. _ _ _ _

t are sequences of annotated actual fields, that contain information These activities require some form of code inspection that is too
items (expressions, localities or locality variablegemplatesT expensive to be performed when the action is executed. The compi-
are used to select data in a tuple space (TS, for short); they are!atlon phase relileves the runtime frqm such inspection py perfqrm-
sequences of actual and formal fields. The latter ones are used tdnd checkl. statically and by annotating template formal fields with
bind variables to values and are writteror ! u. Data aresvaluated regions to dynamically perform cheé more efficiently. Hence,
tuples (et), i.e. sequences of annotated values and localities. the syntax of templates becomes

Each actual field in a tuple is annotated witldata region r, To=e|l|['X" | Ty, T
expressing the subnet where the field will be allowed to occur. A To better distinguish the annotations put by the program-
region can be either a finite subset afu U or a distinct element mers/administrators from those put by the compiler, we shall write



Nol[Np = NG it NN for i=1,2

Lrgirg C = gty © if C-C'A(rqg=Y V rqCL)A (rp=Y V rpCL)
Ci|C2 =y C'1|C’2 if C = Ci, fori=12
(et) > (et) if | ereg(et)
P = P if O#P — O#P
F#P >, T#P if P=nil vP=X
F#recX.P >, [#recX.FP if TW{X:0}#P =, I"y{X:0}#P
rl#Pl‘Pz =0 F3#P1\P§ if [i#P bl Fi+1#P{ for i 21,2
I #newloqu).P >, T’#newlogqu).P’ if Tw{u:0}#P =, Mw{u:r'}#P
F#out(t)@¢'.P >~y T4 {X:r}crvy #outt)@'.P’ if {,0}Creglt)=r A T#P >, ["#P
M#evallP)@!.P, >, 3+{x: {é}}xe,:v(pl)#eval(Pi)@é’.Pé if Lereg(P) A T1#Py =y To#P] A To# P ¢ M3#P
r#inmear.p =, ',/ 8V0 #in(m)@.P it Tw{x:{f}}xepvm) #P =¢ I"O{X: Ix}xepvr) #P'
AX e BV(T) = X (= {x}) Ixe BV(T)§ BV
A T =TI Xy pyir)
where
regfel;) = reg([dy) . v regty,tz) ,  reg(ty) Nreg(tz)
regnil) = regX) , V reg(Pi|P2) . reg(Pi)Nreg(P)
reglout(t)@¢.P) , reg(t)Nreg(P) reg(eval(Py)@¢.P;) , reg(P1)Nreg(P)
reg(newloqu).P) = reg(in(T)@¢.P) = reg(recX.P) , reg(P)

Table 2. The Compilation Procedure

the latter ones as superscripts and the former ones as subscripts. Inrmeans ‘retrieve a datum frothand share it witta genericlocality
tuitively, [!X]" states that the datum replacimgwill pass through of the net’ (because can be dynamically replaced with any locality

the localities irr. name). The solution we designed to acdeg? is to removeu from

The compilation procedure is given in Table 2 and is writter lu region annotation and assume that a locality can always occur in
N’; intuitively, this judgement means that the procedure takes a netthe node having that locality as addregs.
N (written according to the syntax in Table 1) and returns a\tet In Table 2, we write{...}ic| to mean ¢ {...}. Functionw de-

obtained fromN by annotating all the template formal fields with  notes union between environments with disjoint domains. Function
a region containing the nodes where the values received will passr S, whereS i, U, is inductively defined as

through. E.g., in process(!2)@l.out([Z,)@!’ the declaratiotz of 0 S 0

variablez must be associated to region Moreover, the compiler ) r/Swi{x:r} i#frns=0

verifies that each component located in a nbdentains only data Fefx:ry) 7S { r /S w{x : v}  otherwise

that can be seen Hy(this is done by the judgemenry). Finally, it (re{x.0y) /S S wiX: 0}

also verifies that actiorsut andeval send data/code to nodes where ) 7 o .
the data/code can appear without violating the region annotations.nd iS used to eliminate anomalies like the annotatiorz far(x).
Of course, if any of the performed checks fails, the compilation fails Function+ extends the information of an environment; formally

too (namely, not all syntactically legal nets are compilable). r+o0 , r

The auxiliary functiorreg(-) returns the intersection of the data r+{x:r} , Mw{xirur} ifr=rw{x:r}
regions occurring as its arguments. Moreovegnd:-| rely on an F+{x:rywr’)y , T+{x:r})+r’
auxiliary procedurel’ #P -, I''#P’ whererl’, calledenvironment Before concluding this section, we briefly comment on some
is a finite mapping 2U ©/UX) — K such thatFv(P) C dom(T"). compilation rules. The compilation dfi also verifies thaN is
Thus, the procedur@# P -, 0# P’ is defined only ifP is closed; closed. The regions associated to process variables and to local-
in that case, for each template formal fieldRna region annota- ity variables bound by actionewlocare useless: they are just put
tion describing the use of that field in the continuation process (i.e. to give the environment a uniform structure. When dealing with
where it will be sent) is determined and used to decoPafehus procesout(t)@¢.P at/, the procedure firstly calculates the inter-
obtainingP’). Such regions are calculated by the compiler by con- section of the regions occurring tn let us callr the resulting re-
sidering the locality where the process runs (theecorating-) gion. Then, it verifies that both the hosting localitand the target

and examining the localities where the variables can appear uponjocality ¢ can see. Finally, the continuation processis compiled
execution of actionsut and/oreval Notice, however, that some  jn the environment, thus obtaining the annotated proc&sand
care must be taken when annotating fields because otherwise closeghe environment’. Hence, the result of the compilation will be

nets can become open upon compilation. As an example, considefout(t)@¢'.P’ together withl”’ extended with the information that

the nodes (that we both consider legal) the variables occurring ih could be seen at. Similar observa-
I :zin(lz@l".in(lu)@l ”.out([z}{I u) @ (%) tions also hold when compiling processal(P;)@¢'.P,; addition-
I:zin(luy@!’ out([u}{l })@u ' (%) ally, notice that the target localit§f is ensured to occur iR;’s re-

in(! . u

. . . gion by the judgement, (that also calculates further annotations

Blindly annotating these processes would result in for Fv(Py)). Finally, when dealing with process(T)@¢'.P at ¢,

I zin(i21vh @ in(uh @l ”.out([z}g u})@| the procedure should compilein the environmenE extended by

I zzin([luivh @l .out([u],, ) @u ’ associating the variables bound Byto region{¢}. At the end of

" ’ ’ {1u} this compilation, the region annotations calculated for such vari-

that are open because of the occurrence of the regions ofiz ables are put ifT, obtaining the (annotated) templafé. Notice
and!u, resp.. The solution we designed to accetis to assign  that, since some of these variables can occuf’imegion anno-
Izthe region annotatior. This is reasonable sinde([!Z{ ")) @I’ tations (because of anomalies like)), the environment resulting



from this compilation must bé&’ ~BV(T). Similarly, since some ler} et=Z[t]
locality variableu bound byT can occur inu’s region or in the re-

gion of some other variable iBV(T) (thus generating anomalies gt OULE)@I"P || 1 iy C = Lty P ey CT [ (et)
like (xx) and(x)), the annotated templal€ is obtained fronT by ,
usingry instead ofrx, wherery is obtained fronry by ruling out all lerp

potential anomalies. |y, valQ)@!' P | I i C o L, PV i c'|Q
DEFINITION 3.1 (CoMPILED NETS). A netN is deemedom-
piled if there exists a neN’ (written according to the syntax of matcHE[T].et) =0
Table 1) such thal’ = N.

Irgiir, in(M)@" PV g () == Ly, PO || I’ vy il

4 The Operational Semantics gL

Nets are executed according to the reduction relatior de-
fined in Table 3. =— relates configurations of the forin> N,

Lol rd::rpnewloo(u).P -

’ . / i .- R
whereL is such thatoc(N) C L Cfin £ and functionloc(N) re- LOD o oy PUAT I vy gy il
turns the set of localities occurring M. In a configuratiorL.>N, Lot ity Co [ rgiry Co [N == L'l i G |1 gty G || N
L is needed to ensure global freshness of new addresses. For the e’
sake of readability, when a reduction does not generate any fresh Lol rgiirg Co[C2 [N =— Lol iy C[Ch || N
addresses, we writd >=— N’ instead ofL>N >=— L>N’. The @F
semantics exploits the following auxiliary functions and relations: LoNy =— L'oNj

e a structural congruenceelation, =, equatinga-convertible
processes, equating processes obtained by folding/unfolding
recursive definitions, stating thaf™is commutative and as- Ni=N;  LeNy =— L'sNy,  No=Np
sociative, and thatil acts as the identity for|™

LoNy [Nz =— L'>Nj | Np

. . . LeNg =— L'>Nj
e atuple/template evaluation functi] - ]| that turns basic ex- P P -
pressions into basic values (whenever possible); Table 3. Operational Semantics

e substitutionsare functions from value and locality variables to  tions) Finally, the fifth rule turns a parallel between components
values and localities. We usg ‘and ‘o’ to denote the empty into a parallel between nodes; this is necessary to present the se-
substitution and substitutions composition. We want to re- mantics in a simpler form.
mark that, when applied to a proceBsa substitution also A straightforward property of the operational semantics ensures
acts on the region annotationsin integrity of the components located at a node.

e a function matchthat verifies whether a (evaluated) tuple PROPOSITION 4.1. Letloc(N)>N >— L'oN’, | ¢ L' —loc(N)
matches against a (evaluated) template; this happens when-and| r,::r, C be a node oN’. Then, for any parallel component
ever they both have the same number of fields and correspond-C’ in C it holds that: (i) eitherC’ was located at in the initial
ing fields match. Two actual fields match if they are identical, configurationN, or (ii) C’ is a datum written at by a node irrg,
while a formal field matches any actual of the same sort pro- or (iii ) C' is a process spawned tdy a node irrp.
vided that the use of the formal (i.e. the region put by the
compiler) respects the specifications of the actual (i.e. its data
region). When matching succeedsatchreturns a substitu-
tion associating the variables in the formals to the correspond-
ing actuals. Formally, functiomatchis defined as:

Our main results state that compiled nets always reduce to com-
piled nets and that compiled nets do respect region annotations. The
former result can be viewed as a form of subject reduction where
the property that remains invariant during reduction is the fact that
a net is compiled, while the latter result can be viewed as a form
of safety where the property guaranteed by the fact that a net is

matchV,[V];) =¢ rer’ compiled is that there are no immediate violations of data regions.
match([!Z", [V],,) = [V/Z Together, these results imply soundness of our theory, i.e. no viola-
matchl,[l],) =¢€ match([1ul”, [1],,) = [/ 2Z?Sof data regions will ever occur during the evolution of compiled
matchTy,ty) = 01 match Ty, t) = 0 THEOREM4.1 (SUBJECTREDUCTION). If N is compiled and
loc(N)>N =— L'>N’thenN’ is compiled.
match((T1, T2), (t1,t2)) = 01002 DEFINITION 4.1. A netN is safeif for anyl ,:ir, Cin N, it holds

thatl occurs in the region of each datum@

m mments on th rational semanti re now in order. . . .
Some comments on the operational semantics are now in orde THEOREM4.2 (SAFETY). If Nis compiled them is safe.

We put the dynamic checkse r; andl € r’p as premises of rules

for actionsout/evalto prevent an untrusted notie send data/code The results given above can be generalized by requiring only a
overl’. Notice that no static check could enforce this property with- subnet of the whole net to be compifedVe callr-subnetof N the

out loss of expressivity: e.g., im('u)@I.eval(...)@u, it is stati- net formed by all the nodds,::r, Cin N such thafl } UrgUrp Crr.

cally impossible to know which locality will replaceand, thus, it

is impossible to determine whether the locality executingewe 1For the sake of simplicity, we assignédhe trust regions df Itis easy

is trusted by the target locality or not. Moreover, we assume that to extend the language for allowing the programmer to explicitly specify the
a nodel trusts every nod¢ it creates. This seems us reasonable trust regions of a newly created node.

since, once createdf, is not known to any other node in the net; 2|ndeed, by using the convention that absence of a region annotation
thus,| can use it as a sort gfrivate resource and can decide the means, a not compiled net can be executed according to the rules in Table 3
nodes of the net that can know it (by also exploiting region annota- by (safely) considering all its template annotationy as



Notice that such a net is not necessarily defined for;af course the new password tband the region put on the password will en-
it is always defined for =V and coincides witiN. By denoting sure thatpwd will not leavel. Thus,!’” can withdrawpwd only by
with >—* the reflexive and transitive closure of— , we obtain sending a process toand then acting ih with the new password.

THEOREM4.3 (SOUNDNESS. Let ther-subnet o be defined This can be possible only iftrustsl’, implying thatl accepts this
. ' ¢ A ) i l
and compiled. Ifloc(N)>N >=—* L'>N’ then ther’-subnet o’ suspicious’ activity off".
is defined and safe, where=r U (L' —loc(N)). The File System.We now consider a server handling a file system
where different users can write/read data. llsdbe a private repos-

Dynamic trust. We can handle trust regions more dynamically by itory used byls to store the files. A file namel, whose content is

extending the language with two actiomast(l) andwarn(l) to, the stringS, readable by users inand writtable by users in, is
respectively, add/removerom the trust region of the node execut-  stored inly as the component

ing the action (in this way, e.g., a node can choose whether trusting C N. Fread “\writter? N

or not a newly created node). However, more runtime checks are N (N hugsig | lopsin? 1 (NS

Intuitively, “read’ and “written” are just dummy data used to
properly store the regionsandr’. Then, the server handles requests
for reading and writing files with the following processes

needed in this more expressive framework. In particular, none of the

two requirements given at the beginning of Section 3 can be stat-

ically enforced. Thus, the compiler can only attach regions to the

arguments of actionisi, out andeval to make the dynamic checks Readlf) , recX.in(* read’,!u,!n)@ls-( X |

more efficient. We omit the details from this extended abstract. read(n,!z,!z,)@lf.read(n,!2)@ls.
out([z,]{lhu},n,z)@u)

5 An Example: a Multiuser System Write(ly) . recX.in(“write",lu,!n,1z)@s.( X

In this section we use the framework presented so far to program read(n, 'z, !zy)@l1.in(n,!7)@ls.
a simple but meaningful example. For the sake of readability, in the out(n,2)@!+.out([z],y,N)@u )
rest of this section we will omit trailing occurrences of proceis Intuitively, the firstin action collects the request for read-
and use parameterized process definitions and strings. Moreoverjng/writing the file named performed by localityu; then the fol-
we borrow from [10] the primitiveead that behaves similarly tim lowing read action, once compilet] verifies whether the locality
but, after its execution, it leaves the accessed datum in the TS. replacingu has the read/write privilege over fite Finally, the re-

We present the behaviour of a simple UNIX-like multiuser sys- quired operation is performed (the content of the file is read or the
tem, where users can login (exploiting a password-based approach)ld content is replaced with the new one) and an acknowledgement
and use the system functionalities, which consist in reading/writing (containing the kind of operation performed, the name of the file
files or executing programs. For the sake of clarity, we shall present and, in the “read” case, also its content) is reportedl to
the system in three steps and, finally, we shall merge them together.Executing Code-on-Demand In this last scenario, a user can dy-
Let Is be the address of the serverbe its data trust region ar@ namically download some code from the server to perform a given
be its starting trust region (thus no user can spawn codg)on task. The server stores all the downloadable processes in a private

locality Ic. For each process nambid whose code i® and that is

User Identification. We start with programming the identification  §5wnioadable by nodes in the server stores iig the component
of different users via passwords. Lgtbe a private repository used

by Is to record the users known and their passwords. Thugysts Cn > (N,["downloaded] ) |
the component recX.in(NJu)@Ic.( X | read(N,!z)@Ic.
(apwek] g g1gp) | | (s [pwehly 1) eval( eval(out((ze],, | ,,,N)@u.P)@u )@ls)
Let | be a user wanting to log ik, If | is aIreédy known tds Then, when a user wants to download some code, the server han-

(i.e. it is one of the;s), thenl can use a process like dles his request with the process
Executélc) . recX.in(“executg,!u,!n)@ls.out(n,u)@lc. X

oqt( Iggln _’l’[de]{"b})@lS'm( logged)@ls. ... Notice thatl. cannot directly sen® for execution tou because

communicating with the server process (the locality associated ta)cannot havéy. in its trust region (since
. e Ic is fresh). ThusP must firstly pass throughs and then, ifls is
Login(lp) . recX.in(*login”,!u,!z)@s.( X | in the trust region ofi (which we assume it is the case), the code-
read(u,z) @ p~0Ut([“|099€d']{|S,u})@|S) on-demand procedure successfully terminates, by also reporting an

Intuitively, | requires a connection by sending its user ID (its local- ack to the user.
ity) and its password; the server checks whether this information is
correct and sends back an ack, activating the remainderavhpu-
tation. Notice that the region annotationgawd and ‘1ogged rule
out denial of service attacks of a nasty intruder (aimed at cancelling

The System.Finally, we can put together the activities shown so far
to obtain the implementation of the complete activity of the server.
Thus, the (not yet compiled) initial configurationlgfshould be

the request of login or t'he corresponding ack). ) ) lsyip newlog(us).newlog(up).newlog(us) .
If the user is not registered i3 yet, he can send an “hello” re- set up y with the identites and passwords of the users
quest to the server containing its address and wait for a password set up u with the data of the file system
out([*hello’], .1 @ls.in(*registered, ! pwd)@s. . .. set up i@ with the processes for the downloafs

The server then handles this request with the process NewUsefu) | Login(ulB\ Readup) |
NewUsefl,) , recX.in(“hello’,lu)@ls.( X | Write(uz) | Executéus)

create a fresh pwdout(u, [pwd| u‘ls‘lp})@lp. 3 — _
out(“registered,, [pwd], u}>@ls3 Indeed, the compilation arlmlotates th?sle actions as
. A e read(n, )51, 1z,(s'7) @
Notice that a localityl’ different from| can sends a request read(n, [1z:)'s'1) 1z, Is'1-4) @I
for a new password pretending to hethe only difference with and, thus, they will be sliccessfully executed’at runtime only if the local-
the “hello” message given above is that the message now shouldity replacingu is in the region annotating the dummy itemedd’ and
contain alsd’ in the data region. However, the server will report  “written” respectively.




Notice that our example simplifies UNIX behaviour in two ma-

to express properties of ambient movement (like, e.g., “an ambient

jor aspects. Firstly, we did not require that a user must login be- whose name is in grou@ can enter an ambient whose name is in
fore using the functionalities offered by the system; secondly, the groupH”). This can be used to control ambient movement and,
files/programs are put by the system and not by the users. Boththus, the visibility of ambients (i.e. data) in different regions of a

these choices were driven by the aim of simplifying the presenta- net.

tion; however, our simplified setting could be easily enriched with
more refined and realistic features.

Finally, we want to remark that, by exploiting the dummy data
“read’, “ written” and “downloaded, we have enforced an access
control policy by only using region annotations. This confirms that,
in spite of its simplicity, the approach we presented in this paper is 7
very powerful. i

6 Related Work

In the last years, a lot of work has been devoted to design
languages for mobile processes that come equipped with secu-
rity mechanisms (at compile-time and/or at run-time) based on,
e.g., type systems [12, 3, 5, 10], control and data flow analysis
[11, 15, 6, 2] and proof carrying code [14]. The approach we pre-
sented in this paper is related to all these techniques. It strongly
follows the idea of a dynamic type system, where the program-
mer specifies an annotation (i.e. a “type”) for some elements of [5]
the calculus, and the semantics, by relying on a static compilation
phase, respects the annotations in thé.n@ur compilation phase
keeps track of where the process data will appear during the execu- [6]
tion of the process itself; this is very similar to control flow anal-
ysis. However, differently from e.g. [6, 11], we do not use over-
approximations of regions that will access data: the annotation of 7
our template fields is precise. Finally, outputs and migrations are
allowed only from trusted nodes; thus, we assume that the sender
of a datum/process can be reliably determined. This assumes an
authentication mechanism (e.g., the agent travels with a certificate
giving evidence of its origin): this is a form of proof carrying code.

We deeply drew inspiration from ConfinedFl3], a higher-order &l
functional language that supports distributed computing by allow-
ing expressions at different localities to communicate via channels. [10]
Authors of code can assign regions (i.e. subsystems) to values in
order to limit the part of a system where a value can freely move;

a type system is defined that guarantees that each value can roamii]
only within the corresponding region. This is very similar to our ap-
proach; there are however some differences. First of all, exploiting
channels greatly simplifies the static semantics because, as usuaf; 7]
channels are assumed to transmit values of a certain type (i.e. val-
ues visible within a certain region). This is not the case in the ap- 3]
proach we presented, because a TS can host every possible kind o[tl
datum; thus, no static information about the types of the data ap-
pearing in the TS can be assumed. Moreover, our annotations ard14l
only associated to the relevant data. In [13], a programmer must
declare a type (i.e. a region) for any constant, function and chan- [15]
nel; this is clearly heavier. Finally, when compiling a net, we do

not rely on any form of global knowledge of the system; only the
annotations in the process are considered. On the contrary, the typg16]
system in [13] assumes a global typing environment for handling
shared channels; this somehow contrasts with the features a global
computing scenario. [17]

We want to conclude by saying that the group types for the Am-
bient calculus [3] aim at purposes very similar to ours. A group
can be seen as a set of ambients (i.e. localities names) and is useﬁs]

(3]

4

(8]

4However, our approach is simpler than most of the typed process cal-
culi proposed in literature since our annotations are very intuitive: a pro- [19]
grammer wanting a certain datum to be restricted to a certain region has
only to annotate the datum with the localities in that region. This is sim-
pler than, e.g., the channel types oft[12], the Ambient types [3] or the
recursive process types KfLAIM [5].

[20]

However, also this approach uses global knowledge about the

execution environment and, moreover, it also relies on typing the
whole net.
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