UNIVERSITÀ DEGLI STUDI "LA SAPIENZA" CORSO DI STUDI IN INFORMATICA

ESERCITAZIONI AL CORSO DI LOGICA MATEMATICA

DIMOSTRAZIONI PER INDUZIONE

Esercizio 1. *I numeri di Fibonacci sono definiti come segue:*

$$F_1 = 1$$
 $F_2 = 1$ e per ogni $n > 2, F_n = F_{n-1} + F_{n-2}$

I primi numeri della serie sono, ad esempio:

$$1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$$

Dimostra per induzione le seguenti proprietà:

- (1) $\forall n \geq 1$, F_{3n} e' pari,
- (2) $\forall n \geq 1$, F_{4n} e' divisibile da 3,
- (3) $\forall n, m \geq 1$, $F_{n+m} = F_{m+1}F_n + F_mF_{n+1} F_mF_n$ (sugg: utilizza induzione completa),
- (4) $\forall n \geq 1, F_n^2 + F_{n+1}^2 = F_{2n+1}$ (sugg: usa punto precedente),
- (5) $\forall n \geq 2, F_{n-1}F_{n+1} = F_n^2 + (-1)^n$,
- (6) $\forall n \geq 1$, F_n e F_{n+1} sono primi fra loro.

Soluzione.

(1) F_3 e' pari. Suppongo F_{3n} pari, allora

$$F_{3(n+1)} = F_{3n+1} + F_{3n+2} = F_{3n+1} + F_{3+1} + F_{3n}$$

che e' pari, se F_{3n} e' pari.

(2) F_4 e' divisibile da 3. Suppongo F_{4n} divisibile da 3, allora

$$F_{4n+4} = F_{4n+2} + F_{4n+3} = 2(F_{4n} + F_{4n+1}) = F_{4n} + 3F_{4n+1}$$

che e' multiplo di 3 se lo e' F_{4n} .

(3) Osserva che e' valido per n = 1. Adesso supponi sia valido per ogni $n' \le n$ (uso induzione completa), allora:

$$F_{n+m+1} = F_{n+m} + F_{n+m-1} = F_{m+1}F_n + F_mF_{n+1} - F_mF_n + F_{n+m-1}$$

Siccome sappiamo che: $F_{n+m-1} = F_{n+m} - F_{n+m-2}$, $F_n = F_{n+1} - F_{n-1}$, $F_{n+1} = F_{n+2} - F_n$, ottengo che:

$$F_{n+m+1} = F_{m+1}F_{n+1} + F_mF_{n+2} - F_mF_{n+1} + (F_mF_{n-1} + F_{n+m-1} - F_{m+1}F_{n-1} - F_mF_m)$$

sempre per ipotesi induttiva so che:

$$F_{m+(n-1)} = F_{m+1}F_{n-1} + F_mF_n - F_mF_{n-1}$$

quindi:

$$F_{n+m+1} = F_{m+1}F_{n+1} + F_mF_{n+2} - F_mF_{n+1}$$

(4) Se n=1 l'asserto e' vero. Suppongo $F_n^2+F_{n+1}^2=F_{2n+1}$ e dimostro che $F_{n+1}^2+F_{n+2}^2=F_{2n+3}$:

$$F_{n+1}^2 + F_{n+2}^2 = F_{n+1}^2 + (F_{n+1} + F_n)^2 = F_{n+1}^2 + F_n^2 + F_{n+1}^2 + 2F_{n+1}F_n$$

per ipotesi induttiva ottengo che:

$$F_{n+1}^2 + F_{n+2}^2 = F_{2n+1} + F_{n+1}^2 + 2F_{n+1}F_n$$

Siccome $F_{2n+3}=F_{2n+1}+F_{2n+2}$, dobbiamo dimostrare che $F_{2n+2}=F_{n+1}^2+2F_{n+1}F_n$. Sempre per ipotesi induttiva so che $F_{n+1}^2=F_{2n+1}-F_n^2$. Quindi dobbiamo dimostrare che: $F_{2n+2}=F_{2n+1}-F_n^2+2F_{n+1}F_n$. Siccome $F_{2n+2}=F_{2n+1}+F_{2n}$, ci riduciamo a dover dimostrare che: $F_{2n}=-F_n^2+2F_{n+1}F_n$. Ma utilizzando l'esercizio precendente otteniamo esattamente questa equazione.

(5) Per n=2 l'asserto e' vero. Suppongo che $F_{n-1}F_{n+1}=F_n^2+(-1)^n$ e dimostro $F_nF_{n+2}=F_{n+1}^2+(-1)^{n+1}$. Per definizione so che: $F_{n+2}=F_n+F_{n+1}$, dunque:

$$F_n F_{n+2} = F_n F_{n+1} + F_n^2$$

Per ipotesi induttiva ottengo che:

$$F_n F_{n+2} = F_n F_{n+1} + F_{n-1} F_{n+1} - (-1)^n$$

Siccome $F_nF_{n+1}+F_{n-1}F_{n+1}=F_{n+1}^2$ e pure $-(-1)^n=(-1)^{n+1}$, ottengo $F_nF_{n+2}=F_{n+1}^2+(-1)^{n+1}$.

(6) Ovviamente F_1 e F_2 sono primi fra loro. Supponi che F_n e F_{n+1} non abbiamo divisori propri comuni, e dimostriamo che pure F_{n+1} e F_{n+2} non hanno divisori propri comuni. Difatti se p e' un divisore di $F_{n+2} = F_{n+1} + F_n$, allora se p dividesse pure F_{n+1} , allora dovrebbe dividere pure F_n , qunidi F_n e F_{n+1} avrebbero divisori in comune, contro l'ipotesi induttiva. Quindi un divisore proprio di F_{n+2} non e' divisore di F_{n+1} .

Esercizio 2 (Difficile). Prova per induzione che $\sum_{i=1}^{n} 2i - 1$ e' quadrato di un numero (per ogni $n \ge 1$). (Sugg: cerca di dimostrare un asserto piu' forte, che ti permetta di avere una ipotesi induttiva piu' forte...).

Soluzione. Passo base e' immediato: $\sum_{i=1}^{1} 2i - 1 = 1 = 1^2$. Supponiamo $\sum_{i=1}^{n} 2i - 1 = k^2$ per un certo numero k e dimostriamo che $\sum_{i=1}^{n+1} 2i - 1 = q^2$ per un numero q. Dalla definizione di sommatoria e dall'ipotesi induttiva, ottengo:

$$\sum_{i=1}^{n+1} 2i - 1 = \sum_{i=1}^{n} 2i - 1 + 2n + 1 = k^2 + 2n + 1$$

Il problema e' che ora da $k^2 + 2n + 1$ non otteniamo molte informazioni dal numero di cui $\sum_{i=1}^{n+1} 2i - 1$ dovrebbe essere il quadrato. Siamo bloccati. Il trucco e' di cercare di rafforzare l'ipotesi induttiva ottenendo maggiori informazioni sul numero k. Calcoliamo infatti i primi valori di $\sum_{i=1}^{n} 2i - 1$ al variare di n:

$$\begin{array}{ll} n=1 & \sum_{i=1}^{n} 2i-1=1 \\ n=2 & \sum_{i=1}^{n} 2i-1=4 \\ n=3 & \sum_{i=1}^{n} 2i-1=9 \\ n=4 & \sum_{i=1}^{n} 2i-1=16 \\ \vdots & \vdots \end{array}$$

Possiamo quindi provare a dimostrare che $\sum_{i=1}^{n} 2i - 1 = n^2$. Il caso base e' verificato. Il passo induttivo ora e' piu' semplice, difatti otteniamo:

$$\sum_{i=1}^{n+1} 2i - 1 = \sum_{i=1}^{n} 2i - 1 + 2n + 1 = n^2 + 2n + 1 = (n+1)^2$$

Questo esercizio e' un esempio di come talvolta per dimostrare una proprieta' P (come per esempio essere un quadrato perfetto) con il metodo di induzione sia necessario dimostrare una proprieta' P' piu' forte di P (come ad esempio essere il quadrato di un numero preciso, ex n^2), in modo tale che nel passo induttivo possiamo fare affidamento su una ipotesi induttiva piu' forte.