
C H A P T E R

15 Failure detectors

15.1 Introduction

This chapter deals with the design of fault-tolerant distributed systems. It is
widely known that the design and verification of fault-tolerent distributed
systems is a difficult problem. Consensus and atomic broadcast are two impor-
tant paradigms in the design of fault-tolerent distributed systems and they find
wide applications. Consensus allows a set of processes to reach a common
decision or value that depends upon the initial values at the processes, regard-
less of failures. In atomic broadcast, processes reliably broadcast messages
such that they agree on the set of messages delivered and the order of message
deliveries.

This chapter focuses on solutions to consensus and atomic broadcast
problems in asynchronous distributed systems. In asynchronous distributed
systems, there is no bound on the time it takes for a process to execute a
computation step or for a message to go from its sender to its receiver. In an
asynchronous distributed system, there is no upper bound on the relative pro-
cessor speeds, execution times, clock drifts, and delay during the transmission
of messages although they are finite. This is mainly casued by unpredictable
loads on the system that causes asynchrony in the system and one cannot
make any timing assumptions of any types. On the other hand, synchronous
systems are characterized by strict bounds on the execution times and message
transmission delays.

The asynchronous model of distributed system has simpler semantics when
compared to synchronous model. Applications based on the asynchronous
model are easily portable because there are no strict timing assumptions to take
care of. The asynchronous model of distributed systems is very popular and
has attracted lot of attention due to these reasons. Inspite of the attractiveness
of asynchronous distributed systems, it is well known that consensus, atomic
broadcast, and several other reliable broadcast problems cannot be solved
deterministically even for a single process failure due to the unbounded timing
characteristics. The main cause of this impossibility result is that it is very

567

568 Failure detectors

difficult to determine in asynchronous systems whether a process has failed
or is simply taking a long time for execution; so it is difficult to deal with
failures in these systems. On the other hand, in synchronous systems due to
strict timing constraints, failures can easily be detected.

The asynchronous model of distributed systems is widely used, and such
systems are prone to failures. Thus, detection and/or prevention of failures
in these systems is of vital importance. The detection of process failures is
a crucial task in the design of fault tolerant distributed systems. Detection
of crashed processes is especially difficult in asynchronous systems as it is
impossible to determine whether a process has really crashed or is very slow
(as there are no timing constraints present).

In this chapter, we discuss the concept of unreliable failure detectors to
deal with the impossibility results in asynchronous distributed systems with
crash failures. Basically, the asynchronous model of computation is extended
with a failure detection mechanism that is prone to errors in the sense that
a process can brand another process as crashed even though the process is
running. We study failure detectors in asynchronous distributed systems. We
investigate two major problems faced in asynchronous distributed environ-
ments, namely, consensus and atomic broadcast. We study several solutions
for these problems.

15.2 Unreliable failure detectors

Chandra and Toueg [3] introduced the concept of unreliable failure detectors
and showed how unreliable failure detectors can be used to solve two fun-
damental paradigms of asynchronous distributed systems with crash failures,
namely, consensus and atomic broadcast.

15.2.1 The system model

We consider asynchronous distributed systems in which there is no bound on
message delay, clock drift, or the time taken to execute a step. The system
consists of a finite set of n processes, Q = !p1"p2" ###"pn$. Each pair of
processes is connected by a reliable communication channel. A process can
fail by crashing only, i.e., by prematurely halting. A process behaves correctly
(i.e., according to its specification) until it crashes.

A discrete global clock is assumed, and the range of the clock’s ticks, %, is
the set of natural numbers. The global clock is used for the sake of simplicity
of presentation and reasoning and is not accessible to the processes.

A process pi is said to crash at time t if pi does not perform any action
after time t. Process failures are permanent; once a process crashes, it does
not recover. A correct process is a process that has not crashed.

569 15.2 Unreliable failure detectors

Informally, a run is an infinite execution of the system. Given any run & ,
Crashed(t, &) is the set of processes that have crashed by time t and Up't"&(
is the set of processes that are correct (i.e., have not crashed) by time t, that
is, Up(t, &) = Q − Crashed't, &). Crashed(&) is the set of processes that
have crashed in a run & and is equal to

⋃
tCrashed(t, &). Up(&) is the set of

processes that are correct in a run & and is equal to Q − Crashed(&). If a
process p ∈ Crashed(&), we say that p is a faulty process in & . If a process p
∈ Up(&), we say that p is a correct process in & . We consider only execution
runs where at least one process is correct.

Failure patterns and environments
A failure pattern is a function F from % to 2Q, where F (t) denotes the set
of processes that have crashed through time t. An environment E is a set of
failure patterns. Environments describe the crashes that can occur in a system.
In general, we consider the environments that contain all possible failure
patterns, i.e., there is no bound on the number of processes that crash.

Each process pi has a local failure detector module of D, denoted by Di.
Associated with each failure detector D is a range RD of values output by
the failure detector. A failure detector history H with range R is a fuction H
from)X% to R. D(F) denotes the set of possible failure detector histories
permitted for the failure pattern F , i.e., each history represents a possible
behavior of D for the failure pattern F . For any failure detector D, any failure
pattern F , and any history H in D(F), H(pi, t) is the set of processes suspected
by process pi at time t.

15.2.2 Failure detectors

A failure detector D is a distributed oracle that gives hints about failure
patterns. Each process pi in the distributed environment has its own local
failure detector Di, which monitors all other processes and maintains a list of
processes, currently pi suspects to have crashed. The suspicion is based on
relative timeouts of other processes at pi.

Thus, a failure detector D as the vector D = #Dp1"Dp2" ####Dpn$, where Di

is the failure detector module at process pi, that outputs the set of processes
that it currently suspects to have crashed. Formally, a failure detector is a
function “from time and the set of all runs” to 2Q. Dp't"&(is the set of
processes that are suspected to have crashed by p’s failure detector module
at time t in run & . If q ∈ Dp't"&(, we say that p suspects q at time t in run
& . After a process crashes, it is immaterial what its failure detector module
indicates. We formalize this by assuming that if p ∈ Crashed't, &), then
Dp't" &(= *.

The failure detectors can make mistakes, i.e., a correct process may be
added to the list of suspects and can later be removed if the failure detector
realizes that it was a mistake. Thus, a failure detector may continually add

570 Failure detectors

and remove processes from its list of suspects. Processes can be added and
removed from the list of suspects by each failure detector module any number
of times. At any time, failure detector modules at two processes may have
different lists of suspects.

It should be noted that the addition of a correct process to the list of
suspects by any other process or by all other processes should not prevent
this process from behaving correctly, according to its specifications.

15.2.3 Completeness and accuracy properties

Chandra and Toueg [3] classified failure detectors in terms of their complete-
ness and accuracy properties. Informally, completeness requires that a failure
detector eventually suspects all processes that have crashed and accuracy
resticts the mistakes a failure detector can make (i.e., a correct process suspect
another correct process). They define two types of completeness and four
types of accuracy properties, giving rise to eight classes of failure detectors.

Chandra and Toueg [3] introduced the concept of reducibility among
failure detectors. Informally, a failure detector D is reducible into another
failure detector D′ if there exists a distributed algorithm that can transform
D into D′. In this case, any problem that can be solved using D′ can also be
solved using D. If two failure detectors are reducible to each other, they are
said to be equivalent.

Chandra and Toueg [3] put failure detectors into eight classes and ordered
them into a hierarchy according to the reducibility relationship. In this hierar-
chy, some failure detectors can solve the consensus problem with any number
of process failures, while others require a certain number of correct processes
to solve the consensus problem. This requirement and the boundary where
this requirement becomes necessary have been clearly specified.

We now define completeness and accuracy properties of a failure detector.

Completeness
Definition 15.1 (Completeness) There is a time after which every process
that has crashed is permanently suspected by a correct process.

Completeness can be of two types:

• Strong completeness Eventually every process that crashes is perma-
nently suspected by every correct process. Notationally,

∀&"∀p ∈ Crashed'&("∀q ∈ Up'&("∃t such that ∀t′ ≥ t + p ∈ Dq't
′"&(#

• Weak completeness Eventually every process that crashes is perma-
nently suspected by some correct process. Notationally,

∀&"∀p ∈ Crashed'&("∃q ∈ Up'&("∃t such that ∀t′ ≥ t + p ∈ Dq't
′"&(#

571 15.2 Unreliable failure detectors

Note that completeness by itself may not be of much use. For example,
a failure detector may satisfy the strong completeness property by having
every process permanently suspect all other processes. Such a failure detector
is useless because it provides no information about actual failures. Thus, a
failure detector must satisfy some accuracy property to be useful. We define
this property next.

Accuracy
Definition 15.2 (Accuracy) There is a time after which a correct process
is never suspected by any correct process.

There are two types of accuracy property:

• Strong accuracy Correct processes are never suspected by any correct
process. Formally,

∀&"∀t"∀p"q ∈ Up't"&(+ p ̸∈ Dq't"&(#

Since in any practical system it is extremely difficult to achieve accuracy, we
weaken it as follows:

• Weak accuracy Some correct process is never suspected by any correct
process. Formally,

∀&"∃p ∈ Up'&("∀t"∀q ∈ Up't"&(+ p ̸∈ Dq't"&(#

We collectively refer to strong accuracy and weak accuracy as the perpetual
accuracy properties because these properties hold all the time. Note that even
weak accuracy is difficult to achieve, because a failure detector (even at
a correct process) may suspect a correct process and then later correct its
mistake. The weak accuracy property does not permit this. Thus, we further
weaken the accuracy requirement and allow failure detectors that may suspect
a correct process at some points in the run, but they eventually satisfy the
strong and weak accuracy properties.

Eventual accuracy
Definition 15.3 (Eventual accuracy) We need not require accuracy prop-
erty to be satisfied by each process at all the time. Instead, we require the
accuracy property to be eventually satisfied.

There are two types of eventual accuracy:

• Eventual strong accuracy There is a time after which correct processes
are not suspected by any correct process. Formally,

∀&"∃t"∀t′ ≥ t"∀p"q ∈ Up't′"&(+ p ̸∈ Dq't
′"&(#

572 Failure detectors

• Eventual weak accuracy There is a time after which some correct pro-
cess is not suspected by any correct process. Formally,

∀&"∃t"∀t′ ≥ t"∃p ∈ Up'&("∀q ∈ Up'&(+ p ̸∈ Dq't
′"&(#

We collectively refer to eventual strong accuracy and eventual weak accuracy
as the eventual accuracy properties because these properties hold eventually.

15.2.4 Types of failure detectors

Based on types of accuracies and completeness defined above, failure detec-
tors can be classified into the following categories:

• Perfect failure detectors (P) Failure detectors that satisfy the strong
completeness and the strong accuracy properties are called perfect failure
detectors.

• Eventually perfect failure detectors (♦P) Failure detectors that satisfy
the strong completeness and the eventual strong accuracy properties are
called eventually perfect failure detectors.

• Strong failure detectors (S) Failure detectors that satisfy the strong
completeness and the weak accuracy properties are called strong failure
detectors.

• Eventually strong failure detectors (♦S) Failure detectors that satisfy
the strong completeness and the eventual weak accuracy properties are
called eventually strong failure detectors.

• Weak failure detectors (W) Failure detectors that satisfy the weak
completeness and the weak accuracy properties are called weak failure
detectors.

• Eventually weak failure detectors (♦W) Failure detectors that satisfy
the weak completeness and the eventual weak accuracy properties are
called eventually weak failure detectors.

• Another class of failure detector is the one that satisfies weak completeness
and strong accuracy properties. This class is denoted by ,.

• The last class is the set of failure detectors that satisfy weak completeness
and eventually strong accuracy properties. This class is denoted by ♦,.

15.2.5 Reducibility of failure detectors

A failure detector D is reducible to another failure detector D′ if there is an
algorithm that transforms a failure detector D into another failure detector D′.
A natural question is: what does it mean that an algorithm transforms D into
D′? An algorithm TD → D′ transforms a failure detector D into another failure
detector D′ if and only if for every run R of TD → D′ under a failure pattern
F using D, outputR∈ D′(F), where outputR is the output of run R using fail-
ure detector D and D′(F) denotes the set of histories of failure detector D′ for

573 15.2 Unreliable failure detectors

failure pattern F . That is, variable outputp at process p emulates the output of
D′. Thus, TD → D′ can emulate D′ using D. TD → D′ need not emulate all fail-
ure detector histories of D′; however, all failure detector histories it emulates
must be histories of D′. Algorithm TD → D′ is called the reduction algorithm.

Given a reduction algorithm TD → E , any problem that can be solved
using E, can also be solved using D. We illustrate this with an example:
suppose a given algorithm A requires failure detector E, but only failure
detector D is available. We can execute A using failure detector D as follows.
Concurrently with A, processes run TD → E to transform D to E. Algorithm
A is modified at process p as follows: whenever A requires that p queries
its failure detector module, p reads the current value of outputp, which is
concurrently maintained by TD → E .

Since TD → E is able to use D to emulate E, D must provide at least
as much information about process failures as E does. Thus, if there is an
algorithm TD → E that transforms D into E, we say that E is weaker than D
and denote it by D ⊑ E. Note that ⊑ is a transitive relation. If D ⊑ E and
E ⊑ D, then we say that D and E are equivalent and denote it by D ≡ E.

If D and - are two classes of failure detectors and there exists an algorithm TD

→ E that can transform every failure detector D ∈ D into a failure detector E ∈ -,
then we say that the class of failure detectors D is reducible to the class of failure
detectors - and this is denoted by D ⊑ -. In this case, - is weaker than D. If
D ⊑ - and - ⊑ D, then D and - are equivalent and this is denoted by D ≡ -.

From a trivial reduction algorithm, where each process p periodically writes
the current output of its failure detector module into outputp, the following
relations between the classes of failure detectors are obvious:

Observation 15.1 P ⊑ ,, S ⊑ W , ♦P ⊑ ♦,"♦S ⊑ ♦W .

15.2.6 Reducing weak failure detector W to a strong failure detector S

In Algorithm 15.1, we give a reduction algorithm TD → D′ (due to Chandra and
Toueg [3]) that transforms any given failure detector D that satisfies weak
completeness, into a failure detector D′ that satisfies strong completeness.
D′ satisfies the same accuracy property that D satisfies. Thus, this algorithm
strenghtens the completeness while preserving the accuracy.

Informally, the conversion of any weak failure detector W to a strong
failure detector S is as follows: initially, for every process p, outputp is set
to null. (Recall that outputp is the variable emulating the output of the failure
detector module D′

p.) Every process p periodically sends (p, suspectsp) to
every process, where suspectsp denotes the set of processes that p suspects
according to its failure detector module Dp. When a process p recieves a
message (q, suspectsq) from a process q, process p adds the suspect list of
process q, suspectsq, to its output, outputp, and removes the process q from
its output as it is a correct process.

574 Failure detectors

Every process p executes the following:
outputp ← *

cobegin
//Task 1: repeat forever
suspectsp ← Dp {p queries its local failure detector module Dp}
send(p, suspectsp) to all other processes.
//Task 2: when receive (q, suspectsq) for a process q

outputp ← 'outputp ∪ suspectsq(− {q} {outputp emulates Ep}
coend

Algorithm 15.1 Transforming weak completeness to strong completeness [3].

A correctness argument
The correctness proof of the algorithm involves showing the following three
properties:

1. It transforms weak completeness into strong completeness.
2. It preserves the perpetual accuracy.
3. It preserves the eventual accuracy.

We show these properties in the following three lemmas.

Lemma 15.1 Let p be any process that crashes. If eventually some cor-
rect process permanently suspects p in HD, then eventually all correct pro-
cesses permanently suspect p in outputR, where HD is the history of failure
detector D and outputR is the output of an arbitrary run R using failure
detector D.

Since process p crashes, there is a time t′ after which no process recieves
a message from p. Suppose there is a correct process q that permanently
suspects p in HD after time t. Consider the execution of task 1 by process
q after time tp= max't" t′(. Process q sends a message (q, suspectsq) such
that p ∈ suspectsq to all processes. Eventually, every correct process recieves
(q, suspectsq) and adds p to output (in task 2). Since no correct process
recieves any messages from p after time t′ and tp ≥ t′, no correct process
removes p from its output after tp. Thus, there is a time after which every
correct process permanently suspects p in outputR.

Lemma 15.2 Let p be any process. If no process suspects p in HD before
time t, then no process suspects p in outputR before time t.

Suppose there is a time t before which no process suspects process p in HD.
Thus, no process sends a message of type (–, suspects) such that p ∈ suspects
before time t. Thus, no process q adds p to outputq before time t.

575 15.2 Unreliable failure detectors

Lemma 15.3 Let p be a correct process. If there is a time after which no
correct process suspects p in HD, then there is a time after which no correct
process suspects p in outputR.

Suppose there is a time t after which no correct process suspects p in HD.
Thus, all processes that suspect p after time t eventually crash. Thus, there
is time after which no process will send messages of type (–, suspects) such
that p ∈ suspects. Thus, there is a time t′ after which no correct process
recieves a message of type (–, suspects) such that p ∈ suspects. Let q be a
correct process. We need to show that there is a time after which q does not
suspect p in outputR. Consider the execution of task 1 by process p after
time t′. Process p sends the message (p, suspectsp) to q. When q receives
this message, it removes p from outputq if p is present in outputq (task 2).
Note that q does not receive any messages of type (–, suspects) such that
p ∈ suspects after time t′; therefore, q does not add p to outputq after time
t′. Thus, there is a time after which q does not suspect p in outputR.

Theorem 15.1 , ⊑ P"W ⊑ S"♦, ⊑ ♦P and ♦W ⊑ ♦S.

Proof Let D be any failure detector in ,, W , ♦,, or ♦ W . We show
that TD → E transforms D into a failure detector E in P, S, ♦P, or ♦S.
Since D satisfies weak completeness, E satisfies strong completeness (from
Lemma 15.1). We now argue that D and E have the same accuracy properties.
If D is in , or W , then D and E have the same accuracy property (from
Lemma 15.2). If D is in ♦, or ♦W , then D and E have the same accuracy
property (from Lemma 15.3).

Thus, we have:

, ⊑ P"W ⊑ S"♦, ⊑ ♦P and ♦W ⊑ ♦S# !

From Theorem 15.1 and Observation 15.1, we have the following result:

P ≡ ,"S ≡ W"♦P ≡ ♦," and ♦S ≡ ♦W#

A significance of this result is that if we solve a problem for the four failure
detectors with strong completeness, the problem is automatically solved for
the remaining four failure detectors.

15.2.7 Reducing an eventually weak failure detector ♦W to an eventually strong failure
detector ♦S

Algorithm 15.2 gives an algorithm that converts any eventually weak failure
detector D ∈ ♦W into an eventually strong failure detector E ∈ ♦S. Q is the
set of all processes.

At process p, variable suspectedp(r , q) denotes how many times process
q has suspected process r and variable refutedp(r , q) denotes how many

576 Failure detectors

times process r has refuted process q. Both variables are initialized to zero.
Sp denotes the suspect list of process p.

Process p runs the following:

for all q, r ∈ Q
{Number of times q suspected r according to p}
suspectedp(r , q) ← 0
{Number of times r refuted q according to p}
refutedp(r , q) ← 0

cobegin
//Task 1: repeat forever
if (r ∈ Dp and refutedp(r , p) ≤ suspectedp(r , p)) then

p rbcasts (p, suspects, r, refutedp(r , p) + 1)

//Task 2: when p rbdelivers (q, suspects, r, k)
suspectedp(r , q) ← k
if p = r then p rbcasts (p, refutes, q, k)

//Task 3: when p redelivers (r, refutes, q, k)
refutedp(r , q) ← k

//Task 4: repeat forever
for all processes r

if ∃ q : suspectedp(r , q) > refutedp(r , q)
then Sp ← Sp

⋃
!r$

else Sp ← Sp − !r$
coend

Algorithm 15.2 An algorithm to reduce an eventually weak failure detector into an eventually strong
failure detector [3].

An explanation of the algorithm
The algorithm consists of four tasks.

In task 1, a process p continuously performs the following for every process
r that it suspects according to its failure detector module Dp: if the number
of times process r is suspected by p is greater than the number of times r has
refuted p, then p broadcasts a suspect message that contains the incremented
refuted value.

In task 2, when process p receives a suspect message (q, suspects, r, k)
from a process q, it updates suspectedp(r , q) to k. If process p discovers
that it was erroneously suspected by process q, p broadcasts an appropriate
refutation, refuting the suspicion of process q.

In task 3, when process p receives a refutation message (r, refutes, q, k)
from process r, it updates refutedp(r , q) to k.

577 15.3 The consensus problem

In task 4, the following is repeatedly done for every process r: if there
exists a process q such that the number of times q suspects process r is greater
than the number of times the process r refutes q according to p, then process
r is added to the suspect list of process p. Otherwise, r is removed from the
suspect list of process p.

Correctness argument
A correctness argument of the algorithm is as follows. When a process q
receives a suspect message accusing process p, process q may add p to its list
of suspects Sq. However, upon receiving p’s refutation, process q will remove
p from its list of suspects Sq. However, p can be suspected again and added to
Sq a second time. However, a further refutation from p will cause p to be again
removed from Sq. Thus, a possibly infinite sequence of suspicions followed
by corresponding refutations may occur, resulting in p being repeatedly added
to and removed from Sq. However, from the eventual weak accuracy property
of D, there is a time after which some correct process is not suspected. That
is, there is a process p such that there is a time after which no correct process
receives a message of type (*, suspects, p, k), suspecting p. Thus, after a
time no correct process adds process p to its suspect list. Together with the
refutation mechanism, this ensures the eventual weak accuracy property of
the constructed E.

Now let us see why E satisfies the strong completeness property. Since
D satisfies the weak completeness property, eventually every process that
crashes is permanently suspected by some correct process, say p. Thus, even-
tually process p will repeatedly broadcast (p, suspects, *, k) messages for these
crashed processes and since these processed have crashed, no one will send
refute messages for them. Thus all crashed processes will eventually belong to
the suspect list of all correct processes. Thus, due to the broadcast of suspect
messages and weak completeness property of D, E satisfies the strong com-
pleteness property. Thus E satisfies strong completeness and weak accuracy.

15.3 The consensus problem

In the consensus problem, each correct process proposes a value and all
processes must reach a unanimous and irrevocable decision on a value that
is related to the proposed values [9]. The consensus problem is defined in
terms of the following properties:

• Termination Every correct process eventually decides some value.
• Uniform integrity Every process decides at most once.
• Agreement No two correct processes decide differently.
• Uniform validity If a process decides a value v, then some process

proposed v.

