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ABSTRACT
The Fast Paxos algorithm, when presented in plain English,
is still quite hard to understand for those like us—people
who don’t have the brain of Leslie Lamport. Here we pro-
pose a simpler proof that can help understand it.

1. INTRODUCTION
Reaching agreement, or consensus, among a set of processes
in a distributed system is a fundamental problem that has
been studied extensively in the research literature []. A dis-
tributed algorithm is said to solve consensus if a set of pro-
cesses, each starting with some initial value, can reach agree-
ment on a common value chosen among the initial values.

The Paxos [3, 4] and Fast Paxos [5] protocols for solving
distributed consensus are acclaimed for be both simple and
efficient, yet truly understanding these protocols and why
they work still demands a significant effort on those inter-
ested in learning, and perhaps implementing them. This is
still holds true after all these years, despite many efforts to
explain the protocol in simple terms, e.g. [4].

Very few textbooks include a description of the protocols,
despite their importance for implementing fault tolerant ser-
vices.

In this paper, we aim to describe the Paxos protocols in an
easy to understand manner, using simple realistic examples
rather than a general description. We also provide a new
and simpler proof of the protocols.

2. PAXOS
∗This work was performed while Alessandro Mei was a Marie
Curie Fellow at the Computer Science and Engineering De-
partment, University of California San Diego, USA. The fel-
lowship is funded by the European Union Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement
n. 253461.

In its original incarnation [3], Paxos was described in terms
of a parliament in which part-time legislators needed to keep
consistent records of their passing of laws. This description
was hard to understand and related to practical computer
science, and Lamport later provided a simpler description of
the protocol in [4]. In this description, the Paxos [3, 4] was
described in terms of three separate agent roles: proposers
that can propose values for consensus, acceptors that accept
a value among those proposed, and learners that learn the
chosen value. A process may take on multiple roles: in a
typical configuration, all processes play all roles. Paxos is
safe for any number of crash failures, and can make progress
with up to ta crash failures, given 2ta + 1 acceptors. The
number of learners and proposers is unrestricted.

1. Prepare: A proposer chooses one of the rounds associ-
ated to itself, say round i, and starts off the round by
sending a 〈Prepare〉 message to all the acceptors.

2. Promise: When an acceptor receives the 〈Prepare〉
message for round i, it sends a 〈Promise〉 message
back to the proposer (unless it has promised not to!).
In this way, the acceptor promises that it will not par-
ticipate in any round smaller than i and it will stick
to this promise. Along with the promise, the acceptor
sends the last value it has voted and the associated
round.

3. Accept: After collecting a quorum of n − f promises
for round i from the acceptors, the proposer sends an
〈Accept〉 message to all the acceptors asking to vote
for a value selected as follows:

• A value v proposed by the proposer, if no acceptor
in the quorum has ever voted;

• The value vval in the promises that is associated
with the highest round, otherwise (note that there
can exists at most one such value, since the only
value that can be voted in a round is the one
proposed by the proposer that is responsible of
that round).

4. Learn: If an acceptor receives an 〈Accept〉 message,
and if it has not promised otherwise, it votes for the
value in the message and sends a 〈Learn〉 message
to all the learners to let them know about the vote.
Acceptors votes only once in each round.



5. The value is chosen: If a learner receives n−f 〈Learn〉
messages for the same round and the same value from
a quorum of n− f acceptors, then the value is chosen.

We will see later how, and under what hypothesis, we can
guarantee progress. Now, we focus on safety.

Algorithm 1 Paxos — Proposer p

1: Constants:

2: A, n, and f . {A is the set of acceptors. n = |A| and
f = b(n− 1)/2c.}

3: Init:
4: crnd← −1 {Current round number}

5: on 〈Propose, val〉
6: crnd← pickNextRound(crnd)
7: cval← val
8: P ← ∅
9: send 〈Prepare, crnd〉 to A

10: on 〈Promise, rnd, vrnd, vval〉 with rnd = crnd from
acceptor a

11: P ← P ∪ (vrnd, vval)

12: on event |P | ≥ n− f
13: j = max{vrnd : (vrnd, vval) ∈ P}
14: if j ≥ 0 then
15: V = {vval : (j, vval) ∈ P}
16: cval← pick(V ) {Pick proposed value vval with

largest vrnd}
17: send 〈Accept, crnd, cval〉 to A

Algorithm 2 Paxos — Acceptor a

1: Constants:

2: L {Set of learners}

3: Init:
4: rnd← −1
5: vrnd← −1
6: vval← −1

7: on 〈Prepare, prnd〉 with prnd > rnd from proposer p
8: rnd← prnd
9: send 〈Promise, rnd, vrnd, vval〉 to proposer p

10: on 〈Accept, i, v〉 with i ≥ rnd from proposer p
11: rnd← i
12: vrnd← i
13: vval← v
14: send 〈Learn, i, v〉 to L

2.1 A simple proof of safety for Paxos
To prove safety, we need to prove the following three prop-
erties:

CS1 Only a proposed value may be chosen.

CS2 Only a single value is chosen.

CS3 Only a chosen value may be learned by a correct learner.

Property CS1 is very easy to check, acceptors only vote for
values that have been proposed by the proposers. Prop-
erty CS3 is very easy to check as well, learners learn a value

Algorithm 3 Paxos — Learner l

1: Init:
2: V ← ∅
3: on 〈Learn, (i, v)〉 from acceptor a
4: V ← V ] (i, v)

5: on event ∃i, v : |{(i, v) : (i, v) ∈ V }| ≥ n− f
6: v is chosen

only if it has been voted by a quorum of acceptors, the same
quorum needed to choose the value. Therefore, we can con-
centrate on Property CS2. In order to do that, it is more
convenient to prove the following safety property:

CS If acceptor a has voted for value v at round i, then no
value v′ 6= v can be chosen in any previous round.

Property CS is easier to handle than Property CS2 and it
implies it in a straightforward way (note that it is impossible
that two different values are chosen in the same round since
acceptors vote at most once in each round, therefore there
cannot be two different quorums of 〈Learn〉 messages).

Let’s assume that acceptor a has voted for value v at round i.
Acceptor a must have received an 〈Accept〉 message from
a proposer. In turn, the proposer must have collected a
quorum of n − f 〈Promise〉 messages for round i from the
acceptors. Let Q ⊆ A be the set of acceptors who sent the
〈Promise〉 message for round i. For each acceptor a ∈ Q,
the promise has the form 〈promise, i, vrnda, vvala〉, and the
meaning is that acceptor a has last voted in round vrnda, its
last vote was for value vvala, and it has promised not to vote
in rounds vrnd +1, . . . , i−1. Let j be the largest vrnd in the
promises collected from the acceptors in Q. Now we have all
the preliminaries to understand the proof. Before coming to
the theorem, however, it is useful to look at Figure 1, where
we show a graphical representation of the promises collected
by the proposer executing round 9 in a possible execution of
Paxos with 7 acceptors.

Theorem 1. In Paxos, if acceptor a has voted for value v
at round i, then no value v′ 6= v can be chosen in any previ-
ous round.

Proof. We prove Property CS by induction on round i.
The base case, when i = 0, is trivial. Let’s move to the
inductive step: We assume that the property is true for
rounds 0, . . . , i − 1 (the inductive hypothesis) and we prove
that the property is true for round i. Recall that Q ⊆ A,
|Q| ≥ n− f , is the set of acceptors who sent the 〈Promise〉
for round i and that j < i is the largest vrnd in the promises.

First, no value can be chosen in rounds j + 1, . . . , i − 1.
Indeed, the acceptors in Q have promised not to vote in these
rounds and the remaining |A\Q| ≤ n− (n− f) = f < n− f
acceptors are not enough to form a quorum. If j = −1, then
we are done with the inductive step and with the proof. So,
let’s assume that j ≥ 0 and proceed.

Assume acceptor a has voted for value v at round i. This
is possible only if some acceptor in Q has voted value v



j i

4 5 6 7 8 9

a0 ? ? ? ? ?

a1 1 – – – –

a2 – – – – –

a3 ? ? ? ? ?

a4 ? ? ? ? ?

a5 – – – – –

a6 1 – – – –

Figure 1: On the rows we have the acceptors; on
the columns the rounds. The quorum Q, of f = 4
acceptors, consists of {a1, a2, a5, a6}. Acceptors a1

and a6 have sent 〈promise, 9, 4, 1〉 (that means they
last voted 1 in round 4 and they promised not to
vote in rounds 5, . . . , 8—hence the dashes). Accep-
tors a2 and a5 have sent a promise message with
some vrnd strictly smaller than 4 (they have last
voted some round before and promised not to vote
before round 9). The largest round j in which an
acceptor in Q has voted is round 4. We don’t know
the votes of the f acceptors {a0, a3, a4} that are not
in the quorum—hence the question marks.

in round j (recall that j ≥ 0 and see Rows 15–16 in Algo-
rithm 1). We can deduce two consequences: No value v′ 6= v
can be chosen in round j (round j is associated to a single
proposer and thus only a single value is proposed); and, no
value v′ 6= v can be chosen in rounds 0, . . . , j − 1 (by using
the inductive hypothesis on round j). This concludes the
inductive step and the proof.

Therefore, we know that Paxos is safe. Note that safety
does not depend on the number of failures—no assumption
on the number of failures is used in the proof of the safety
theorem. If more than f acceptors fail, then Paxos does not
choose any value (no quorum can be formed) but it is still
safe. To get liveness, the number of failures has to be at
most f and also do we need other assumptions.

2.2 Liveness of Paxos
In Paxos, progress is not guaranteed even if the number of
failures is at most f = b(n−1)/2c. Indeed, if more than one
proposer starts off new rounds concurrently, then there is
no guarantee that any round completes and a value is cho-
sen. As an example, rounds may interweave in the following
way: Proposer p sends 〈Prepare〉 message for round i, ac-
ceptors send the corresponding 〈Promise〉 message, then
proposer p sends the accept message; unfortunately, right
before receiving the 〈Accept〉 message the acceptors re-
ceive a 〈Prepare〉 message for round i′ > i from another
proposer; the acceptors have to promise not to vote for any
round before i′, so preventing round i to complete success-
fully. In turn, round i′ can then be frustrated by a further
round and this can go on indefinitely. It is important to re-
alize that we cannot do much about it—we cannot get both

safety and liveness—since it is impossible to solve consensus
in the presence of faults (see the well-known FLP result [2]).

To get progress we can however use a leader election pro-
tocol. One of the proposer is elected as the “distinguished”
proposer—the only one allowed to start off new rounds. In
this way, no conflict occurs and, if the number of failures is
at most f , the round completes nicely with a chosen value.
In the following, we will refer to the distinguish proposer
as the “coordinator”. Of course, we are not circumventing
the FLP result. In the presence of faults leader election is
impossible as well. However, with Paxos we can accept that
the election fails and that two or more leaders are chosen.
In that case we cannot guarantee liveness but Paxos is there
to guarantee safety whatsoever.

More formally, we can assume that the processes have ac-
cess to failure detector Ω that indicates who is the leader.
At each process p, the Ω module outputs a single process
that is currently considered the leader by process p. The Ω
abstraction has the following property: There is a time af-
ter which all the correct processes always trust the same
correct process. For a more formal definition, see [1]. In
Paxos, Ω is used by the proposers to agree on who is the
coordinator. Proposer p considers itself the coordinator if
its Ω module outputs p. Eventually, all the proposers will
agree and therefore the system is guaranteed to progress.

3. FAST PAXOS
Consensus protocols like Paxos are often used to get con-
sensus on a sequence of values. For example, Paxos can be
used to implement a replicated state machine [], where a
large number of consistently ordered commands should be
agreed upon by the replicated servers. A sequence of Paxos
instances executes and instance s is used to agree on the
s-th command to the replicated state machine.

A key observation in such a system is that a single 〈Prepare〉
message can be sent to initiate a sequence of Paxos instances.
Similarly, a single 〈Promise〉message can be sent to respond
to the aggregate 〈Prepare〉 message. In this way, the over-
head of these two messages of Paxos is amortized over a
large number of instances. To complete each instance, a pro-
poser p that has a value to propose sends the value to the
coordinator c. The coordinator then completes the instance
by sending the proper 〈Accept〉 message to the acceptors
that will be followed by the 〈Learn〉 message to the learn-
ers. The pattern is shown in Figure 2(a). You can clearly
see that the delay between proposing and learning in each
instance consists of 3 messages.

Fast Paxos [5] is based on the following idea: We can save
one message and reduce the delay between proposing and
learning (and thus the delay of executing a command by
a service based on the replicated state machine approach)
by allowing the proposer to send its value directly to the
acceptors. To achieve this result, the coordinator can start
off a so called fast round by sending an 〈accept, crnd ,⊥〉
message (a so called accept any message) to the acceptors
as a response to the 〈Promise〉 messages. The meaning of
the 〈accept, crnd ,⊥〉 message is that, in the same round,
the acceptors can accept any value that they receive from
any of the proposers. Since the accept any message does
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(b) Proposer → acceptor → learner.

Figure 2: Delay in Paxos (a) and in Fast Paxos (b).

not carry any value, the coordinator can send an aggregate
〈accept, crnd ,⊥〉 for the whole sequence of instances just
like the 〈Prepare〉 and 〈Promise〉 messages, and so the
overhead of this message does not thus influence significantly
the delay of a single instance. As a result, the pattern of
each instance consists of two messages, a message with the
proposed value from any of the proposer to the acceptors,
and a 〈Learn〉 message from the acceptors to the learners,
as shown in Figure 2(b).

The improvement of Fast Paxos in delay comes at a price. In
the same fast round multiple proposers can send a value to
the acceptors. Therefore, in the same round many different
values can be voted by the acceptors. Note that this is
different from Paxos, where a key ingredient in the proof
of the safety theorem is exactly that in every round only
one value, the one proposed by the proposer responsible for
that round, can be voted. To solve the problem, in Fast
Paxos we require a larger quorum of n−f ′ acceptors, where
f ′ = b(n−1)/3c. Of course, the downside is that the number

of failures we can tolerate is now only f ′, which is smaller, or,
in other words, the replication required to tolerate failures
is larger. Why we need a larger quorum and why exactly
that quorum is enough to guarantee safety will be clearer in
the next sections.

3.1 The Fast Paxos Protocol
First, it is useful to understand why the quorum requirement
of n − f , where f = b(n − 1)/2c, does not work any more.
To make a practical example, assume that n = 7 and f = 3 .
During round i, the proposer responsible for round i collects
a quorum of exactly n− f = 4 promises from the acceptors.
Some of the promises have the form 〈promise, i, j, 1〉 (the
last vote was cast in round j and the value was 1) and some
have the form 〈promise, i, j, 2〉 (the last vote was cast in
round j and the value was 2). This is possible in Fast Paxos
since multiple values can be proposed and voted in a fast
round. The problem is that the coordinator still does not
know the last vote of |A\Q| = n−(n−f) = f = n−f−1 = 3
acceptors and, unfortunately, these may be enough to form
a quorum of n− f = 4 votes in round j either on value 1 or
on value 2. The proposer just does not know and therefore
it cannot make any safe choice in round i. To be able to
progress we have ask for a larger quorum of n−f ′ acceptors,
where f ′ = b(n− 1)/3c.

Therefore, let’s assume that the proposer that is executing
round i has collected n−f ′ promises from a set Q of exactly
n − f ′ acceptors. Again, let j be the highest vrnd in the
promises. Moreover, let Qj ⊆ Q be the set of acceptors
that last voted in round j and let Qj [v] ⊆ Qj be the set of
acceptors that last voted value v in round j. As we know,
in Fast Paxos there is no guarantee that the acceptors in
Qj have last voted for the same value. Clearly, that means
that we need to change the rule that Paxos uses to select
the value to be sent in the 〈Accept〉 message. We change
the rule in the following way:

1. if j = −1 (no acceptor in Q has voted yet), select ⊥
(start a fast round).

2. if j ≥ 0 and there exists v such that |Qj [v]| ≥ n− 2f ′,
then select v (note that there can be at most one such
value);

3. if j ≥ 0 and for all v′ we get |Qj [v
′]| < n − 2f ′, then

select any value that has been last voted in round j.

In the following section we will see that this simple rule is
enough to guarantee safety.

3.2 A simple proof of safety for Fast Paxos
Like in Paxos, our goal is to prove the three safety Proper-
ties CS1, CS2, and CS3. Again, Property CS1 and CS3 are
very easy to check and we prove Property CS as a way to
prove Property CS2.

Theorem 2. In Fast Paxos, if acceptor a has voted for
value v at round i, then no value v′ 6= v can be chosen in
any previous round.
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Figure 3: Fast Paxos: The acceptors in the gray
areas have not voted for value v′ in round j. The
acceptors in Q \ Qj have promised not to vote any
value in round j, and the acceptors in Qj \Qj [v

′] have
voted in round j for some value different from v′.

Proof. We prove Property CS by induction on round i.
The base case, when i = 0, is trivially true. We now assume
that the property is true for rounds 0, . . . , i−1 (the inductive
hypothesis) and we prove the property for round i. Let Q ⊆
A, |Q| = n − f ′, be the quorum of acceptors that sent the
〈Promise〉 message for round i, j < i be the largest vrnd in
the promises, Qj ⊆ Q be the set of acceptors who last voted
in round j, and Qj [v

′] ⊆ Qj be the set of acceptors that have
last voted value v′ in round j. Just like in Paxos, we can
easily see that no value can be chosen in rounds j+1, . . . , i−1
(the acceptors in A\Q are not enough to form a quorum). If
j = −1, then we are done with the inductive step and with
the proof. So, let’s assume that j ≥ 0 and proceed.

Assume that acceptor a has voted for value v at round i.
Then, for all v′ 6= v we know that |Qj [v

′]| < n − 2f ′. As
a consequence, no value v′ 6= v can be chosen in round j
since the acceptors in Q \ Qj [v

′], which are strictly more
than n− f ′ − (n− 2f ′) = f ′, have not voted for value v′ in
round j. Indeed, Q \ Qj [v

′] = (Q \ Qj) ∪ (Qj \ Qj [v
′]), the

acceptors in Q \Qj have promised not to vote any value in
round j, and the acceptors in Qj \Qj [v

′] have not voted for
value v′ by definition. (See Figure 3.)

Lastly, since at least one acceptor has voted for v in round j,
no value v′ 6= v can be chosen in rounds 0, . . . , j−1 by using
the inductive hypothesis on round j. This concludes the
inductive step and the proof.

Property CS2 easily follows from Property CS like in Paxos.
Therefore, we are done and we can claim that Fast Paxos is
safe.

3.3 Liveness of Fast Paxos
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