
The Part-Time Parliament

Leslie Lamport

This article appeared in ACM Transactions on Computer Sys-
tems 16, 2 (May 1998), 133-169. Minor corrections were made
on 29 August 2000.

The Part-Time Parliament

LESLIE LAMPORT

Digital Equipment Corporation

Recent archaeological discoveries on the island of Paxos reveal that the parliament functioned de-
spite the peripatetic propensity of its part-time legislators. The legislators maintained consistent
copies of the parliamentary record, despite their frequent forays from the chamber and the forget-
fulness of their messengers. The Paxon parliament’s protocol provides a new way of implementing
the state-machine approach to the design of distributed systems.

Categories and Subject Descriptors: C2.4 [Computer-Communications Networks]: Distributed
Systems—Network operating systems; D4.5 [Operating Systems]: Reliability—Fault-tolerance;
J.1 [Administrative Data Processing]: Government

General Terms: Design, Reliability

Additional Key Words and Phrases: State machines, three-phase commit, voting

This submission was recently discovered behind a filing cabinet in the TOCS editorial
office. Despite its age, the editor-in-chief felt that it was worth publishing. Because the
author is currently doing field work in the Greek isles and cannot be reached, I was asked
to prepare it for publication.

The author appears to be an archeologist with only a passing interest in computer sci-
ence. This is unfortunate; even though the obscure ancient Paxon civilization he describes
is of little interest to most computer scientists, its legislative system is an excellent model
for how to implement a distributed computer system in an asynchronous environment.
Indeed, some of the refinements the Paxons made to their protocol appear to be unknown
in the systems literature.

The author does give a brief discussion of the Paxon Parliament’s relevance to dis-
tributed computing in Section 4. Computer scientists will probably want to read that
section first. Even before that, they might want to read the explanation of the algorithm
for computer scientists by Lampson [1996]. The algorithm is also described more formally
by De Prisco et al. [1997]. I have added further comments on the relation between the
ancient protocols and more recent work at the end of Section 4.

Keith Marzullo
University of California, San Diego

Authors’ address: Systems Research Center, Digital Equipment Corporation, 130 Lytton Avenue,
Palo Alto, CA 94301.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
c© 1998 ACM 0000-0000/98/0000-0000 $00.00

2 · Leslie Lamport

1 The Problem

1.1 The Island of Paxos

Early in this millennium, the Aegean island of Paxos was a thriving mercantile cen-
ter.1 Wealth led to political sophistication, and the Paxons replaced their ancient
theocracy with a parliamentary form of government. But trade came before civic
duty, and no one in Paxos was willing to devote his life to Parliament. The Paxon
Parliament had to function even though legislators continually wandered in and out
of the parliamentary Chamber.

The problem of governing with a part-time parliament bears a remarkable corre-
spondence to the problem faced by today’s fault-tolerant distributed systems, where
legislators correspond to processes and leaving the Chamber corresponds to failing.
The Paxons’ solution may therefore be of some interest to computer scientists. I
present here a short history of the Paxos Parliament’s protocol, followed by an even
shorter discussion of its relevance for distributed systems.

Paxon civilization was destroyed by a foreign invasion, and archeologists have just
recently begun to unearth its history. Our knowledge of the Paxon Parliament is
therefore fragmentary. Although the basic protocols are known, we are ignorant of
many details. Where such details are of interest, I will take the liberty of speculating
on what the Paxons might have done.

1.2 Requirements

Parliament’s primary task was to determine the law of the land, which was defined
by the sequence of decrees it passed. A modern parliament will employ a secretary
to record its actions, but no one in Paxos was willing to remain in the Chamber
throughout the session to act as secretary. Instead, each Paxon legislator main-
tained a ledger in which he recorded the numbered sequence of decrees that were
passed. For example, legislator Λῐνχ∂’s ledger had the entry

155: The olive tax is 3 drachmas per ton

if she believed that the 155th decree passed by Parliament set the tax on olives to 3
drachmas per ton. Ledgers were written with indelible ink, and their entries could
not be changed.

The first requirement of the parliamentary protocol was the consistency of ledgers,
meaning that no two ledgers could contain contradictory information. If legislator
Φισ∂ερ had the entry

132: Lamps must use only olive oil

in his ledger, then no other legislator’s ledger could have a different entry for decree
132. However, another legislator might have no entry in his ledger for decree 132 if
he hadn’t yet learned that the decree had been passed.

Consistency of ledgers was not sufficient, since it could be trivially fulfilled by
leaving all ledgers blank. Some requirement was needed to guarantee that decrees

1It should not be confused with the Ionian island of Paxoi, whose name is sometimes corrupted
to Paxos.

The Part-Time Parliament · 3

were eventually passed and recorded in ledgers. In modern parliaments, the passing
of decrees is hindered by disagreement among legislators. This was not the case
in Paxos, where an atmosphere of mutual trust prevailed. Paxon legislators were
willing to pass any decree that was proposed. However, their peripatetic propensity
posed a problem. Consistency would be lost if one group of legislators passed the
decree

37: Painting on temple walls is forbidden

and then left for a banquet, whereupon a different group of legislators entered
the Chamber and, knowing nothing about what had just happened, passed the
conflicting decree

37: Freedom of artistic expression is guaranteed

Progress could not be guaranteed unless enough legislators stayed in the Cham-
ber for a long enough time. Because Paxon legislators were unwilling to curtail
their outside activities, it was impossible to ensure that any decree would ever be
passed. However, legislators were willing to guarantee that, while in the Chamber,
they and their aides would act promptly on all parliamentary matters. This guar-
antee allowed the Paxons to devise a parliamentary protocol satisfying the following
progress condition.

If a majority of the legislators2 were in the Chamber and no one entered
or left the Chamber for a sufficiently long period of time then any decree
proposed by a legislator in the Chamber would be passed, and every
decree that had been passed would appear in the ledger of every legislator
in the Chamber.

1.3 Assumptions

The requirements of the parliamentary protocol could be achieved only by providing
the legislators with the necessary resources. Each legislator received a sturdy ledger
in which to record the decrees, a pen, and a supply of indelible ink. Legislators might
forget what they had been doing if they left the Chamber,3 so they would write
notes in the back of the ledgers to remind themselves of important parliamentary
tasks. An entry in the list of decrees was never changed, but notes could be crossed
out. Achieving the progress condition required that legislators be able to measure
the passage of time, so they were given simple hourglass timers.

Legislators carried their ledgers at all times, and could always read the list of
decrees and any note that had not been crossed out. The ledgers were made of the
finest parchment and were used for only the most important notes. A legislator
would write other notes on a slip of paper, which he might (or might not) lose if
he left the Chamber.

The acoustics of the Chamber were poor, making oratory impossible. Legislators
could communicate only by messenger, and were provided with funds to hire as

2In translating the progress condition, I have rendered the Paxon word µαδζ∂ωριτ̆ισετ as majority
of the legislators. Alternative translations of this word have been proposed and are discussed in
Section 2.2.
3In one tragic incident, legislator Tωυεγ developed irreversible amnesia after being hit on the
head by a falling statue just outside the Chamber.

4 · Leslie Lamport

many messengers as they needed. A messenger could be counted on not to garble
messages, but he might forget that he had already delivered a message, and deliver
it again. Like the legislators they served, messengers devoted only part of their
time to parliamentary duties. A messenger might leave the Chamber to conduct
some business—perhaps taking a six-month voyage—before delivering a message.
He might even leave forever, in which case the message would never be delivered.

Although legislators and messengers could enter and leave at any time, when
inside the Chamber they devoted themselves to the business of Parliament. While
they remained in the Chamber, messengers delivered messages in a timely fashion
and legislators reacted promptly to any messages they received.

The official records of Paxos claim that legislators and messengers were scrupu-
lously honest and strictly obeyed parliamentary protocol. Most scholars discount
this as propaganda, intended to portray Paxos as morally superior to its eastern
neighbors. Dishonesty, although rare, undoubtedly did occur. However, because it
was never mentioned in official documents, we have little knowledge of how Par-
liament coped with dishonest legislators or messengers. What evidence has been
uncovered is discussed in Section 3.3.5.

2 The Single-Decree Synod

The Paxon Parliament evolved from an earlier ceremonial Synod of priests that
was convened every 19 years to choose a single, symbolic decree. For centuries, the
Synod had chosen the decree by a conventional procedure that required all priests
to be present. But as commerce flourished, priests began wandering in and out of
the Chamber while the Synod was in progress. Finally, the old protocol failed, and
a Synod ended with no decree chosen. To prevent a repetition of this theological
disaster, Paxon religious leaders asked mathematicians to formulate a protocol for
choosing the Synod’s decree. The protocol’s requirements and assumptions were es-
sentially the same as those of the later Parliament except that instead of containing
a sequence of decrees, a ledger would have at most one decree. The resulting Synod
protocol is described here; the Parliamentary protocol is described in Section 3.

Mathematicians derived the Synod protocol in a series of steps. First, they proved
results showing that a protocol satisfying certain constraints would guarantee con-
sistency and allow progress. A preliminary protocol was then derived directly from
these constraints. A restricted version of the preliminary protocol provided the
basic protocol that guaranteed consistency, but not progress. The complete Synod
protocol, satisfying the consistency and progress requirements, was obtained by
restricting the basic protocol.4

The mathematical results are described in Section 2.1, and the protocols are
described informally in Sections 2.2–2.4. A more formal description and correctness
proof of the basic protocol appears in the appendix.

4The complete history of the Synod protocol’s discovery is not known. Like modern computer
scientists, Paxon mathematicians would describe elegant, logical derivations that bore no resem-
blance to how the algorithms were actually derived. However, it is known that the mathematical
results (Theorems 1 and 2 of Section 2.1) really did precede the protocol. They were discovered
when mathematicians, in response to the request for a protocol, were attempting to prove that a
satisfactory protocol was impossible.

The Part-Time Parliament · 5

2.1 Mathematical Results

The Synod’s decree was chosen through a series of numbered ballots, where a ballot
was a referendum on a single decree. In each ballot, a priest had the choice only
of voting for the decree or not voting.5 Associated with a ballot was a set of
priests called a quorum. A ballot succeeded iff (if and only if) every priest in the
quorum voted for the decree. Formally, a ballot B consisted of the following four
components. (Unless otherwise qualified, set is taken to mean finite set.6)

Bdec A decree (the one being voted on).
Bqrm A nonempty set of priests (the ballot’s quorum).
Bvot A set of priests (the ones who cast votes for the decree).7

Bbal A ballot number.

A ballot B was said to be successful iff Bqrm ⊆ Bvot , so a successful ballot was one
in which every quorum member voted.

Ballot numbers were chosen from an unbounded ordered set of numbers. If
B′

bal > Bbal , then ballot B′ was said to be later than ballot B. However, this
indicated nothing about the order in which ballots were conducted; a later ballot
could actually have taken place before an earlier one.

Paxon mathematicians defined three conditions on a set B of ballots, and then
showed that consistency was guaranteed and progress was possible if the set of
ballots that had taken place satisfied those conditions. The first two conditions
were simple; they can be stated informally as follows.

B1(B) Each ballot in B has a unique ballot number.
B2(B) The quorums of any two ballots in B have at least one priest in common.

The third condition was more complicated. One Paxon manuscript contained the
following, rather confusing, statement of it.

B3(B) For every ballot B in B, if any priest in B’s quorum voted in an earlier
ballot in B, then the decree of B equals the decree of the latest of those
earlier ballots.

Interpretation of this cryptic text was aided by the manuscript pictured in Figure 1,
which illustrates condition B3(B) with a set B of five ballots for a Synod consisting
of the five priests A, B, Γ, ∆, and E. This set B contains five ballots, where for
each ballot, the set of voters is the subset of the priests in the quorum whose names
are enclosed in boxes. For example, ballot number 14 has decree α, a quorum
containing three priests, and a set of two voters. Condition B3(B) has the form
“for every B in B: . . . ”, where “. . .” is a condition on ballot B. The conditions for
the five ballots B of Figure 1 are as follows.

5Like some modern nations, Paxos had not fully grasped the nature of Athenian democracy.
6Although Paxon mathematicians were remarkably advanced for their time, they obviously had
no knowledge of set theory. I have taken the liberty of translating the Paxon’s more primitive
notation into the language of modern set theory.
7Only priests in the quorum actually voted, but Paxon mathematicians found it easier to convince
people that the protocol was correct if, in their proof, they allowed any priest to vote in any ballot.

6 · Leslie Lamport

decree quorum and voters

2 α A B Γ ∆

5 β A B Γ E

14 α B ∆ E

27 β A Γ ∆

29 β B Γ ∆

Fig. 1. Paxon manuscript showing a set B, consisting of five ballots, that satisfies conditions
B1(B)–B3(B). (Explanatory column headings have been added.)

2. Ballot number 2 is the earliest ballot, so the condition on that ballot is trivially
true.

5. None of ballot 5’s four quorum members voted in an earlier ballot, so the
condition on ballot 5 is also trivially true.

14. The only member of ballot 14’s quorum to vote in an earlier ballot is ∆, who
voted in ballot number 2, so the condition requires that ballot 14’s decree must
equal ballot 2’s decree.

27. (This is a successful ballot.) The members of ballot 27’s quorum are A, Γ, and
∆. Priest A did not vote in an earlier ballot, the only earlier ballot Γ voted in
was ballot 5, and the only earlier ballot ∆ voted in was ballot 2. The latest of
these two earlier ballots is ballot 5, so the condition requires that ballot 27’s
decree must equal ballot 5’s decree.

29. The members of ballot 29’s quorum are B, Γ, and ∆. The only earlier ballot
that B voted in was number 14, priest Γ voted in ballots 5 and 27, and ∆ voted
in ballots 2 and 27. The latest of these four earlier ballots is number 27, so the
condition requires that ballot 29’s decree must equal ballot 27’s decree.

To state B1(B)–B3(B) formally requires some more notation. A vote v was
defined to be a quantity consisting of three components: a priest vpst , a ballot
number vbal , and a decree vdec. It represents a vote cast by priest vpst for decree
vdec in ballot number vbal . The Paxons also defined null votes to be votes v with
vbal = −∞ and vdec = blank, where −∞ < b < ∞ for any ballot number b, and
blank is not a decree. For any priest p, they defined nullp to be the unique null
vote v with vpst = p.

Paxon mathematicians defined a total ordering on the set of all votes, but part
of the manuscript containing the definition has been lost. The remaining fragment
indicates that, for any votes v and v′, if vbal < v′bal then v < v′. It is not known
how the relative order of v and v′ was defined if vbal = v′bal .

For any set B of ballots, the set Votes(B) of votes in B was defined to consist of
all votes v such that vpst ∈ Bvot , vbal = Bbal , and vdec = Bdec for some B ∈ B.
If p is a priest and b is either a ballot number or ±∞, then MaxVote(b, p, B) was

The Part-Time Parliament · 7

defined to be the largest vote v in Votes(B) cast by p with vbal < b, or to be nullp
if there was no such vote. Since nullp is smaller than any real vote cast by p, this
means that MaxVote(b, p, B) is the largest vote in the set

{v ∈ Votes(B) : (vpst = p) ∧ (vbal < b)} ∪ {nullp}

For any nonempty set Q of priests, MaxVote(b, Q, B) was defined to equal the
maximum of all votes MaxVote(b, p, B) with p in Q.

Conditions B1(B)–B3(B) are stated formally as follows.8

B1(B) ∆= ∀B, B′ ∈ B : (B (= B′) ⇒ (Bbal (= B′
bal)

B2(B) ∆= ∀B, B′ ∈ B : Bqrm ∩ B′
qrm (= ∅

B3(B) ∆= ∀B ∈ B : (MaxVote(Bbal , Bqrm , B)bal (= −∞) ⇒
(Bdec = MaxVote(Bbal , Bqrm , B)dec)

Although the definition of MaxVote depends upon the ordering of votes, B1(B)
implies that MaxVote(b, Q, B)dec is independent of how votes with equal ballot
numbers were ordered.

To show that these conditions imply consistency, the Paxons first showed that
B1(B)–B3(B) imply that, if a ballot B in B is successful, then any later ballot in
B is for the same decree as B.

Lemma If B1(B), B2(B), and B3(B) hold, then

((Bqrm ⊆ Bvot) ∧ (B′
bal > Bbal)) ⇒ (B′

dec = Bdec)

for any B, B′ in B.

Proof of Lemma
For any ballot B in B, let Ψ(B, B) be the set of ballots in B later than B for a
decree different from B’s:

Ψ(B, B) ∆= {B′ ∈ B : (B′
bal > Bbal) ∧ (B′

dec (= Bdec)}

To prove the lemma, it suffices to show that if Bqrm ⊆ Bvot then Ψ(B, B) is empty.
The Paxons gave a proof by contradiction. They assumed the existence of a B with
Bqrm ⊆ Bvot and Ψ(B, B) (= ∅, and obtained a contradiction as follows.9

1. Choose C ∈ Ψ(B, B) such that Cbal = min{B′
bal : B′ ∈ Ψ(B, B)}.

Proof: C exists because Ψ(B, B) is nonempty and finite.
2. Cbal > Bbal

Proof: By 1 and the definition of Ψ(B, B).
3. Bvot ∩ Cqrm (= ∅

Proof: By B2(B) and the hypothesis that Bqrm ⊆ Bvot .

8I use the Paxon mathematical symbol
∆
=, which meant equals by definition.

9Paxon mathematicians always provided careful, structured proofs of important theorems. They
were not as sophisticated as modern mathematicians, who can omit many details and write
paragraph-style proofs without ever making a mistake.

8 · Leslie Lamport

4. MaxVote(Cbal , Cqrm , B)bal ≥ Bbal

Proof: By 2, 3 and the definition of MaxVote(Cbal , Cqrm , B).
5. MaxVote(Cbal , Cqrm , B) ∈ Votes(B)

Proof: By 4 (which implies that MaxVote(Cbal , Cqrm , B) is not a null vote)
and the definition of MaxVote(Cbal , Cqrm , B).

6. MaxVote(Cbal , Cqrm , B)dec = Cdec.
Proof: By 5 and B3(B).

7. MaxVote(Cbal , Cqrm , B)dec (= Bdec

Proof: By 6, 1, and the definition of Ψ(B, B).
8. MaxVote(Cbal , Cqrm , B)bal > Bbal

Proof: By 4, since 7 and B1(B) imply that MaxVote(Cbal , Cqrm , B)bal (= Bbal .
9. MaxVote(Cbal , Cqrm , B) ∈ Votes(Ψ(B, B))

Proof: By 7, 8, and the definition of Ψ(B, B).
10. MaxVote(Cbal , Cqrm , B)bal < Cbal

Proof: By definition of MaxVote(Cbal , Cqrm , B).
11. Contradiction

Proof: By 9, 10, and 1.

End Proof of Lemma

With this lemma, it was easy to show that, if B1–B3 hold, then any two successful
ballots are for the same decree.

Theorem 1. If B1(B), B2(B), and B3(B) hold, then

((Bqrm ⊆ Bvot) ∧ (B′
qrm ⊆ B′

vot)) ⇒ (B′
dec = Bdec)

for any B, B′ in B.

Proof of Theorem
If B′

bal = Bbal , then B1(B) implies B′ = B. If B′
bal (= Bbal , then the theorem

follows immediately from the lemma.
End Proof of Theorem

The Paxons then proved a theorem asserting that if there are enough priests in
the Chamber, then it is possible to conduct a successful ballot while preserving B1–
B3. Although this does not guarantee progress, it at least shows that a balloting
protocol based on B1–B3 will not deadlock.

Theorem 2. Let b be a ballot number and Q a set of priests such that b > Bbal

and Q∩Bqrm (= ∅ for all B ∈ B. If B1(B), B2(B), and B3(B) hold, then there is a
ballot B′ with B′

bal = b and B′
qrm = B′

vot = Q such that B1(B∪{B′}), B2(B∪{B′}),
and B3(B ∪ {B′}) hold.

Proof of Theorem
Condition B1(B∪{B′}) follows from B1(B), the choice of B′

bal , and the assumption
about b. Condition B2(B ∪ {B′}) follows from B2(B), the choice of B′

qrm , and the
assumption about Q. If MaxVote(b, Q, B)bal = −∞ then let B′

dec be any decree,
else let it equal MaxVote(b, Q, B)dec. Condition B3(B ∪ {B′}) then follows from
B3(B).
End Proof of Theorem

The Part-Time Parliament · 9

2.2 The Preliminary Protocol

The Paxons derived the preliminary protocol from the requirement that conditions
B1(B)–B3(B) remain true, where B was the set of all ballots that had been or were
being conducted. The definition of the protocol specified how the set B changed,
but the set was never explicitly calculated. The Paxons referred to B as a quantity
observed only by the gods, since it might never be known to any mortal.

Each ballot was initiated by a priest, who chose its number, decree, and quorum.
Each priest in the quorum then decided whether or not to vote in the ballot. The
rules determining how the initiator chose a ballot’s number, decree, and quorum,
and how a priest decided whether or not to vote in a ballot were derived directly
from the need to maintain B1(B)–B3(B).

To maintain B1, each ballot had to receive a unique number. By remembering
(with notes in his ledger) what ballots he had previously initiated, a priest could
easily avoid initiating two different ballots with the same number. To keep different
priests from initiating ballots with the same number, the set of possible ballot
numbers was partitioned among the priests. While it is not known how this was
done, an obvious method would have been to let a ballot number be a pair consisting
of an integer and a priest, using a lexicographical ordering, where

(13, Γραῐ) < (13, Λινσεῐ) < (15, Γραῐ)

since Γ came before Λ in the Paxon alphabet. In any case, it is known that every
priest had an unbounded set of ballot numbers reserved for his use.

To maintain B2, a ballot’s quorum was chosen to contain a µαδζ∂ωριτ̆ισετ of
priests. Initially, µαδζ∂ωριτ̆ισετ just meant a simple majority. Later, it was ob-
served that fat priests were less mobile and spent more time in the Chamber than
thin ones, so a µαδζ∂ωριτ̆ισετ was taken to mean any set of priests whose total
weight was more than half the total weight of all priests, rather than a simple ma-
jority of the priests. When a group of thin priests complained that this was unfair,
actual weights were replaced with symbolic weights based on a priest’s attendance
record. The primary requirement for a µαδζ∂ωριτ̆ισετ was that any two sets con-
taining a µαδζ∂ωριτ̆ισετ of priests had at least one priest in common. To maintain
B2, the priest initiating a ballot B chose Bqrm to be a majority set.

Condition B3 requires that if MaxVote(b, Q, B)dec is not equal to blank, then
a ballot with number b and quorum Q must have decree MaxVote(b, Q, B)dec. If
MaxVote(b, Q, B)dec equals blank, then the ballot can have any decree. To main-
tain B3(B), before initiating a new ballot with ballot number b and quorum Q, a
priest p had to find MaxVote(b, Q, B)dec. To do this, p had to find MaxVote(b, q, B)
for each priest q in Q.

Recall that MaxVote(b, q, B) is the vote with the largest ballot number less than
b among all the votes cast by q, or nullq if q did not vote in any ballot numbered
less than b. Priest p obtains MaxVote(b, q, B) from q by an exchange of messages.
Therefore, the first two steps in the protocol for conducting a single ballot initiated
by p are:10

10Priests p and q could be the same. For simplicity, the protocol is described with p sending
messages to himself in this case. In reality, a priest could talk to himself without the use of
messengers.

10 · Leslie Lamport

(1) Priest p chooses a new ballot number b and sends a NextBallot(b) message to
some set of priests.

(2) A priest q responds to the receipt of a NextBallot(b) message by sending a
LastVote(b, v) message to p, where v is the vote with the largest ballot number
less than b that q has cast, or his null vote nullq if q did not vote in any ballot
numbered less than b.

Priest q must use notes in the back of his ledger to remember what votes he had
previously cast.

When q sends the LastVote(b, v) message, v equals MaxVote(b, q, B). But the
set B of ballots changes as new ballots are initiated and votes are cast. Since priest
p is going to use v as the value of MaxVote(b, q, B) when choosing a decree, to keep
B3(B) true it is necessary that MaxVote(b, q, B) not change after q has sent the
LastVote(b, v) message. To keep MaxVote(b, q, B) from changing, q must cast no
new votes with ballot numbers between vbal and b. By sending the LastVote(b, v)
message, q is promising not to cast any such vote. (To keep this promise, q must
record the necessary information in his ledger.)

The next two steps in the balloting protocol (begun in step 1 by priest p) are:

(3) After receiving a LastVote(b, v) message from every priest in some majority
set Q, priest p initiates a new ballot with number b, quorum Q, and decree d,
where d is chosen to satisfy B3. He then records the ballot in the back of his
ledger and sends a BeginBallot (b, d) message to every priest in Q.

(4) Upon receipt of the BeginBallot (b, d) message, priest q decides whether or not
to cast his vote in ballot number b. (He may not cast the vote if doing so
would violate a promise implied by a LastVote(b′, v′) message he has sent for
some other ballot.) If q decides to vote for ballot number b, then he sends a
Voted(b, q) message to p and records the vote in the back of his ledger.

The execution of step 3 is considered to add a ballot B to B, where Bbal = b,
Bqrm = Q, Bvot = ∅ (no one has yet voted in this ballot), and Bdec = d. In step 4,
if priest q decides to vote in the ballot, then executing that step is considered to
change the set B of ballots by adding q to the set Bvot of voters in the ballot B ∈ B.

A priest has the option not to vote in step 4, even if casting a vote would not
violate any previous promise. In fact, all the steps in this protocol are optional.
For example, a priest q can ignore a NextBallot(b) message instead of executing
step 2. Failure to take an action can prevent progress, but it cannot cause any
inconsistency because it cannot make B1(B)–B3(B) false. Since the only effect not
receiving a message can have is to prevent an action from happening, message loss
also cannot cause inconsistency. Thus, the protocol guarantees consistency even if
priests leave the chamber or messages are lost.

Receiving multiple copies of a message can cause an action to be repeated. Except
in step 3, performing the action a second time has no effect. For example, sending
several Voted(b, q) messages in step 4 has the same effect as sending just one.
The repetition of step 3 is prevented by using the entry made in the back of the
ledger when it is executed. Thus, the consistency condition is maintained even if a
messenger delivers the same message several times.

Steps 1–4 describe the complete protocol for initiating a ballot and voting on it.

The Part-Time Parliament · 11

All that remains is to determine the results of the balloting and announce when a
decree has been selected. Recall that a ballot is successful iff every priest in the
quorum has voted. The decree of a successful ballot is the one chosen by the Synod.
The rest of the protocol is:

(5) If p has received a Voted(b, q) message from every priest q in Q (the quorum
for ballot number b), then he writes d (the decree of that ballot) in his ledger
and sends a Success(d) message to every priest.

(6) Upon receiving a Success(d) message, a priest enters decree d in his ledger.

Steps 1–6 describe how an individual ballot is conducted. The preliminary protocol
allows any priest to initiate a new ballot at any time. Each step maintains B1(B)–
B3(B), so the entire protocol also maintains these conditions. Since a priest enters
a decree in his ledger only if it is the decree of a successful ballot, Theorem 1 implies
that the priests’ ledgers are consistent. The protocol does not address the question
of progress.

In step 3, if the decree d is determined by condition B3, then it is possible that
this decree is already written in the ledger of some priest. That priest need not be
in the quorum Q; he could have left the Chamber. Thus, consistency would not be
guaranteed if step 3 allowed any greater freedom in choosing d.

2.3 The Basic Protocol

In the preliminary protocol, a priest must record (i) the number of every ballot
he has initiated, (ii) every vote he has cast, and (iii) every LastVote message he
has sent. Keeping track of all this information would have been difficult for the
busy priests. The Paxons therefore restricted the preliminary protocol to obtain
the more practical basic protocol in which each priest p had to maintain only the
following information in the back of his ledger:

lastTried [p] The number of the last ballot that p tried to initiate, or −∞ if there
was none.

prevVote[p] The vote cast by p in the highest-numbered ballot in which he voted,
or −∞ if he never voted.

nextBal [p] The largest value of b for which p has sent a LastVote(b, v) message,
or −∞ if he has never sent such a message.

Steps 1–6 of the preliminary protocol describe how a single ballot is conducted by
its initiator, priest p. The preliminary protocol allows p to conduct any number
of ballots concurrently. In the basic protocol, he conducts only one ballot at a
time—ballot number lastTried [p]. After p initiates this ballot, he ignores messages
that pertain to any other ballot that he had previously initiated. Priest p keeps all
information about the progress of ballot number lastTried [p] on a slip of paper. If
he loses that slip of paper, then he stops conducting the ballot.

In the preliminary protocol, each LastVote(b, v) message sent by a priest q rep-
resents a promise not to vote in any ballot numbered between vbal and b. In the
basic protocol, it represents the stronger promise not to cast a new vote in any
ballot numbered less than b. This stronger promise might prevent him from casting
a vote in step 4 of the basic protocol that he would have been allowed to cast in
the preliminary protocol. However, since the preliminary protocol always gives q

12 · Leslie Lamport

the option of not casting his vote, the basic protocol does not require him to do
anything not allowed by the preliminary protocol.

Steps 1–6 of the preliminary protocol become the following six steps for conduct-
ing a ballot in the basic protocol. (All information used by p to conduct the ballot,
other than lastTried [p], prevVote[p], and nextBal [p], is kept on a slip of paper.)

(1) Priest p chooses a new ballot number b greater than lastTried [p], sets lastTried [p]
to b, and sends a NextBallot(b) message to some set of priests.

(2) Upon receipt of a NextBallot(b) message from p with b > nextBal [q], priest q
sets nextBal [q] to b and sends a LastVote(b, v) message to p, where v equals
prevVote[q]. (A NextBallot(b) message is ignored if b ≤ nextBal [q].)

(3) After receiving a LastVote(b, v) message from every priest in some majority
set Q, where b = lastTried [p], priest p initiates a new ballot with number b,
quorum Q, and decree d, where d is chosen to satisfy B3. He then sends a
BeginBallot (b, d) message to every priest in Q.

(4) Upon receipt of a BeginBallot (b, d) message with b = nextBal [q], priest q casts
his vote in ballot number b, sets prevVote[q] to this vote, and sends a Voted(b, q)
message to p. (A BeginBallot (b, d) message is ignored if b (= nextBal [q].)

(5) If p has received a Voted(b, q) message from every priest q in Q (the quorum
for ballot number b), where b = lastTried [p], then he writes d (the decree of
that ballot) in his ledger and sends a Success(d) message to every priest.

(6) Upon receiving a Success(d) message, a priest enters decree d in his ledger.

The basic protocol is a restricted version of the preliminary protocol, meaning
that every action allowed by the basic protocol is also allowed by the preliminary
protocol. Since the preliminary protocol satisfies the consistency condition, the
basic protocol also satisfies that condition. Like the preliminary protocol, the basic
protocol does not require that any action ever be taken, so it does not addresses
the question of progress.

The derivation of the basic protocol from B1–B3 made it obvious that the consis-
tency condition was satisfied. However, some similarly “obvious” ancient wisdom
had turned out to be false, and skeptical citizens demanded a more rigorous proof.
Their Paxon mathematicians’ proof that the protocol satisfies the consistency con-
dition is reproduced in the appendix.

2.4 The Complete Synod Protocol

The basic protocol maintains consistency, but it cannot ensure any progress because
it states only what a priest may do; it does not require him to do anything. The
complete protocol consists of the same six steps for conducting a ballot as the basic
protocol. To help achieve progress, it includes the obvious additional requirement
that priests perform steps 2–6 of the protocol as soon as possible. However, to
meet the progress condition, it is necessary that some priest be required to perform
step 1, which initiates a ballot. The key to the complete protocol lay in determining
when a priest should initiate a ballot.

Never initiating a ballot will certainly prevent progress. However, initiating too
may ballots can also prevent progress. If b is larger than any other ballot number,
then the receipt of a NextBallot(b) message by priest q in step 2 may elicit a

The Part-Time Parliament · 13

promise that prevents him from voting in step 4 for any previously initiated ballot.
Thus, the initiation of a new ballot can prevent any previously initiated ballot from
succeeding. If new ballots are continually initiated with increasing ballot numbers
before the previous ballots have a chance to succeed, then no progress might be
made.

Achieving the progress condition requires that new ballots be initiated until one
succeeds, but that they not be initiated too frequently. To develop the complete
protocol, the Paxons first had to know how long it took messengers to deliver
messages and priests to respond. They determined that a messenger who did not
leave the Chamber would always deliver a message within 4 minutes, and a priest
who remained in the Chamber would always perform an action within 7 minutes
of the event that caused the action.11 Thus, if p and q were in the Chamber when
some event caused p to send a message to q, and q responded with a reply to p, then
p would receive that reply within 22 minutes if neither messenger left the Chamber.
(Priest p would send the message within 7 minutes of the event, q would receive
the message within 4 more minutes, he would respond within 7 minutes, and the
reply would reach p within 4 more minutes.)

Suppose that only a single priest p was initiating ballots, and that he did so
by sending a message to every priest in step 1 of the protocol. If p initiated a
ballot when a majority set of priests was in the chamber, then he could expect
to execute step 3 within 22 minutes of initiating the ballot, and to execute step 5
within another 22 minutes. If he was unable to execute the steps by those times,
then either some priest or messenger left the Chamber after p initiated the ballot,
or a larger-numbered ballot had previously been initiated by another priest (before
p became the only priest to initiate ballots). To handle the latter possibility, p had
to learn about any ballot numbers greater than lastTried [p] used by other priests.
This could be done by extending the protocol to require that if a priest q received
a NextBallot(b) or a BeginBallot (b, d) message from p with b < nextBal [q], then he
sent p a message containing nextBal [q]. Priest p would then initiate a new ballot
with a larger ballot number.

Still assuming that p was the only priest initiating ballots, suppose that he were
required to initiate a new ballot iff (i) he had not executed step 3 or step 5 within
the previous 22 minutes, or (ii) he learned that another priest had initiated a
higher-numbered ballot. If the Chamber doors were locked with p and a majority
set of priests inside, then a decree would be passed and recorded in the ledgers of
all priests in the Chamber within 99 minutes. (It could take 22 minutes for p to
start the next ballot, 22 more minutes to learn that another priest had initiated
a larger-numbered ballot, then 55 minutes to complete steps 1–6 for a successful
ballot.) Thus, the progress condition would be met if only a single priest, who did
not leave the chamber, were initiating ballots.

The complete protocol therefore included a procedure for choosing a single priest,
called the president, to initiate ballots. In most forms of government, choosing a

11I am assuming a value of 30 seconds for the δζ∂ιφῐ, the Paxon unit of time. This value is within
the range determined from studies of hourglass shards. The reaction time of priests was so long
because they had to respond to every message within 7 minutes (14 δζ∂ιφῐ), even if a number of
messages arrived simultaneously.

14 · Leslie Lamport

president can be a difficult problem. However, the difficultly arises only because
most governments require that there be exactly one president at any time. In the
United States, for example, chaos would result if some people thought Bush had
been elected president while others thought that Dukakis had, since one of them
might decide to sign a bill into law while the other decided to veto it. However, in the
Paxon Synod, having multiple presidents could only impede progress; it could not
cause inconsistency. For the complete protocol to satisfy the progress condition, the
method for choosing the president needed only to satisfy the following presidential
selection requirement :

If no one entered or left the Chamber, then after T minutes exactly one
priest in the Chamber would consider himself to be the president.

If the presidential selection requirement were met, then the complete protocol would
have the property that if a majority set of priests were in the chamber and no one
entered or left the Chamber for T + 99 minutes, then at the end of that period
every priest in the Chamber would have a decree written in his ledger.

The Paxons chose as president the priest whose name was last in alphabetical
order among the names of all priests in the Chamber, though we don’t know exactly
how this was done. The presidential selection requirement would have been satisfied
if a priest in the Chamber sent a message containing his name to every other priest
at least once every T − 11 minutes, and a priest considered himself to be president
iff he received no message from a “higher-named” priest for T minutes.

The complete Synod protocol was obtained from the basic protocol by requiring
priests to perform steps 2–6 promptly, adding a method for choosing a president who
initiated ballots, and requiring the president to initiate ballots at the appropriate
times. Many details of the protocol are not known. I have described simple methods
for selecting a president and for deciding when the president should initiate a new
ballot, but they are undoubtedly not the ones used in Paxos. The rules I have given
require the president to keep initiating ballots even after a decree has been chosen,
thereby ensuring that priests who have just entered the Chamber learn about the
chosen decree. There were obviously better ways to make sure priests learned about
the decree after it had been chosen. Also, in the course of selecting a president,
each priest probably sent his value of lastTried [p] to the other priests, allowing the
president to choose a large enough ballot number on his first try.

The Paxons realized that any protocol to achieve the progress condition must
involve measuring the passage of time.12 The protocols given above for selecting
a president and initiating ballots are easily formulated as precise algorithms that
set timers and perform actions when time-outs occur—assuming perfectly accurate
timers. A closer analysis reveals that such protocols can be made to work with
timers having a known bound on their accuracy. The skilled glass blowers of Paxos
had no difficulty constructing suitable hourglass timers.

Given the sophistication of Paxon mathematicians, it is widely believed that
they must have found an optimal algorithm to satisfy the presidential selection
requirement. We can only hope that this algorithm will be discovered in future

12However, many centuries were to pass before a rigorous proof of this result was given.[Fischer
et al. 1985]

The Part-Time Parliament · 15

excavations on Paxos.

3 The Multi-Decree Parliament

When Parliament was established, a protocol to satisfy its consistency and progress
requirements was derived from the Synod protocol. The derivation and properties of
the original parliamentary protocol are described in Sections 3.1 and 3.2. Section 3.3
discusses the further evolution of the protocol.

3.1 The Protocol

Instead of passing just one decree, the Paxon Parliament had to pass a series of
numbered decrees. As in the Synod protocol, a president was elected. Anyone who
wanted a decree passed would inform the president, who would assign a number
to the decree and attempt to pass it. Logically, the parliamentary protocol used a
separate instance of the complete Synod protocol for each decree number. However,
a single president was selected for all these instances, and he performed the first
two steps of the protocol just once.

The key to deriving the parliamentary protocol is the observation that, in the
Synod protocol, the president does not choose the decree or the quorum until step 3.
A newly elected president p can send to some set of legislators a single message that
serves as the NextBallot(b) message for all instances of the Synod protocol. (There
are an infinite number of instances—one for each decree number.) A legislator q
can reply with a single message that serves as the LastVote messages for step 2 of
all instances of the Synod protocol. This message contains only a finite amount of
information, since q can have voted in only a finite number of instances.

When the new president has received a reply from every member of a majority
set, he is ready to perform step 3 for every instance of the Synod protocol. For
some finite number of instances (decree numbers), the choice of decree in step 3 will
be determined by B3. The president immediately performs step 3 for each of those
instances to try passing these decrees. Then, whenever he receives a request to pass
a decree, he chooses the lowest-numbered decree that he is still free to choose, and
he performs step 3 for that decree number (instance of the Synod protocol) to try
to pass the decree.

The following modifications to this simple protocol lead to the actual Paxon
Parliament’s protocol.

—There is no reason to go through the Synod protocol for a decree number whose
outcome is already known. Therefore, if a newly elected president p has all
decrees with numbers less than or equal to n written in his ledger, then he sends
a NextBallot(b, n) message that serves as a NextBallot(b) message in all instances
of the Synod protocol for decree numbers larger than n. In his response to this
message, legislator q informs p of all decrees numbered greater than n that already
appear in q’s ledger (in addition to sending the usual LastVote information for
decrees not in his ledger), and he asks p to send him any decrees numbered n or
less that are not in his ledger.

—Suppose decrees 125 and 126 are introduced late Friday afternoon, decree 126 is
passed and is written in one or two ledgers, but before anything else happens, the
legislators all go home for the weekend. Suppose also that the following Monday,

16 · Leslie Lamport

∆φωρκ is elected the new president and learns about decree 126, but she has no
knowledge of decree 125 because the previous president and all legislators who
had voted for it are still out of the Chamber. She will hold a ballot that passes
decree 126, which leaves a gap in the ledgers. Assigning number 125 to a new
decree would cause it to appear earlier in the ledger than decree 126, which had
been passed the previous week. Passing decrees out of order in this way might
cause confusion—for example, if the citizen who proposed the new decree did so
because he knew decree 126 had already passed. Instead, ∆φωρκ would attempt
to pass

125: The ides of February is national olive day
a traditional decree that made absolutely no difference to anyone in Paxos. In
general, a new president would fill any gaps in his ledger by passing the “olive-
day” decree.
The consistency and progress properties of the parliamentary protocol follow

immediately from the corresponding properties of the Synod protocol from which
it was derived. To our knowledge, the Paxons never bothered writing a precise
description of the parliamentary protocol because it was so easily derived from the
Synod protocol.

3.2 Properties of the Protocol

3.2.1 The Ordering of Decrees Balloting could take place concurrently for many
different decree numbers, with ballots initiated by different legislators—each think-
ing he was president when he initiated the ballot. We cannot say precisely in what
order decrees would be passed, especially without knowing how a president was
selected. However, there is one important property about the ordering of decrees
that can be deduced.

A decree was said to to be proposed when it was chosen by the president in step 3
of the corresponding instance of the Synod protocol. The decree was said to be
passed when it was written for the first time in a ledger. Before a president could
propose any new decrees, he had to learn from all the members of a majority set
what decrees they had voted for. Any decree that had already been passed must
have been voted for by at least one legislator in the majority set. Therefore, the
president must have learned about all previously passed decrees before initiating
any new decree. The president would not fill a gap in the ledgers with an important
decree—that is, with any decree other than the “olive-day” decree. He would also
not propose decrees out of order. Therefore, the protocol satisfied the following
decree-ordering property.

If decrees A and B are important and decree A was passed before decree
B was proposed, then A has a lower decree number than B.

3.2.2 Behind Closed Doors Although we don’t know the details involved in
choosing a new president, we do know exactly how Parliament functioned when
the president had been chosen and no one was entering or leaving the Chamber.
Upon receiving a request to pass a decree—either directly from a citizen or relayed
from another legislator—the president assigned the decree a number and passed it
with the following exchange of messages. (The numbers refer to the corresponding
steps in the Synod protocol.)

The Part-Time Parliament · 17

(3) The president sent a BeginBallot message to each legislator in a quorum.
(4) Each legislator in the quorum sent a Voted message to the president.
(5) The president sent a Success message to every legislator.

This is a total of three message delays and about 3N messages, assuming a
parliament of N legislators and a quorum of about N/2. Moreover, if Parliament
was busy, the president would combine the BeginBallot message for one decree with
the Success message for a previous one, for a total of only 2N messages per decree.

3.3 Further Developments

Governing the island turned out to be a more complex task than the Paxons realized.
A number of problems arose whose solutions required changes to the protocol. The
most important of these changes are described below.

3.3.1 Picking a President The president of parliament was originally chosen
by the method that had been used in the Synod, which was based purely on the
alphabetical ordering of names. Thus, when legislator Ωκι returned from a six-
month vacation, he was immediately made president—even though he had no idea
what had happened in his absence. Parliamentary activity came to a halt while
Ωκι, who was a slow writer, laboriously copied six months worth of decrees to bring
his ledger up to date.

This incident led to a debate about the best way to choose a president. Some
Paxons urged that once a legislator became president, he should remain president
until he left the Chamber. An influential group of citizens wanted the richest
legislator in the Chamber to be president, since he could afford to hire more scribes
and other servants to help him with the presidential duties. They argued that once
a rich legislator had brought his ledger up to date, there was no reason for him
not to assume the presidency. Others, however, argued that the most upstanding
citizen should be made president, regardless of wealth. Upstanding probably meant
less likely to be dishonest, although no Paxon would publicly admit the possibility
of official malfeasance. Unfortunately, the outcome of this debate is not known; no
record exists of the presidential selection protocol that was ultimately used.

3.3.2 Long Ledgers As the years progressed and Parliament passed more and
more decrees, Paxons had to pore over an ever longer list of decrees to find the
current olive tax or what color goat could be sold. A legislator who returned to the
Chamber after an extended voyage had to do quite a bit of copying to bring his
ledger up to date. Eventually, the legislators were forced to convert their ledgers
from lists of decrees into law books that contained only the current state of the law
and the number of the last decree whose passage was reflected in that state.

To learn the current olive tax, one looked in the law book under “taxes”; to learn
what color goat could be sold, one looked under “mercantile law”. If a legislator’s
ledger contained the law through decree 1298 and he learned that decree 1299 set
the olive tax to 6 drachmas per ton, he just changed the entry for the olive-tax law
and noted that his ledger was complete through decree 1299. If he then learned
about decree 1302, he would write it down in the back of the ledger and wait until
he learned about decrees 1300 and 1301 before incorporating decree 1302 into the
law book.

18 · Leslie Lamport

To enable a legislator who had been gone for a short time to catch up without
copying the entire law book, legislators kept a list of the past week’s decrees in the
back of the book. They could have kept this list on a slip of paper, but it was
convenient for a legislator to enter decrees in the back of the ledger as they were
passed and update the law book only two or three times a week.

3.3.3 Bureaucrats As Paxos prospered, legislators became very busy. Parlia-
ment could no longer handle all details of government, so a bureaucracy was es-
tablished. Instead of passing a decree to declare whether each lot of cheese was fit
for sale, Parliament passed a decree appointing a cheese inspector to make those
decisions.

It soon became evident that selecting bureaucrats was not as simple as it first
seemed. Parliament passed a decree making ∆ῐκστρα the first cheese inspector.
After some months, merchants complained that ∆ῐκστρα was too strict and was
rejecting perfectly good cheese. Parliament then replaced him by passing the decree

1375: Γωυδα is the new cheese inspector

But∆ῐκστρα did not pay close attention to what Parliament did, so he did not learn
of this decree right away. There was a period of confusion in the cheese market when
both ∆ῐκστρα and Γωυδα were inspecting cheese and making conflicting decisions.

To prevent such confusion, the Paxons had to guarantee that a position could
be held by at most one bureaucrat at any time. To do this, a president included
as part of each decree the time and date when it was proposed. A decree making
∆ῐκστρα the cheese inspector might read

2716: 8:30 15 Jan 72—∆ῐκστρα is cheese inspector for 3 months

This declares his term to begin either at 8:30 on 15 January or when the previous
inspector’s term ended—whichever was later. His term would end at 8:30 on 15
March, unless he explicitly resigned by asking the president to pass a decree like

2834: 9:15 3 Mar 72—∆ῐκστρα resigns as cheese inspector

A bureaucrat was appointed for a short term, so he could be replaced quickly—
for example, if he left the island. Parliament would pass a decree to extend the
bureaucrat’s term if he was doing a satisfactory job.

A bureaucrat needed to tell time to determine if he currently held a post. Me-
chanical clocks were unknown on Paxos, but Paxons could tell time accurately to
within 15 minutes by the position of the sun or the stars.13 If ∆ῐκστρα’s term
began at 8:30, he would not start inspecting cheese until his celestial observations
indicated that it was 8:45.

It is easy to make this method of appointing bureaucrats work if higher-numbered
decrees always have later proposal times. But what if Parliament passed the decrees

2854: 9:45 9 Apr 78—Φρανσεζ is wine taster for 2 months
2855: 9:20 9 Apr 78—Πνυελῐ is wine taster for 1 month

13Cloudy days are rare in Paxos’s balmy climate.

The Part-Time Parliament · 19

that were proposed between 9:30 and 9:35 by different legislators who both thought
they were president? Such out-of-order proposal times are easily prevented because
the parliamentary protocol satisfies the following property.

If two decrees are passed by different presidents, then one of the presi-
dents proposed his decree after learning that the other decree had been
proposed.

To see that this property is satisfied, suppose that ballot number b was successful
for decree D, ballot number b′ was successful for decree D′, and b < b′. Let
q be a legislator who voted in both ballots. The balloting for D′ began with
a NextBallot(b′, n) message. If the sender of that message did not already know
about D, then n is less than the decree number of D, and q’s reply to the NextBallot
message must state that he voted for D.

3.3.4 Learning the Law In addition to requesting the passage of decrees, ordi-
nary citizens needed to inquire about the current law of the land. The Paxons
at first thought that a citizen could simply examine the ledger of any legislator,
but the following incident demonstrated that a more sophisticated approach was
needed. For centuries, it had been legal to sell only white goats. A farmer named
∆ωλεφ got Parliament to pass the decree

77: The sale of black goats is permitted

∆ωλεφ then instructed his goatherd to sell some black goats to a merchant named
Σκεεν. As a law-abiding citizen, Σκεεν asked legislator Στωκµεῐρ if such a sale
would be legal. But Στωκµεῐρ had been out of the Chamber and had no entry in
his ledger past decree 76. He advised Σκεεν that the sale would be illegal under
the current law, so Σκεεν refused to buy the goats.

This incident led to the formulation of the following monotonicity condition on
inquiries about the law.

If one inquiry precedes a second inquiry, then the second inquiry cannot
reveal an earlier state of the law than the first.

If a citizen learns that a particular decree has been passed, then the process of
acquiring that knowledge is considered to be an implicit inquiry to which this
condition applies. As we will see, the interpretation of the monotonicity condition
changed over the years.

Initially, the monotonicity condition was achieved by passing a decree for each
inquiry. If Σ∂νῐδερ wanted to know the current tax on olives, he would get Parlia-
ment to pass a decree such as

87: Citizen Σ∂νῐδερ is reading the law

He would then read any ledger complete at least through decree 86 to learn the olive
tax as of that decree. If citizen Γρεες then inquired about the olive tax, the decree
for his inquiry was proposed after decree 87 was passed, so the decree-ordering
property (Section 3.2.1) implies that it received a decree number greater than 87.
Therefore, Γρεες could not obtain an earlier value of the olive tax than Σ∂νῐδερ.

20 · Leslie Lamport

This method of reading the law satisfied the monotonicity condition when precedes
was interpreted to mean that inquiry A precedes inquiry B iff A finished at an
earlier time than B began.

Passing a decree for every inquiry soon proved too cumbersome. The Paxons
realized that a simpler method was possible if they weakened the monotonicity
condition by changing the interpretation of precedes. They decided that for one
event to precede another, the first event not only had to happen at an earlier time,
but it had to be able to causally affect the second event. The weaker monotonicity
condition prevents the problem first encountered by farmer ∆ωλεφ and merchant
Σκεεν because there is a causal chain of events between the end of the implicit
inquiry by ∆ωλεφ and the beginning of the inquiry by Σκεεν.

The weaker monotonicity condition was met by using decree numbers in all busi-
ness transactions and inquiries. For example, farmer ∆ωλεφ, whose flock included
many nonwhite goats, got Parliament to pass the decree

277: The sale of brown goats is permitted

When selling his brown goats to Σκεεν, he informed the merchant that the sale
was legal as of decree number 277. Σκεεν then asked legislator Στωκµεῐρ if the sale
were legal under the law through at least decree 277. If Στωκµεῐρ’s ledger was not
complete through decree 277, he would either wait until it was or else tell Σκεεν
to ask someone else. If Στωκµεῐρ’s ledger went through decree 298, then he would
tell Σκεεν that the sale was legal as of decree number 298. Merchant Σκεεν would
remember the number 298 for use in his next business transaction or inquiry about
the law.

The Paxons had satisfied the monotonicity condition, but ordinary citizens dis-
liked having to remember decree numbers. Again, the Paxons solved the problem
by re-interpreting the monotonicity condition—this time, by changing the meaning
of state of the law. They divided the law into separate areas, and a legislator was
chosen as specialist for each area. The current state of each area of the law was
determined by that specialist’s ledger. For example, suppose decree 1517 changed
the tariff law and decree 1518 changed the tax law. The tax law would change
first if the tax-law specialist learned of both decrees before the tariff-law specialist
learned of either, yielding a state of the law that could not be obtained by enacting
the decrees in numerical order.

To avoid conflicting definitions of the current state, the Paxons required that
there be at most one specialist at a time for any area. This requirement was
satisfied by using the same method to choose specialists that was used to choose
bureaucrats (see Section 3.3.3). If each inquiry involved only a single area of the law,
monotonicity was then achieved by directing the inquiry to that area’s specialist,
who answered it from his ledger. Since learning that a law had passed constituted
the result of an implicit inquiry, the Paxons required that a decree change at most
one area of the law, and that notification of the decree’s passage could come only
from the area’s specialist.

Inquiries involving multiple areas were not hard to handle. When merchant
Λισκωφ asked if the tariff on an imported golden fleece was higher than the sales
tax on one purchased locally, the tax-law and tariff-law specialists had to cooperate
to provide an answer. For example, the tax specialist could answer Λισκωφ by first

The Part-Time Parliament · 21

asking the tariff specialist for the tariff on golden fleeces, so long as he made no
changes to his ledger before receiving a reply.

This method proved satisfactory until it became necessary to make a sweeping
change to several areas of the law at one time. The Paxons then realized that the
necessary requirement for maintaining monotonicity was not that a decree affect
only a single area, but that every area it affects have the same specialist. Parliament
could change several areas of the law with a single decree by first appointing a single
legislator to be the specialist for all those areas. Moreover, the same area could have
multiple specialists, so long as that area of the law was not allowed to change. Just
before income taxes were due, Parliament would appoint several tax-law specialists
to handle the seasonal flood of inquiries about the tax law.

3.3.5 Dishonest Legislators and Honest Mistakes Despite official assertions to
the contrary, there must have been a few dishonest legislators in the history of
Paxos. When caught, they were probably exiled. By sending contradictory mes-
sages, a malicious legislator could cause different legislators’ ledgers to be inconsis-
tent. Inconsistency could also result from a lapse of memory by an honest legislator
or messenger.

When inconsistencies were recognized, they could easily be corrected by passing
decrees. For example, disagreement about the current olive tax could be eliminated
by passing a new decree declaring the tax to have a certain value. The difficult
problem lay in correcting inconsistent ledgers even if no one was aware of the
inconsistency.

The existence of dishonesty or mistakes by legislators can be inferred from the
redundant decrees that began appearing in ledgers several years after the founding
of Parliament. For example, the decree

2605: The olive tax is 9 drachmas per ton

was passed even though decree 2155 had already set the olive tax to 9 drachmas
per ton, and no intervening decree had changed it. Parliament apparently cycled
through its laws every six months so that even if legislators’ ledgers were initially
inconsistent, all legislators would agree on the current law of the land within six
months. It is believed that by the use of these redundant decrees, the Paxons
made their Parliament self-stabilizing. (Self-stabilizing is a modern term due to
Dijkstra [Dijkstra 1974].)

It is not clear precisely what self-stabilization meant in a Parliament with leg-
islators coming and going at will. The Paxons would not have been satisfied with
a definition that required all legislators to be in the Chamber at one time before
consistency could be guaranteed. However, achieving consistency required that if
one legislator had an entry in his ledger for a certain decree number and another
did not, then the second legislator would eventually fill in that entry.

Unfortunately, we don’t know exactly what sort of self-stabilization property
the Paxon Parliament possessed or how it was achieved. Paxon mathematicians
undoubtedly addressed the problem, but their work has not yet been found. I hope
that future archaeological expeditions to Paxos will give high priority to the search
for manuscripts on self-stabilization.

22 · Leslie Lamport

3.3.6 Choosing New Legislators At first, membership in Parliament was hered-
itary, passing from parent to child. When the elder statesman Παρνας retired,
he gave his ledger to his son, who carried on without interruption. It made no
difference to other legislators which Παρνας they communicated with.

As old families emigrated and new ones immigrated, this system had to change.
The Paxons decided to add and remove members of Parliament by decree. This
posed a circularity problem: membership in Parliament was determined by which
decrees were passed, but passing a decree required knowing what constituted a
majority set, which in turn depended upon who was a member of Parliament. The
circularity was broken by letting the membership of Parliament used in passing
decree n be specified by the law as of decree n − 3. A president could not try to
pass decree 3255 until he knew all decrees through decree 3252. In practice, after
passing the decree

3252: Στρωνγ is now a legislator

the president would immediately pass the “olive-day” decree as decrees 3253 and
3254.

Changing the composition of Parliament in this way was dangerous and had to
be done with care. The consistency and progress conditions would always hold.
However, the progress condition guaranteed progress only if a majority set was in
the Chamber; it did not guarantee that a majority set would ever be there. In fact,
the mechanism for choosing legislators led to the downfall of the Parliamentary
system in Paxos. Because of a scribe’s error, a decree that was supposed to honor
sailors who had drowned in a shipwreck instead declared them to be the only
members of Parliament. Its passage prevented any new decrees from being passed—
including the decrees proposed to correct the mistake. Government in Paxos came
to a halt. A general named Λαµπσων took advantage of the confusion to stage
a coup, establishing a military dictatorship that ended centuries of progressive
government. Paxos grew weak under a series of corrupt dictators, and was unable
to repel an invasion from the east that led to the destruction of its civilization.

4 Relevance to Computer Science

4.1 The State Machine Approach

Although Paxos’s Parliament was destroyed many centuries ago, its protocol is still
useful. For example, consider a simple distributed database system that might be
used as a name server. A state of the database consists of an assignment of values
to names. Copies of the database are maintained by multiple servers. A client
program can issue, to any server, a request to read or change the value assigned to
a name. There are two kinds of read request: a slow read, which returns the value
currently assigned to a name, and a fast read, which is faster but might not reflect
a recent change to the database.

There is an obvious correspondence between this database system and the Paxon
Parliament:

Parliament Distributed Database
legislator ↔ server

citizen ↔ client program
current law ↔ database state

The Part-Time Parliament · 23

command : read(name, client) update(name, val , client)

response: (client , value of name) (client , “ok”)

new state: Same as current state Same as current state
except value of name
changed to val

Fig. 2. State machine for simple database.

A client’s request to change a value is performed by passing a decree. A slow read
involves passing a decree, as described in Section 3.3.4. A fast read is performed by
reading the server’s current version of the database. The Paxon Parliament protocol
provides a distributed, fault-tolerant implementation of the database system,

This method of implementing a distributed database is an instance of the state
machine approach, first proposed in [Lamport 1978]. In this approach, one first
defines a state machine, which consists of a set of states, a set of commands, a set
of responses, and a function that assigns a response/state pair (a pair consisting of
a response and a state) to each command/state pair. Intuitively, a state machine
executes a command by producing a response and changing its state; the command
and the machine’s current state determine its response and its new state. For the
distributed database, a state-machine state is just a database state. The state-
machine commands and the function specifying the response and new state are
described in Figure 2.

In the state-machine approach, a system is implemented with a network of server
processes. The servers transform client requests into state machine commands,
execute the commands, and transform the state-machine responses into replies to
clients. A general algorithm ensures that all servers obtain the same sequence of
commands, thereby ensuring that they all produce the same sequence of responses
and state changes—assuming they all start from the same initial state. In the
database example, a client request to perform a slow read or to change a value is
transformed into a state-machine read or update command. That command is
executed, and the state-machine response is transformed into a reply to the client,
which is sent to him by the server who received his request. Since all servers perform
the same sequence of state-machine commands, they all maintain consistent versions
of the database. However, at any time, some servers may have earlier versions than
others because a state-machine command need not be executed at the same time
by all servers. A server uses his current version of the state to reply to a fast read
request, without executing a state-machine command.

The functionality of the system is expressed by the state machine, which is just
a function from command/state pairs to response/state pairs. Problems of syn-
chronization and fault-tolerance are handled by the general algorithm with which
servers obtain the sequence of commands. When designing a new system, only
the state machine is new. The servers obtain the state-machine commands by a
standard distributed algorithm that has already been proved correct. Functions are
much easier to design, and to get right, than distributed algorithms.

The first algorithm for implementing an arbitrary state machine appeared in
[Lamport 1978]. Later, algorithms were devised to tolerate up to any fixed number
f of arbitrary failures [Lamport 1984]. These algorithms guarantee that, if fewer

24 · Leslie Lamport

than f processes fail, then state machine commands are executed within a fixed
length of time. The algorithms are thus suitable for applications requiring real-
time response.14 But if more than f failures occur, then different servers may have
inconsistent copies of the state machine. Moreover, the inability of two servers to
communicate with each other is equivalent to the failure of one of them. For a
system to have a low probability of losing consistency, it must use an algorithm
with a large value of f , which in turn implies a large cost in redundant hardware,
communication bandwidth, and response time.

The Paxon Parliament’s protocol provides another way to implement an arbitrary
state machine. The legislators’ law book corresponds to the machine state, and
passing a decree corresponds to executing a state-machine command. The resulting
algorithm is less robust and less expensive than the earlier algorithms. It does not
tolerate arbitrary, malicious failures, nor does it guarantee bounded-time response.
However, consistency is maintained despite the (benign) failure of any number of
processes and communication paths. The Paxon algorithm is suitable for systems
with modest reliability requirements that do not justify the expense of an extremely
fault-tolerant, real-time implementation.

If the state machine is executed with an algorithm that guarantees bounded-
time response, then time can be made part of the state, and machine actions can
be triggered by the passage of time. For example, consider a system for granting
ownership of resources. The state can include the time at which a client was granted
a resource, and the state machine can automatically execute a command to revoke
ownership if the client has held the resource too long.

With the Paxon algorithm, time cannot be made part of the state in such a
natural way. If failures occur, it can take arbitrarily long to execute a command
(pass a decree), and one command can be executed before (appear earlier in the
sequence of decrees than) another command that was issued earlier. However, a
state machine can still use real time the same way the Paxon Parliament did. For
example, the method described in Section 3.3.3 for deciding who was the current
cheese inspector can be used to decide who is the current owner of a resource.

4.2 Commit Protocols

The Paxon Synod protocol is similar to standard three-phase commit protocols
[Bernstein et al. 1987; Skeen 1982]. A Paxon ballot and a three-phase commit
protocol both involve the exchange of five messages between a coordinator (the
president) and the other quorum members (legislators). A commit protocol chooses
one of two values—commit or abort—while the Synod protocol chooses an arbitrary
decree. To convert a commit protocol to a Synod protocol, one sends the decree
in the initial round of messages. A commit decision means that this decree was
passed, and an abort decision means that the “olive-day” decree was passed.

The Synod protocol differs from a converted commit protocol because the decree
is not sent until the second phase. This allows the corresponding parliamentary
protocol to execute the first phase just once for all decrees, so the exchange of only
three messages is needed to pass each individual decree.

The theorems on which the Synod protocol is based are similar to results obtained

14These algorithms were derived from the military protocols of another Mediterranean state.

The Part-Time Parliament · 25

by Dwork, Lynch, and Stockmeyer [Dwork et al. 1988]. However, their algorithms
execute ballots sequentially in separate rounds, and they seem to be unrelated to
the Synod protocol.

Much research has been done in the field since this article was written. The state-
machine approach has been surveyed by Schneider [1990]. The recovery protocol by Keidar
and Dolev [1996] and the totally-ordered broadcast algorithm of Fekete et al. [1997] are
quite similar to the Paxon protocol described here. The author was also apparently un-
aware that the view management protocol by Oki and Liskov [1988] seems to be equivalent
to the Paxon protocol.

Many of the refinements presented in this submission have also appeared in contempo-
rary or subsequent articles. The method of delegation described in Section 3.3.3 is very
similar to the leases mechanism of Gray and Cheriton [1989]. The technique of Section
3.3.4 in which the Paxons satisfy the monotonicity condition by using decree numbers is
described by Ladin et al. [1992]. The technique of Section 3.3.6 for adding new legislators
was also given by Schneider [1990].

K. M.

Appendix: Proof of Consistency of the Synodic Protocol

A1 The Basic Protocol

The Synod’s basic protocol, described informally in Section 2.3, is stated here
using modern algorithmic notation. We begin with the variables that a priest p
must maintain. First come the variables that represent information kept in his
ledger. (For convenience, the vote prevVote [p] used in Section 2.3 is replaced by its
components prevBal [p] and prevDec[p].)

outcome[p] The decree written in p’s ledger, or blank if there is nothing written
there yet.

lastTried [p] The number of the last ballot that p tried to begin, or −∞ if there was
none.

prevBal [p] The number of the last ballot in which p voted, or −∞ if he never
voted.

prevDec[p] The decree for which p last voted, or blank if p never voted.
nextBal [p] The number of the last ballot in which p agreed to participate, or −∞

if he has never agreed to participate in a ballot.

Next come variables representing information that priest p could keep on a slip of
paper:

status[p] One of the following values:
idle Not conducting or trying to begin a ballot
trying Trying to begin ballot number lastTried [p]
polling Now conducting ballot number lastTried [p]
If p has lost his slip of paper, then status[p] is assumed to equal idle
and the values of the following four variables are irrelevant.

prevVotes [p] The set of votes received in LastVote messages for the current ballot
(the one with ballot number lastTried [p]).

26 · Leslie Lamport

quorum[p] If status[p] = polling , then the set of priests forming the quorum of
the current ballot; otherwise, meaningless.

voters[p] If status[p] = polling , then the set of quorum members from whom p
has received Voted messages in the current ballot; otherwise, mean-
ingless.

decree[p] If status[p] = polling , then the decree of the current ballot; otherwise,
meaningless.

There is also the history variable B, which is the set of ballots that have been started
and their progress—namely, which priests have cast votes. (A history variable is one
used in the development and proof of an algorithm, but not actually implemented.)

Next come the actions that priest p may take. These actions are assumed to be
atomic, meaning that once an action is begun, it must be completed before priest
p begins any other action. An action is described by an enabling condition and a
list of effects. The enabling condition describes when the action can be performed;
actions that receive a message are enabled whenever a messenger has arrived with
the appropriate message. The list of effects describes how the action changes the
algorithm’s variables and what message, if any, it sends. (Each individual action
sends at most one message.)

Recall that ballot numbers were partitioned among the priests. For any ballot
number b, the Paxons defined owner(b) to be the priest who was allowed to use
that ballot number.

The actions in the basic protocol are allowed actions; the protocol does not
require that a priest ever do anything. No attempt at efficiency has been made; the
actions allow p to do silly things, such as sending another BeginBallot message to
a priest from whom he has already received a LastVote message.

Try New Ballot
Always enabled.

– Set lastTried [p] to any ballot number b, greater than its previous value, such
that owner(b) = p.

– Set status[p] to trying.
– Set prevVotes [p] to ∅.

Send NextBallot Message
Enabled whenever status[p]=trying.

– Send a NextBallot(lastTried [p]) message to any priest.

Receive NextBallot(b) Message
If b ≥ nextBal [p] then

– Set nextBal [p] to b.

Send LastVote Message
Enabled whenever nextBal [p] > prevBal [p].

– Send a LastVote(nextBal [p], v) message to priest owner(nextBal [p]), where
vpst = p, vbal = prevBal [p], and vdec = prevDec[p].

The Part-Time Parliament · 27

Receive LastVote(b, v) Message
If b = lastTried [p] and status[p] = trying , then

– Set prevVotes [p] to the union of its original value and {v}.

Start Polling Majority Set Q

Enabled when status[p] = trying and Q ⊆ {vpst : v ∈ prevVotes [p]}, where Q is a
majority set.

– Set status[p] to polling.
– Set quorum[p] to Q.
– Set voters[p] to ∅.
– Set decree[p] to a decree d chosen as follows: Let v be the maximum element

of prevVotes[p]. If vbal (= −∞ then d = vdec , else d can equal any decree.
– Set B to the union of its former value and {B}, where Bdec = d, Bqrm = Q,

Bvot = ∅, and Bbal = lastTried [p].

Send BeginBallot Message
Enabled when status[p] = polling .

– Send a BeginBallot (lastTried [p], decree[p]) message to any priest in quorum[p].

Receive BeginBallot (b, d) Message
If b = nextBal [p] > prevBal [p] then

– Set prevBal [p] to b.
– Set prevDec[p] to d.
– If there is a ballot B in B with Bbal = b [there will be], then choose any such

B [there will be only one] and let the new value of B be obtained from its old
value by setting Bvot equal to the union of its old value and {p}.

Send Voted Message
Enabled whenever prevBal [p] (= −∞.

– Send a Voted(prevBal [p], p) message to owner(prevBal [p]).

Receive Voted(b, q) Message
If b = lastTried [p] and status[p] = polling , then

– Set voters[p] to the union of its old value and {q}

Succeed
Enabled whenever status[p] = polling , quorum[p] ⊆ voters[p], and outcome[p] =
blank.

– Set outcome[p] to decree[p].

Send Success Message
Enabled whenever outcome[p] (= blank.

– Send a Success(outcome[p]) message to any priest.

Receive Success(d) Message
If outcome[p] = blank, then

28 · Leslie Lamport

– Set outcome[p] to d.

This algorithm is an abstract description of the real protocol performed by Paxon
priests. Do the algorithm’s actions accurately model the actions of the real priests?
There were three kinds of actions that a priest could perform “atomically”: receiv-
ing a message, writing a note or ledger entry, and sending a message. Each of these
is represented by a single action of the algorithm, except that Receive actions both
receive a message and set a variable. We can pretend that the receipt of a message
occurred when a priest acted upon the message; if he left the Chamber before act-
ing upon it, then we can pretend that the message was never received. Since this
pretense does not affect the consistency condition, we can infer the consistency of
the basic Synod protocol from the consistency of the algorithm.

A2 Proof of Consistency

To prove the consistency condition, it is necessary to show that whenever outcome[p]
and outcome[q] are both different from blank, they are equal. A rigorous correct-
ness proof requires a complete description of the algorithm. The description given
above is almost complete. Missing is a variable M whose value is the multiset of
all messages in transit.15 Each Send action adds a message to this multiset and
each Receive action removes one. Also needed are actions to represent the loss
and duplication of messages, as well as a Forget action that represents a priest
losing his slip of paper.

With these additions, we get an algorithm that defines a set of possible behaviors,
in which each change of state corresponds to one of the allowed actions. The Paxons
proved correctness by finding a predicate I such that

(1) I is true initially.
(2) I implies the desired correctness condition.
(3) Each allowed action leaves I true.

The predicate I was written as a conjunction I1∧. . .∧I7, where I1–I5 were in turn
the conjunction of predicates I1(p)–I5(p) for all priests p. Although most variables
are mentioned in several of the conjuncts, each variable except status[p] is naturally
associated with one conjunct, and each conjunct can be thought of as a constraint
on its associated variables. The definitions of the individual conjuncts of I are given
below, where a list of items marked by ∧ symbols denotes the conjunction of those
items. The variables associated with a conjunct are listed in bracketed comments.

I1(p) ∆= [Associated variable: outcome [p]]

(outcome[p] (= blank) ⇒ ∃B ∈ B : (Bqrm ⊆ Bvot) ∧ (Bdec = outcome[p])

I2(p) ∆= [Associated variable: lastTried [p]]

∧ owner(lastTried [p]) = p
∧ ∀B ∈ B : (owner(Bbal) = p) ⇒

∧ Bbal ≤ lastTried [p]
∧ (status[p] = trying) ⇒ (Bbal < lastTried [p])

15A multiset is a set that may contain multiple copies of the same element.

The Part-Time Parliament · 29

I3(p) ∆= [Associated variables: prevBal [p], prevDec[p], nextBal [p]]

∧ prevBal [p] = MaxVote(∞, p, B)bal
∧ prevDec[p] = MaxVote(∞, p, B)dec
∧ nextBal [p] ≥ prevBal [p]

I4(p) ∆= [Associated variable: prevVotes[p]]

(status[p] (= idle) ⇒
∀v ∈ prevVotes[p] : ∧ v = MaxVote(lastTried [p], vpst , B)

∧ nextBal [vpst] ≥ lastTried [p]

I5(p) ∆= [Associated variables: quorum[p], voters[p], decree [p]]

(status[p] = polling) ⇒
∧ quorum[p] ⊆ {vpst : v ∈ prevVotes [p]}
∧ ∃B ∈ B : ∧ quorum[p] = Bqrm

∧ decree[p] = Bdec

∧ voters[p] ⊆ Bvot

∧ lastTried [p] = Bbal

I6 ∆= [Associated variable: B]

∧ B1(B) ∧ B2(B) ∧ B3(B)
∧ ∀B ∈ B : Bqrm is a majority set

I7 ∆= [Associated variable: M]

∧ ∀NextBallot(b) ∈ M : (b ≤ lastTried [owner(b)])
∧ ∀LastVote(b, v) ∈ M : ∧ v = MaxVote(b, vpst , B)

∧ nextBal [vpst] ≥ b

∧ ∀BeginBallot (b, d) ∈ M : ∃B ∈ B : (Bbal = b) ∧ (Bdec = d)
∧ ∀Voted(b, p) ∈ M : ∃B ∈ B : (Bbal = b) ∧ (p ∈ Bvot)
∧ ∀Success(d) ∈ M : ∃p : outcome[p] = d (= blank

The Paxons had to prove that I satisfies the three conditions given above. The
first condition, that I holds initially, requires checking that each conjunct is true for
the initial values of all the variables. While not stated explicitly, these initial values
can be inferred from the variables’ descriptions, and checking the first condition is
straightforward. The second condition, that I implies consistency, follows from I1,
the first conjunct of I6, and Theorem 1. The hard part was proving the third
condition, the invariance of I, which meant proving that I is left true by every
action. This condition is proved by showing that, for each conjunct of I, executing
any action when I is true leaves that conjunct true. The proofs are sketched below.

I1(p) B is changed only by adding a new ballot or adding a new priest to Bvot for
some B ∈ B, neither of which can falsify I1(p). The value of outcome[p] is changed
only by the Succeed and Receive Success Message actions. The enabling con-
dition and I5(p) imply that I1(p) is left true by the Succeed action. The enabling
condition, I1(p), and the last conjunct of I7 imply that I1(p) is left true by the
Receive Success Message action.

30 · Leslie Lamport

I2(p) This conjunct depends only on lastTried [p], status[p], and B. Only the Try
New Ballot action changes lastTried [p], and only that action can set status[p] to
trying. Since the action increases lastTried [p] to a value b with owner(b) = p,
it leaves I2(p) true. A completely new element is added to B only by a Start
Polling action; the first conjunct of I2(p) and the specification of the action imply
that adding this new element does not falsify the second conjunct of I2(p). The
only other way B is changed is by adding a new priest to Bvot for some B ∈ B,
which does not affect I2(p).

I3(p) Since votes are never removed from B, the only action that can change
MaxVote(∞, p, B) is one that adds to B a vote cast by p. Only a Receive
BeginBallot Message action can do that, and only that action changes prevBal [p]
and prevDec[p]. The BeginBallot conjunct of I7 implies that this action actually
does add a vote to B, and B1(B) (the first conjunct of I6) implies that there is only
one ballot to which the vote can be added. The enabling condition, the assump-
tion that I3(p) holds before executing the action, and the definition of MaxVote
then imply that the action leaves the first two conjuncts of I3(p) true. The third
conjunct is left true because prevBal [p] is changed only by setting it to nextBal [p],
and nextBal [p] is never decreased.

I4(p) This conjunct depends only upon the values of status[p], prevVotes [p],
lastTried [p], nextBal [q] for some priests q, and B. The value of status[p] is changed
from idle to not idle only by a Try New Ballot action, which sets prevVotes [p] to
∅, making I4(p) vacuously true. The only other actions that change prevVotes [p]
are the Forget action, which leaves I4(p) true because it sets status[p] to idle,
and the Receive LastVote Message action. It follows from the enabling condi-
tion and the LastVote conjunct of I7 that the Receive LastVote Message ac-
tion preserves I4(p). The value of lastTried [p] is changed only by the Try New
Ballot action, which leaves I4(p) true because it sets status[p] to trying. The
value of nextBal [q] can only increase, which cannot make I4(p) false. Finally,
MaxVote(lastTried [p], vpst , B) can be changed only if vpst is added to Bvot for
some B ∈ B with Bbal < lastTried [p]. But vpst is added to Bvot (by a Receive
BeginBallot Message action) only if nextBal [vpst] = Bbal , in which case I4(p)
implies that Bbal ≥ lastTried [p].

I5(p) The value of status[p] is set to polling only by the Start Polling action.
This action’s enabling condition guarantees that the first conjunct becomes true,
and it adds the ballot to B that makes the second conjunct true. No other action
changes quorum[p], decree[p], or lastTried [p] while leaving status[p] equal to polling.
The value of prevVotes [p] cannot be changed while status[p] = polling , and B is
changed only by adding new elements or by adding a new priest to Bvot . The only
remaining possibility for falsifying I5(p) is the addition of a new element to voters[p]
by the Receive Voted Message action. The Voted conjunct of I7, B1(B) (the
first conjunct of I6), and the action’s enabling condition imply that the element
added to voters[p] is in Bvot , where B is the ballot whose existence is asserted in
I5(p).

I6 Since Bbal and Bqrm are never changed for any B ∈ B, the only way B1(B),
B2(B), and the second conjunct of I6 can be falsified is by adding a new ballot to

The Part-Time Parliament · 31

B, which is done only by the Start Polling Majority Set Q action when status[p]
equals trying. It follows from the second conjunct of I2(p) that this action leaves
B1(B) true; and the assertion, in the enabling condition, that Q is a majority set
implies that the action leaves B2(B) and the second conjunct of I6 true. There
are two possible ways of falsifying B3(B): changing MaxVote(Bbal , Bqrm , B) by
adding a new vote to B, and adding a new ballot to B. A new vote is added
only by the Receive BeginBallot Message action, and I3(p) implies that the
action adds a vote later than any other vote cast by p in B, so it cannot change
MaxVote(Bbal , Bqrm , B) for any B in B. Conjunct I4(p) implies that the new ballot
added by the Start Polling action does not falsify B3(B).

I7 I7 can be falsified either by adding a new message to M or by changing the
value of another variable on which I7 depends. Since lastTried [p] and nextBal [p]
are never decreased, changing them cannot make I7 false. Since outcome[p] is never
changed if its value is not blank, changing it cannot falsify I7. Since B is changed
only by adding ballots and adding votes, the only change to it that can make I7
false is the addition of a vote by vpst that makes the LastVote(b, v) conjunct false by
changing MaxVote(b, vpst , B). This can happen only if vpst votes in a ballot B with
Bbal < b. But vpst can vote only in ballot number nextBal [vpst], and the assumption
that this conjunct holds initially implies that nextBal [vpst] ≥ b. Therefore, we need
check only that every message that is sent satisfies the condition in the appropriate
conjunct of I7.

NextBallot: Follows from the definition of the Send NextBallot Message action
and the first conjunct of I2(p).

LastVote: The enabling condition of the Send LastVote Message action and
I3(p) imply that MaxVote(nextBal [p], p, B) = MaxVote(∞, p, B), from which it
follows that the LastVote message sent by the action satisfies the condition in I7.

BeginBallot: Follows from I5(p) and the definition of the Send BeginBallot
Message action.

Voted: Follows from I3(p), the definition of MaxVote, and the definition of the
Send Voted Message action.

Success: Follows from the definition of Send Success Message.

ACKNOWLEDGMENTS

Daniel Duchamp pointed out to me the need for a new state-machine implementa-
tion. Discussions with Mart́ın Abadi, Andy Hisgen, Tim Mann, and Garret Swart
led me to Paxos. Λεωνίδας Γκίµπας provided invaluable assistance with the Paxon
dialect.

References

Bernstein, P. A., Hadzilacos, V., and Goodman, N. 1987. Concurrency Control and Re-
covery in Database Systems. Addison-Wesley, Reading, Massachusetts.

De Prisco, R., Lampson, B., and Lynch, N. 1997. Revisiting the Paxos algorithm. In
M. Mavronicolas and P. Tsigas (Eds.), Proceedings of the 11th International Work-
shop on Distributed Algorithms (WDAG 97), Volume 1320 of Lecture Notes in Computer

32 · Leslie Lamport

Science, Saarbruken, Germany, pp. 111–125. Springer-Verlag.

Dijkstra, E. W. 1974. Self-stabilizing systems in spite of distributed control. Commun.
ACM 17, 11 (Nov.), 643–644.

Dwork, C., Lynch, N., and Stockmeyer, L. 1988. Consensus in the presence of partial
synchrony. Journal of the ACM 35, 2 (April), 288–323.

Fekete, A., Lynch, N., and Shvartsman, A. 1997. Specifying and using a partitionable
group communication service. In Proceedings of the Sixteenth Annual ACM Symposium on
Principles of Distributed Computing, pp. 53–62. ACM Press.

Fischer, M. J., Lynch, N., and Paterson, M. S. 1985. Impossibility of distributed consensus
with one faulty process. Journal of the ACM 32, 2 (April), 374–382.

Gray, C. G. and Cheriton, D. R. 1989. Leases: An efficient fault-toerant mechanism for dis-
tributed file cache consistency. In Proceedings of the Twelfth ACM Symposium on Operating
Systems Principles, New York, pp. 202–210. ACM.

Keidar, I. and Dolev, D. 1996. Efficient message ordering in dynamic networks. In Proceedings
of the 15th Annual ACM Symposium on Principles of Distributed Computing. ACM.

Ladin, R., Liskov, B., Shrira, L., and Ghemawat, S. 1992. Providing high availability using
lazy replication. ACM Transactions on Computer Systems 10, 4 (Nov.), 360–391.

Lamport, L. 1978. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM 21, 7 (July), 558–565.

Lamport, L. 1984. Using time instead of timeout for fault-tolerant distributed systems. ACM
Trans. on Programm. Lang. Syst. 6, 2 (April), 254–280.

Lampson, B. W. 1996. How to build a highly available system using consensus. In O. Babaoglu
and K. Marzullo (Eds.), Distributed Algorithms, Volume 1151 of Lecture Notes in Com-
puter Science, Berlin, pp. 1–17. Springer-Verlag.

Oki, B. M. and Liskov, B. H. 1988. Viewstamped replication: A new primary copy method to
support highly-available distributed systems. In Proceedings of the Seventh Annual ACM
Symposium on Principles of Distributed Computing, pp. 8–17. ACM Press.

Schneider, F. B. 1990. Implementing fault-tolerant services using the state machine approach:
A tutorial. ACM Computing Surveys 22, 4 (Dec.), 299–319.

Skeen, M. D. 1982. Crash recovery in a distributed database system. Ph. D. thesis, University
of California, Berkeley.

Received January 1990; Accepted March 1998

