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ABSTRACT 
In the world of cryptocurrencies, public listing of a new token 
often generates signifcant hype, in many cases causing its price 
to skyrocket in a few seconds. In this scenario, timing is crucial to 
determine the success or failure of an investment opportunity. In 
this work, we present an in-depth analysis of sniper bots, automated 
tools designed to buy tokens as soon as they are listed on the market. 
We leverage GitHub open-source repositories of sniper bots to 
analyze their features and how they are implemented. Then, we 
build a dataset of Ethereum and BNB Smart Chain (BSC) liquidity 
pools to identify addresses that serially take advantage of sniper 
bots. Our fndings reveal 14,029 sniping operations on Ethereum and 
1,395,042 in BSC that bought tokens for a total of $10,144,808 dollars 
and $18,720,447, respectively. We fnd that Ethereum operations 
have a higher success rate but require a larger investment. Finally, 
we analyze token smart contracts to identify mechanisms that can 
hinder sniper bots. 

CCS CONCEPTS 
• Applied computing → Economics; • Security and privacy → 
Social aspects of security and privacy. 
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1 INTRODUCTION 
The cryptocurrency market is renowned for its high volatility [21], 
with cycles where the value of tokens can skyrocket and plum-
met [17]. This behavior is prevalent among tokens with small 
market capitalization, especially those that are newly listed. The 
rapid increase in value often triggers FOMO [3] (fear of miss-
ing out) among investors, who often purchase tokens based on 
hype rather than their intrinsic value. With the emergence of DeFi 
(Decentralized Finance) and specifcally Automated Market Mak-
ers (AMMs) [40]—platforms where trading is powered by smart 
contracts—every blockchain user can list and make their tokens trad-
able. As a result, hundreds of tokens are listed on AMMs daily [39], 
and fnding the next token worth investing in can be a challenging 
task. This has created the ideal environment for the emergence of 
sniper bots—automated systems designed to buy tokens quickly as 
soon as they are listed on an AMM platform. 

In this work, we leverage open-source implementations of sniper 
bots to gain insight into their features. We fnd that sniper bots im-
plementations are more sophisticated than we might expect. Indeed, 
some of them ofer features such as protection against fraudulent 
liquidity pools (e.g., honeypots and rug pulls), as well as anti-bots 
mechanisms that are commonly implemented in token smart con-
tracts. Then, we build the liquidity pools dataset, consisting of 
Ethereum and BSC liquidity pools and their activities. Inspired by 
what we learned analyzing the implementation of the sniper bots, 
we devised a straightforward approach to detect addresses that 
take advantage of sniper bots. We discover that the sniper bots phe-
nomenon is more widespread on BSC than in Ethereum. However, 
after analysis of the operations conducted by these addresses, we 
surprisingly fnd that Ethereum operations have a higher likelihood 
of being closed with a proft, despite requiring a larger investment. 
Finally, we leverage Etherscan and BSCScan, two popular explorers 
for Ethereum and BSC, respectively, to download the source code 
of the smart contracts of the tokens contained in the liquidity pools 
dataset. We search among the retrieved smart contracts implemen-
tation of anti-bot mechanisms that can limit the action of the sniper 
bots. In line with our previous fndings, we discover that developers 
of BSC token smart contracts are more active in countering bots’ 
activities, implementing more mechanisms to hinder their actions. 
Our main contributions are: 
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• Analysis of sniper bots: To the best of our knowledge, 
we are the frst to conduct an in-depth analysis of sniper 
bots and their implementation. We explore each phase of a 
sniping operation, from the choice of the target liquidity pool 
to the sale of the token. For each phase, we report in detail 
the diferent techniques implemented by the most popular 
open-source sniper bots on GitHub. 

• The impact of sniper bots: We propose an identifcation 
methodology for addresses that take advantage of sniper bots 
serially. We fnd 161 addresses on Ethereum 819 addresses in 
BSC. Analyzing the operations of the identifed sniper bots, 
we note that sniper bot users behave diferently accordingly 
to the platform they operate. We analyze their operations to 
estimate their success rate and their proft. We quantify their 
impact on the ecosystem of liquidity pools, fnding that they 
move a volume of 11,360.7 ETH on Ethereum and 45,606.3 
BNB in BSC. 

• Smart contract analysis: We describe the most popular 
mechanisms to counter bots used by smart contract devel-
opers. Then, we quantify the adoption of anti-bot mecha-
nisms by tokens, leveraging a dataset of almost 600,000 smart 
contracts. We observe that 17.9% token smart contracts on 
Ethereum and 37.36% on BSC implement at least one mecha-
nism to hinder the action of bots. 

2 BACKGROUND 

2.1 Ethereum and the Binance Smart Chain 
Ethereum [8] is a proof-of-stake blockchain. Its native coin, Ether 
(ETH), is the second cryptocurrency by market capitalization, with 
over 200 billion USD. Thanks to the Ethereum Virtual Machine 
(EVM) it is possible to execute custom machine code with smart 
contracts. Smart contracts are programs stored on the Ethereum 
blockchain, written in a high-level programming language (e.g., So-
lidity). Smart contracts enable the creation of several kinds of assets, 
like, for example, fungible tokens. In Ethereum, the ERC-20 standard 
defnes the core methods and Events that tokens should implement. 
The methods provide basic functionalities such as transferring to-
kens from one account to another or obtaining an account’s current 
token balance. Instead, the Events are a mechanism provided by 
Ethereum to ease the tracking of the internal state of smart con-
tracts. Indeed, each time the state of the smart contract change, it 
can trigger an Event that is written in an Event Log that developers 
can easily track. In the case of ERC-20 tokens, Events are used 
to notify signifcant changes, like the transfer of tokens from one 
account to another. 

2.1.1 The Binance Smart Chain. The Binance Chain [4] was es-
tablished in 2019 by Binance, one of the largest cryptocurrency 
exchanges. The BNB Smart Chain (BSC) was later introduced as 
a parallel to the Binance Chain to support smart contracts. BSC 
uses the Proof of Stake and Authority (PoSA) [5] consensus, and its 
native coin, the BNB, is the third-largest cryptocurrency by market 
capitalization, with a value of over $48 billion. The BSC is EVM-
compatible (i.e., it leverages the same EVM of Ethereum). Thus, it 
can run Ethereum’s smart contracts and has the same addresses 
and state management conventions. Because of this compatibility, 

the BSC proposes itself as a faster and less expensive alternative to 
Ethereum. 

2.2 DEX, AMM and Uniswap 
Decentralized exchanges (DEXs) are cryptocurrency exchanges that 
allow the trade of cryptocurrencies without the need for an inter-
mediary. The most popular DEXs leverage the Automated Market 
Maker model (AMM). In this model, trade matching is performed 
using liquidity pools, and the price of assets is fxed using a mathe-
matical formula. Uniswap [1] is one the frst dApp to use the AMM 
model successfully, with over 3 billion USD locked into smart con-
tracts1. Fig. 1 shows, at a high level, how liquidity pools work in 
Uniswap. A liquidity pool is a smart contract that contains a pair 
of ERC-20 tokens (�, �) that users can swap. Users that want to 
invest in the liquidity pool provide both tokens (�, �) to the smart 
contract, becoming liquidity providers. To keep track of the share of 
the liquidity owned by each investor, liquidity pools use an ERC-20 
token called LP-token. When a liquidity provider adds liquidity to 
the liquidity pool, the smart contract mints LP-tokens and transfers 
them to the liquidity provider. Conversely, a liquidity provider that 
wants to remove its liquidity can transfer the LP-tokens to the liq-
uidity pool smart contract. The smart contract burns the LP-tokens 
and returns the tokens (�, �) back to the investor. Any user can 
interact with the liquidity pool to swap token � with token � and 
vice versa. 

Uniswap implements the AMM model using mainly three smart 
contracts. 

• The Factory contract is used to create the smart contract 
that handles liquidity pools. It is responsible for creating one 
and only one liquidity pool for each token pair. Each time a 
new liquidity pool is created, the Factory contract emits a 
PairCreated event. 

• The Pair contract implements the AMM logic and keeps 
track of the pool’s status, including the token balances. The 
Pair contract emits three Events that notify the changes in 
the status of the liquidity pool. The Pair contract emits a 
Mint (or Burn) event each time an LP-token is minted (or 
burned) and a Swap event each time a user swaps tokens 
in a liquidity pool. All liquidity pool created by the Factory 
smart contract implements these Events. 

• The Router ofers an entry point to interact with the liquidity 
pools. Interacting with the Router, it is possible to create 
liquidity pools, add or remove liquidity, and swap tokens. 

3 SNIPER BOTS 
Sniper bots are software applications that monitor a specifc activity 
to automatically perform an action before anyone else [9]. Examples 
of these bots are "Scalping bots," [7] programs designed to purchase 
limited-availability goods quickly. These kinds of bots have been 
used to buy limited-edition sneakers [24] and Nvidia GPUs during 
the 2021 graphic card shortage [7]. The goal of bots’ users is usually 
to resell the purchased items at a higher price. In the blockchain 
world, sniper bots are typically used to buy tokens as soon as they 
are listed on an AMM platform. 

1Data retrieved from DefLlama [22], a popular DeFi statistics aggregator, in 2023-01-10 
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Figure 1: Liquidity pool and its main operations. 

3.1 Sniper bots dataset 
To understand how sniper bots are implemented and the features 
they ofer, we leverage Github [16], one of the most popular Inter-
net hosting services for software. We systematically search sniper 
bots on Github using keywords such as: "Sniper bots," "Sniping 
bots," and other similar variations. This research yielded hundreds 
of open-source repositories that are impractical to analyze manu-
ally. Therefore, we decide to focus on sniper bots that have some 
popularity. To do so, we leverage GitHub’s star ranking system [6] 
as a metric to infer popular repositories. We decided to analyze only 
sniper bots with at least 15 stars. Using this criterion, we select 70 
sniper bots. Then, we discard from our analysis 25 repositories con-
taining the code of sniper bots unrelated to AMMs. Most of these 
sniper bots are used in online video games (8 repositories) and to 
buy NFTs as quickly as possible in NFT marketplaces (5 reposito-
ries). Analyzing the remaining repositories, we notice that 17 of 
them do not contain open-source code. In these cases, the reposito-
ries are used to promote and sell closed-source sniper bots. Some 
others contain only executable fles and instructions to use the bots. 
In the end, considering only the open-source implementations, we 
focus on analyzing 28 repositories. 

3.2 The anatomy of sniper bots 
Analyzing the sniper bots’ source codes, we frst notice that almost 
all the considered sniper bots target Ethereum or the BNB Smart 
Chain (BSC). The only exception is a sniper bot that operates on the 
Avalanche [29] blockchain. In particular, 17 sniper bots exclusively 
support the BSC, three support Ethereum, and seven ofer multi-
chain support, being able to target both BSC and Ethereum. Looking 
more in detail at the implementations, we fnd these bots target the 
PancakeSwap and Uniswap AMMs. Only a few of them also ofer 
the possibility to snipe tokens released on other AMMs operating 
on the Ethereum and BSC blockchains. 

Analyzing the code repositories, we fnd that there are two cate-
gories of sniper bots: 

• Single-target sniper bots. These sniper bots target a spe-
cifc token, requiring the user to input the smart contract 
address of the token. A user can use this kind of sniper bot 
to buy the token of a highly hyped project at its listing price, 
expecting its value to skyrocket right after. We fnd 25 im-
plementations of this kind of sniper bot. 

• Multi-targets sniper bots. The second category of sniper 
bots is designed to buy every token as soon as it is listed. 

In this case, the goal of their users is more speculative. In-
deed, the strategy behind using these bots is to buy as many 
diferent tokens as possible, hoping that at least a few of 
them will gain value in the future. In our dataset, we fnd 3 
implementations of multi-targets sniper bots. 

Despite having diferent goals, these two categories operate 
similarly and follow the same execution phases, which we illustrate 
in Fig. 2 and report in the following. 

(1) Find the liquidity pool. As a frst step, the sniper bot must 
identify the liquidity pool from where to buy the target token. 
Since these kinds of bots aim to buy the token as soon as 
it is listed, the sniper bot looks for newly created liquidity 
pools that are available for trading (i.e., actually containing 
liquidity). In § 3.2.1, we will explore the strategies the sniper 
bots implement to handle this phase. 

(2) Scam protection. Then, the sniper bot can perform some 
checks to ensure that the token to buy is not a scam. If these 
checks fail, the sniper bot will not buy the token, and in the 
case of a multi-target sniper bot, it will search for a new 
liquidity pool. This kind of security measure is implemented 
only by 13 sniper bots. We will explore the diferent imple-
mented scam check solutions in § 3.2.2. 

(3) Advanced features. As we will discuss in §5, some token 
smart contracts implement techniques to avoid bot inter-
actions. Thus, the sniper bot can implement workarounds 
to evade detection and still buy the token. This is an ad-
vanced feature that we fnd implemented in 10 cases. We 
will describe the anti-bot mechanisms in § 3.2.3. 

(4) Buy the token. Finally, the sniper bot buys the desired 
amount of the token. This phase can be performed by in-
teracting with the AMM router, performing a simple swap 
operation, or interacting with a custom smart contract. We 
will explain these two techniques in § 3.2.4. 

(5) Sell the token. The sniper bot can also ofer the possibility 
to sell the token automatically. In § 3.2.5, we describe how 
this phase is implemented by the 10 sniper bots that ofer 
this feature. 

3.2.1 Find the liquidity pool. Exploring the source code of the 
sniper bots in our dataset, we fnd that they use diferent method-
ologies to discover new liquidity pools. In particular, we fnd that 
single-target sniper bots use the following techniques: 
Mempool scan. The fastest way to fnd the liquidity pool con-
taining the target token as soon as it is available is to leverage the 
blockchain mempool – the list of pending transactions waiting to 
be included in the next blockchain blocks. In this case, the sniper 
bot monitors the mempool, searching for the frst transaction that 
adds liquidity to the target token’s liquidity pool. Technically, this 
is done by checking if the bytecode of the transaction contains the 
signature of the addLiquidity function of the Uniswap router (i.e., 
the function that is used to add liquidity to a liquidity pool). 
Leverage Uniswap smart contracts. These kind of sniper bots 
directly interacts with the smart contracts of the AMM. In particular, 
it calls the getPair function of Uniswap’s Factory contract at regular 
time intervals. This function takes a pair of token addresses as input 
and returns as output the address of the liquidity pool that contains 
the pair, if it exists, or the zero address if it does not. Thus, the 
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Figure 2: The phases of a sniper bot’s execution. We report in blue the phases we always fnd implemented by sniper bots. 
Instead, we report in yellow the optional phases that a sniper bot can implement to improve its usability. 

sniper bot can use getPair providing as input the token to snipe and 
the valuable token they want to buy the token with (e.g., ETH). This 
method is slower than the previous one. Indeed, in order for the 
Uniswap smart contract to be updated, the transaction that updates 
its status must be confrmed in the blockchain. 

However, even if the liquidity pool exists, there is no guarantee 
that it contains liquidity. Indeed, a user can create a liquidity pool 
but not add tokens to it, making any kind of swap impossible. Thus, 
once identifed the liquidity pool, to understand if there is liquidity, 
the sniper bot performs polling requests to the getReserves function 
of the contract. This function returns the quantity of the two tokens 
in the pool. When this quantity becomes diferent than zero, the 
liquidity has been added, and the sniper bot can perform the swap. 
Instead, we fnd that multi-target sniper bots usually follow one of 
these approaches: 
Event Log monitoring. Sniper bots monitor the blockchain Event 
Log looking for new PairCreated events. As mentioned in § 2.2, this 
Event is emitted by the Factory contract of Uniswap each time a 
new liquidity pool is created. From the data in this Event, the sniper 
bot can retrieve the addresses of the two tokens in the liquidity pool 
and the address of the liquidity pool itself. As for the previous case, 
the sniper bot must verify that the liquidity pool actually contains 
the tokens. Thus, before sniping the liquidity pool, it ensures that 
there is liquidity through the getReserves function. 
Telegram channels. Some sniper bots use Telegram [35], a very 
popular messaging app with more than 700 million active users, 
as a source to discover new liquidity pools. Indeed, on Telegram, 
there are many channels—public groups where only the admin can 
write [20]—dedicated to token release announcements. These sniper 
bots use Telegram APIs to monitor a list of channels. The sniper 
bot parses newly-published messages of these channels, looking 
for the address of a liquidity pool created on the target AMM. For 
instance, we fnd a sniper bot that monitors Telegram channels [33, 
34] reporting newly-listed tokens by the CoinMarketCap [12] and 
CoinGecko [11], two of the most popular cryptocurrency aggregator 
websites. Usually, the list of monitored channels is customizable by 
the user, which can add or remove specifc channels. Additionally, 
users can specify a list of token addresses or words blocklisted 
to avoid buying specifc tokens or tokens including in their name 
specifc words. 

3.2.2 Scam protection. We fnd that sniper bots often perform 
checks to avoid buying scams or suspicious tokens. This is not sur-
prising, as anecdotal evidence (e.g., SquidGame [27]) and previous 
works [9, 23, 39], have shown that investing in liquidity pools can 
be risky as thousand of tokens are purposely created to perform 

scams. The sniper bots’ countermeasures are mainly designed to 
prevent two threats: rug pulls [9, 39] and honeypot tokens [38]. We 
fnd that sniper bots employ the following solutions to avoid these 
threats: 
Trial trade. A possible countermeasure to avoid falling prey to 
honeypots is to perform a trial trade. With this practice, the sniper 
bot buys a small number of tokens and right after sells them. The 
goal of this practice is to check that the token smart contract does 
not prevent the sale of the token. Thus, if the trial trade is successful, 
the sniper bot purchases the desired token amount. 
RugDoc. A second possibility is leveraging the API of RugDoc [30], 
a tool designed to help DeFi investors to make informed decisions 
about the tokens they choose to invest in. RugDoc performs some 
tests on the token to check if it is a honeypot and provides results 
through APIs. So, the sniper bot queries the RugDoc’s APIs to 
retrieve the tests’ results and infer the level of risk of the target 
token. If the estimated level of risk is acceptable, the sniper bot will 
proceed with buying the token. 
Source code check. Before buying the token, some sniper bots 
check the source code of the smart contract. In particular, they only 
buy tokens whose smart contract is public and verifed on popular 
blockchain explorers like Etherscan (for Ethereum) or BSCScan (for 
BSC). These websites ofer contract verifcation where developers 
can publish their smart contract source code on the site. The site 
will then compile the code and check if the generated bytecode 
matches the stored bytecode on the blockchain. If it matches, the 
contract is considered verifed. Other than the verifed status, we 
fnd sniper bots that avoid buying the token if the smart contract 
contains specifc keywords. 
Liquidity check. Lastly, some sniper bots ofer the feature to buy 
only in liquidity pools with more than a certain amount of liquidity. 
To perform this check, snipers bots call the getReserves function of 
the liquidity pool’s smart contract. 

3.2.3 Advanced features. Some sniper bots ofer advanced features 
to circumvent smart contract functionalities designed to directly 
or indirectly limit the action of sniper bots. Indeed, as we will see 
in Sec. 5, several token smart contracts implement techniques to 
hinder sniper bots or bots in general (e.g., trading bots). 
Wait �-blocks. This feature enables the user to specify the number 
of blocks the sniper bot waits to purchase after the liquidity is 
added. This precaution is to avoid penalties imposed by some token 
smart contracts that want to penalize automatic trading actions at 
the early stages of the liquidity pool. For instance, a smart contract 
may blocklist addresses that buy the token too quickly, prohibiting 
subsequent token transfers from the blocklisted addresses. Others 
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may impose a very high fee on purchase transactions (e.g., 99% of 
the acquired token returns to the liquidity pool) executed on the 
frst blocks the liquidity is added. 
Check trading enabled. Some token smart contracts implement 
the possibility to enable and disable the transfer of the token at will. 
The token creator can use this functionality for diferent technical or 
marketing reasons. To handle this case, some sniper bots implement 
a procedure to infer when a token enables the transfer functionality 
as soon as possible. The sniper bot sends a small transaction. If 
the transaction succeeds, the bot performs a second transaction 
and buys the intended amount of tokens. Otherwise, we fnd two 
diferent approaches implemented by the sniper bots in our dataset: 
In the frst, the sniper bot starts to poll the liquidity pool’s smart 
contract monitoring the token’s price. If the price oscillates, the 
sniper bot infers that the transfer is enabled and attempts to buy the 
token. Instead, with the second approach, the sniper bot monitors 
the mempool looking for a transaction that contains the bytecode 
of commonly known functions used to enable the transfer of the 
token, such as: openTrade, enableTrading, tradingStatus. 
Multiple buys. There are smart contracts that restrict the number 
of tokens an address can buy in the same transaction. This feature 
prevents big players—also known as whales— from buying a large 
token supply in a short amount of time. Even if not intended to 
contrast sniper bots directly, this mechanism can cause the sniper 
bots’ buy transactions to fail if the desired quantity of tokens over-
comes the restriction of the smart contract. Some sniper bots ofer 
the possibility to buy the desired amount of tokens using multiple 
buy transactions, working around the smart contract limitation. 

3.2.4 Buy the token. Finally, the sniper bot buys the token. In 
particular, we fnd two ways the sniper bots perform the purchase: 
Interacting with the Router contract. The sniper bot can buy the 
token by sending a transaction to the Router contract of the target 
AMM. To fnalize the purchase, the user of the sniper bot has to 
specify the number of tokens to buy and the maximum slippage (i.e., 
the diference between the expected and the actual price) tolerated. 
Using a custom smart contract. The sniper bot buys the token 
by sending a transaction to a custom smart contract rather than 
directly to the AMM router. This approach incurs higher costs, 
including smart contract deployment fees, but provides advantages. 
Indeed, the smart contract enables atomic execution of multiple 
operations, such as checking if the token is a honeypot. 

3.2.5 Sell the token. While all the sniper bots provide an automatic 
way to buy tokens, not all of them ofer the feature to sell them 
automatically. Indeed, we fnd that the selling functionalities are 
present only in 10 out of 28 sniper bots. 
Sell percent gain. The sniper bots that automatically sell tokens 
allow the user to set a target proft percentage. Once the token’s 
value increases by the designated percentage, the sniper bot auto-
matically sends a swap transaction to sell the token. 
Stop loss. Most sniper bots also provide a mechanism to protect 
investors from excessive loss, namely a stop loss. The stop loss is a 
simple threshold and allows the bot to sell the tokens if the token 
price drops below a specifed percentage relative to the buy price. 
Trailing stop. Some sniper bots implement a more sophisticated 
trading strategy called the Trailing Stop. With the Trailing Stop, the 
sniper bot continuously tracks the token’s price. If the maximum 

value of the token falls below a given percentage, the sniper bot 
automatically sells the token. 

4 SNIPER BOTS DETECTION 
In the previous section, we focused on understanding how sniper 
bots work by analyzing their source code. In this section, we change 
perspective, investigating how they are operatively used by analyz-
ing blockchain data. 

4.1 Liquidity pools dataset 
To study the sniper bots, we create the liquidity pools dataset, a 
collection of liquidity pools and their operations in Ethereum and 
BSC. To retrieve the data, we run an Ethereum and a BNB Smart 
Chain node on our machine and synchronize the two blockchains. 
Then, we use Web3 [26], a Python library that allows interaction 
with EVM-compliant nodes to query the blockchains and obtain 
the data from their inception to March 2022. To collect the data, 
we use the same approach of previous works [9, 23, 39]. In par-
ticular, we parse the Event Logs of both blockchains, collecting 
Events compliant with the Uniswap smart contract implementation. 
Note that all Uniswap forks, including those deployed in the BSC, 
also implement these Events. In detail, we retrieve the data of the 
following events: PairCreated, Mint, and Swap. 

• PairCreated: With this Event, we collect the addresses of liq-
uidity pools and other relevant data: the addresses of the two 
tokens they contain, their block of creation, the transaction 
hash, and the address that created the pool. We fnd 70,656 
liquidity pools on Ethereum and 972,467 on BSC, which con-
tain in their pairs 61,507 unique tokens in Ethereum and 
840,862 unique tokens in BSC. 

• Mint: By collecting Mint events, we infer when liquidity 
providers added liquidity to the pool. From the Event, we col-
lect the address that added the liquidity, the amount of liquid-
ity added, the address of the pool, the transaction hash, and 
the block where the operation occurred. We collect 2,359,333 
Mint events in Ethereum and 26,972,440 Mint Event in BSC. 

• Swap: Gathering Swap events, we obtain information such 
as the transaction hash, the block in which the operation 
occurs, the address that performs the swap, the address of 
the liquidity pool, the number of tokens swapped, the gas 
used, and the gas price. We collect 82,430,138 Swap events 
in ETH and 749,188,792 Swap events in BSC. 

4.2 Sniper bots identifcation 
As a frst step towards understanding how sniper bots are opera-
tively used, we have to identify them. Although sniper bots can 
target any liquidity pool pair, we focus on sniper bots that target 
liquidity pools containing the native coin of the blockchain (BNB or 
ETH), which are 86.5% and 91.3% of the liquidity pools on Ethereum 
and BSC, respectively. Narrowing our research on these liquidity 
pools allows us to easily defne two operations: the buy and the sell. 
In particular, we defne as a buy operation any swap that takes as 
input ETH (BNB) and provides as output any other ERC-20 (BEP-20) 
token. Conversely, we defne as a sell operation any swap that takes 
an ERC-20 (BEP-20) token as input and provides as output ETH 
(BNB). Furthermore, considering the speculative nature of sniper 
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Figure 3: The scatter plot shows on the y-axis the number of 
liquidity pools where each address performed buy operations. 
On the x-axis, we plot the blocks elapsed between the buy 
operations and the frst time liquidity is added to the pool. 

bots, it is reasonable to assume that a user would never snipe a 
liquidity pool he created. Thus, we remove from our dataset all the 
buy and sell operations performed in the liquidity pool created by 
the same address performing the swap (3,201,920 swaps). 

As we saw in the previous subsections, sniper bots are developed 
to perform buy operations immediately after the liquidity is added 
to the liquidity pool. However, in some cases, they can not always 
buy the token in the same block the liquidity is added, but they have 
to wait for some blocks to be sure they do not fall prey to scams or 
high taxes (see Sec.3.2.3). Even if it is difcult, a standard user could 
swap into a new liquidity pool a few blocks after it has been created. 
Thus, to avoid this case, we focus only on addresses that serially take 
advantage of sniper bots. Moreover, in our identifcation process, 
we have to consider that the user can operate with the same address 
for sniping tokens but also for his regular trading activities. Thus, 
some sniper bots’ addresses could have operations carried out far 
from the creation of the liquidity pool. With these considerations, 
we outline two conservative thresholds to identify sniper bots’ 
addresses by looking at their activities: 

❖ At least 90% of the address buy operations have to be per-
formed into 5 blocks from the block in which the liquidity 
was added for the frst time to the liquidity pool. 

❖ The address has to perform a buy operation in at least 5 
diferent liquidity pools. 

In the following subsection, we analyze the addresses selected by 
applying these two thresholds. 

4.3 Results 
Fig. 3 shows a scatterplot where each address is represented by a 
dot (blue for Ethereum addresses and yellow for BSC addresses). 
The y-axis displays the number of liquidity pools the address has 
traded in, and the x-axis shows the 90th percentile of the time in-
tervals in blocks between the frst addition of liquidity to the pool 
and the address’s buy operations. Both fgures contain a zoom of 

Table 1: Summary of sniper bots operations and their profts. 

Metric Ethereum BSC 

# Liquidity pools 
# Sniper bots 
# Operations 
Avg. buy 
Avg. gain 
Success rate 

55,678 
161 

14,029 
0.75 ETH 
0.84 ETH 

25.6% 

710,515 
819 

1,395,042 
0.03 BNB 
0.08 BNB 

7.0% 

the frst 30 blocks. We leverage the Mint events in our liquidity 
pools dataset to calculate the time elapsed from the buy operation 
and when the liquidity is added for the frst time. We indicate with 
red crosses the addresses selected using our thresholds. As we can 
see, these addresses perform buy operations extremely close to the 
frst liquidity addition and in hundreds of liquidity pools, exhibiting 
a pattern highly compatible with sniper bots’ operations. For the 
remained sections, we will refer to these addresses as "sniper bots". 
Analyzing them, we discover that: 
Sniper bots are more prevalent in the BSC. Using our thresh-
olds, we select 161 addresses on Ethereum, and 819 addresses on 
BSC, performing 15,052 buy operations and 1,440,945 operations, 
respectively. The total Ethereum and BSC liquidity pools targeted 
are, respectively, 7,879 and 198,786. To confrm that these addresses 
are sniper bots, we quantify how many performed a buy operation 
in the same block where the liquidity is added to the pool for the 
frst time. This operation is virtually impossible to perform by a 
human, as it requires monitoring the mempool. We fnd that 144 
(89.4%) addresses on Ethereum and 512 (62.5%) on BSC perform at 
least a buy operation at the same block of the frst liquidity addition. 
Sniper bots use diferent strategies in Ethereum and BSC. 
Ethereum sniper bots perform, on average, fewer operations than 
BSC sniper bots (93 vs. 1,759). However, they tend to invest higher 
sums than BSC sniper bots, with an average of 0.75 ETH ($673) 
against 0.03 BNB ($13). These diferent behaviors are arguably 
dictated by the diferent costs of fees on the two blockchains. Indeed, 
computing the fee spent to buy tokens by snipers bots, we fnd that, 
on average, they spent 0.019 ETH ($23.1) on Ethereum while 0.001 
BNB ($0.46) on BSC. 
Sniper bots have a relevant economic impact. Summing up 
the buy operations, we observe that sniper bots have a signifcant 
economic impact. These bots invest 11,360.7 ETH ($10,144,808) in 
Ethereum and 45,606.3 BNB ($18,720,447) in the BSC. 

4.4 Gains 
In this section, we analyze in detail the operations performed by 
sniper bots to estimate their proftability. For each sniper bot, we 
aggregate all the buy and sell operations performed on a token in a 
single sniping operations. Indeed, as mentioned in Sec. 3.2.3, sniper 
bots can buy or sell a token using multiple transactions. After this 
aggregation, we fnd 14,029 sniping operations in Ethereum and 
1,395,042 sniping operations in BSC. For each sniping operation, 
we estimate its proft using the following formula: 

������� = ���� − ��� − � ��� (1) 
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Where ���� is the proft obtained by the sell operations, ��� is 
the amount spent to buy the token, and � ��� is the transaction 
fees paid for buy and sell operations. In the following, we divide 
the operations into successful and unsuccessful, considering an 
operation successful if the ������� is strictly positive. 
Successful operations. Interestingly, we fnd that in BSC only 
96,809 (7.0%) of the sniping operations are successful. The success 
rate is better on Ethereum, with 3,571 operations (25.6%). Moreover, 
we fnd that the average gain of Ethereum (0.84 ETH) is higher than 
the average BSC gains (0.08 BNB). Even if sniping operations are 
unsuccessful on average, we fnd some extreme cases of proft indi-
cating that sniping tokens can be a high-risk, high-reward strategy. 
In particular, we fnd an address2 that performs a sniping operation 
with a proft of 299.8 ETH. The address buys 1.86M TrustSwap [13] 
tokens paying 90 ETH (0.00004 ETH for each token), exactly in the 
same block when the liquidity is added to its liquidity pool (block 
10426750). The sniper bot sells 1M of TrustSwap tokens 23 blocks 
after the buy, with a price increase of 600% (0.00024 ETH). Then it 
sells the remaining tokens for a similar price in 3 subsequent trans-
actions for a total of 390 ETH. If we subtract the initial investment 
of 90 ETH and the transaction fees, the address profts 299.8 ETH 
from the operation. 
Unsuccessful operations. Most of the sniping operations are un-
successful. Indeed, 10,458 (74.5%) Ethereum operations and 1,298,233 
(93.0%) BSC operations are unsuccessful. We notice that almost all 
BSC operations (85.5%) and a large fraction (48.8%) of Ethereum 
sniping operations are unsuccessful because the sniper bots did 
not sell the token. Possibly, these addresses did not sell the token 
because they could not do so. Indeed, Cernera et al. [9] show that 
almost 60% of BSC and Ethereum liquidity pools have a rug pull in 
the frst day of their life. Thus, it is possible that the sniper bots did 
not sell the tokens before all the liquidity was removed from the 
pool. In the cases where the sniper bots sell the tokens, the loss is 
generally not too high, with 0.11 ETH ($108) in Ethereum and 0.01 
BNB ($4.1) in BSC. Tab. 1 resumes our fndings about sniper bots 
and their profts. 

5 ANTI-BOT MECHANISMS 
In this section, we analyze the source code of smart contracts to 
understand how many tokens implement mechanisms that can 
directly or indirectly limit the action of sniper bots. As mentioned 
in Sec. 3.2.2, Etherscan and BSCScan ofer the possibility to upload 
on their website the source code of a smart contract to verify it. 
Thus, to build the smart contracts dataset, we query the APIs [18, 19] 
of the two explorers to retrieve the smart contracts source code of 
the tokens contained in the liquidity pools dataset. At the end of 
the process, we are able to retrieve 47,619 out of 61,507 (77.42%) 
verifed smart contracts source codes for Ethereum and 545,048 out 
of 840,862 (64.82%) for the BSC tokens. 

5.1 Smart contract analysis 
Since it is not feasible to manually analyze the code of all the re-
trieved smart contracts, we search on the Internet for reference 
implementations of anti-bot measures. In particular, we search for 
these implementations in sector forums (e.g., OpenZeppelin [25], 
20xc0c5c6ea185b331fc97499fb6bf7c1f1a0fc48c 

Ethereum StackExchanges [32]), tools for automated token cre-
ation (e.g., Tokensbygen [36], Cointool [14]), or querying Google 
with keywords such as: smart contract anti-bot measures, anti-bot 
protection, sniper bot countermeasures, token sniper bot protection. 
Following our research, we fnd six diferent mechanisms that can 
hinder the action of sniper bots and 34 reference implementations. 
Next, we create a regular expression for each implementation that 
we can use to automatically identify similar snippets of code in 
our smart contracts dataset. In Tab. 3 in the Appendix, we describe 
the implementations for each mechanism and how we identify the 
token smart contracts adopting it. Moreover, we publicly release 
the regular expressions we used in [2]. 

In the following, we briefy describe the six diferent mechanisms 
and report the number of smart contracts adopting them. 
Disabled trading. This mechanism allows to enable or disable the 
transfer of the tokens, and hence the trading, at will. As we discuss 
in Sec. 3.2.3, when a liquidity pool has the trading disabled at its 
frst blocks of life, sniper bots must implement advanced features 
to be successful in their operations. In our dataset, we fnd that the 
smart contracts implementing this mechanism are 4,584 (9.62%) on 
Ethereum, and 15,170 (2.78%) on the BNB Smart Chain. 
Tax during the launch window. With this mechanism, the smart 
contract imposes a high tax on each token transaction (e.g., 99%) 
during the launch window of the liquidity pool. Sniper bots can 
avoid falling prey to this mechanism using the advanced feature 
Wait �-blocks (see in Sec. 3.2.3). We identify 9 (0.018%) and 15,540 
(2.85%) token smart contracts on the Ethereum and BNB Smart 
Chain, respectively, implementing this technique. In particular, 
more than 88% of these smart contracts impose the tax only for the 
frst two blocks from the token launch, while the remaining smart 
contracts defne a diferent number of blocks, either with a fxed 
number or through a variable. 
Token amount limit. This mechanism consists in limiting the 
number of tokens per transaction and/or per address that can be 
purchased during the early stage of the liquidity pool. Although 
we fnd sniper bots successfully bypassing the transaction limit 
(Sec. 3.2.3), we have no evidence of sniper bots being able to evade 
the limit per address. We fnd 7,749 (16.27%) on Ethereum and 
189,465 (34.76%) on the BSC smart contracts implementing the limit 
per transaction mechanism. In contrast, only 18 on Ethereum and 
24,714 on the BSC implement the limit per transaction. 
Transactions number limit over time. To solve the problem of 
multiple transactions used to circumvent the previous mechanism, 
some smart contracts do not permit multiple transfer operations 
requested by the same address in a given time window. In particular, 
we identify 10 (0.02%) and 13,018 (2.38%) token smart contracts 
adopt this mechanism on Ethereum and BSC, respectively. 
Gas price limit. As shown in Sec. 3.2.1, a common practice used 
by sniper bots to ensure their transactions are executed as fast as 
possible is to use a gas price higher than those of other transactions 
at that moment. Thus, a strategy to slow them down is to set a gas 
price limit and block transactions using a gas price higher than a 
certain threshold. Using this approach, we fnd the token smart 
contracts implementing this strategy are 143 (0.3%) on Ethereum 
and 1,157 (0.21%) on the BSC. 
Sniper bots blocklist. The last mechanism consists in blocking all 
the transactions sent by addresses already known for being sniper 
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Table 2: Smart contracts implementing anti-bot mechanisms. 

BSC Ethereum 

Disabled trading 15,170 (2.78%) 4,584 (9.62%) 
Tax during the launch window 15,540 (2.85%) 9 (0.018%) 
Token amount limit 189,465 (34.76%) 7,749 (16.27%) 
Transactions number limit 13,018 (2.38%) 10 (0.02%) 
Gas price limit 1,157 (0.21%) 143 (0.3%) 
Sniper bots blocklist 464 (0.08%) 75 (0.15%) 

bots or that perform transactions in the frst blocks of life of the 
liquidity pool. Overall, we fnd 464 (0.08%) token smart contracts 
on the BSC and 75 (0.15%) on Ethereum. 

Tab. 2 summarizes the number of token smart contracts imple-
menting the diferent mechanisms analyzed. As we can see, the 
strategy that limits the token amount that can be bought is the 
most popular one on both blockchains (16.27% on Ethereum and 
34.76% on BSC). Interestingly, we fnd that the second most popular 
mechanism to limit the sniper bot actions on BSC (Increased fees) 
is implemented by only nine (less than 0.02%) smart contracts on 
Ethereum. Instead, the runner-up mechanism on Ethereum (Disable 
trading) is implemented by more than 9% of the smart contracts on 
Ethereum and only by 2.78% on BSC. 

Looking at the number of mechanisms used by each token smart 
contract in our dataset, we fnd that usually, they do not implement 
any mechanism to limit the actions of the sniper bots. Indeed, there 
are 9% token smart contracts on Ethereum and 31.4% on BSC im-
plementing only one mechanism and very few more than one. The 
maximum number of mechanisms adopted is four (disabled trading, 
token amount limit, transactions number limit, and increased fees), 
implemented by 1,024 token smart contracts, all running on the 
BSC. From our data, it appears that BSC token creators are more 
active in contrasting the action of the sniper bots with 37.36% of 
the smart contracts that implement at least a mechanism against 
the 17.9% on Ethereum. This is probably because, as we have seen 
in Sec. 4.3, the sniper bot phenomenon is more spread on the BSC 
ecosystem than on Ethereum. 

6 RELATED WORK 
Several works study the presence of bots in the AMM market, with 
a particular focus on front-running bots that perform arbitrage or 
sandwich attacks. Daian et al. [15] investigated the behavior of front-
running bots that exploit arbitrage opportunities by monitoring the 
mempool. The bots scan the mempool for large buy transactions 
that result in an overpriced token on a particular market. They 
then swiftly send a transaction to purchase underpriced assets on 
another market and sell them on the overpriced market, capitalizing 
on the big buy. Qin et al. [28] propose heuristics to identify arbitrage 
operations and quantify their impact on the market. They fnd that 
from 2018 to 2021 arbitrage bots obtained a proft of 277.02M USD. 
Zhou et al. [41] studied sandwich attacks. This kind of attack is 
performed using two transactions. The frst is placed just before the 
target transaction (i.e., front-run), and the second just after it (i.e., 
back-run). This strategy allows making a proft when a signifcant 
buy is performed in the AMM. They fnd that on Uniswap, an 

attacker can obtain an average daily proft of $3,414. Instead, Qin 
et al. [28] study the sandwich attacks on a larger scale, taking into 
account several marketplaces on Ethereum, quantifying the proft 
obtained through sandwich attacks in 174.34M USD. Front-running 
bots have also been studied by Torres et al. [37], they analyze 11 
million Ethereum blocks fnding more than 200 thousand attacks 
with an accumulated proft of $18.41M. 

Sniper bots have received little attention from the scientifc com-
munity since they have been partially analyzed only by Cernera 
et al. [9]. The paper analyzes blockchain data to identify rug pulls, 
fnding 21,594 and 266,340 operations performed respectively in the 
AMM markets of Ethereum and the BSC. Then, they identify ad-
dresses that frequently fall prey to rug pull operations and classify 
them as sniper bots. With respect to their work, we perform a deep 
characterization of sniper bots and analysis of their implementation. 
Moreover, we quantify their presence outside rug pull operations 
and analyze their investment, gains, and success rate. 

7 LIMITATIONS 
In this work, we focus only on open-source implementations of 
sniper bots that we fnd on GitHub. However, during our investiga-
tion, we fnd also several closed-source implementations [10] and 
providers that ofer "Sniper bot as a service" [31]. Thus, there may 
be sniper bots that ofer more advanced features that we could not 
analyze. From the point of view of the sniper bots identifcation, 
we purposely focus on detecting addresses that perform sniping 
operations serially. However, it is also possible that some addresses 
use single-target sniper bots to perform only one operation or ro-
tate the addresses they use. For these reasons, our work only shows 
a lower bound on the usage and impact of sniper bots on the DeFi 
ecosystem. Finally, in our investigation of the anti-bot mechanisms 
implemented by smart contracts, we rely on reference implementa-
tions, which we fnd disclosed on the web. Even if we added some 
fexibility using regexes, the same techniques could have been im-
plemented in diferent ways that we did not cover. Thus, also in 
this case, our estimation of the difusion of anti-bot mechanisms is 
only a lower bound. 

8 CONCLUSION AND FUTURE WORK 
This paper provides a thorough analysis of the phenomenon of 
sniper bots operating on Ethereum and BSC. First, we analyzed 
how sniper bots work, defning the phases composing a sniping 
operation. Then, we identifed sniper bots operating on AMMs com-
patible with Uniswap and its forks. We studied their behavior and 
quantifed their economic impact on the DeFi ecosystems. Lastly, 
we described the anti-bot mechanisms implemented by smart con-
tracts to limit sniper bots and estimated their adoption on Ethereum 
and BSC. 

As future work, it is interesting to investigate the reasons for the 
low success rate of sniper bots, especially on BSC. Another possible 
direction is to assess the impact of sniper bots on the listing price 
of the target token. Finally, extending our analysis to addresses 
that do not use sniper bots serially would be valuable for a more 
comprehensive understanding of the phenomenon. 
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A APPENDIX 

Table 3: Implementation of anti-sniper bot mechanisms. 

Mechanism Description of the implementation 

Disabled trading This strategy involves managing the trading status for a token using a boolean variable, commonly called tradingOpen, 
that is initially set to false. Only the smart contract owner can change its status to true to enable trading. We search 
for token smart contracts having a method (such as tradingStatus, openTrading) to set a variable that is checked in the 
Transfer method and that, if set to false, does not allow the token trading. 

Tax during the This solution aims to penalize addresses trading too fast for a human by temporarily increasing the fee to 99% for blocks 
launch window close to the token launch. We search for token smart contracts defning a function (typically called getTotalFee) that 

checks whether the block of the transaction is greater than the block of the token launch plus a certain threshold and, if 
not, raises the fees. 

Token amount limit This solution restricts the number of tokens that can be purchased during the launch phase. We search for token smart 
contracts that, in the Transfer function, check the amount of tokens to transfer and if this is greater than a certain 
variable (e.g., _maxTxAmount), revert the transaction. Some smart contracts perform this check with a specifc function 
like checkTxLimit. 

Transactions number Some smart contracts check the number of transactions sent by an address in a given time window, setting a cooldown 
limit that blocks further transactions for that address until it expires. We look for token smart contracts implementing in 

the Transfer function a check that reverts the transaction if its block timestamp is lower or equal to the cooldown 
timer associated with the transaction recipient (e.g., cooldownTimer[recipient]). Some smart contracts defne a function 
(buyCooldown) to set the variable managing the cooldown and its duration. 

Gas price limit Here the goal is to slow down bots setting a gas price limit and block transactions using a gas price higher than a certain 
threshold. We look for token smart contract defning functions, commonly called setPriceLimit, setLimitsInEfetc, or 
setProtectionSettings, to set a gas price limit. 

Sniper bot blocklist This strategy consists in blocking all the transactions sent by addresses already known for being sniper bots. We look 
for token smart contracts blocking the transaction if its sender belongs to the blocklist (isSniper). The list is updated 
with sniper bots’ addresses buying the token at the same block of its launch. 
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