
Ready, Aim, Snipe! Analysis of Sniper Bots
and their Impact on the DeFi Ecosystem

Federico Cernera Massimo La Morgia Alessandro Mei
Sapienza University of Rome Sapienza University of Rome Sapienza University of Rome

Rome, Italy Rome, Italy Rome, Italy
cernera@di.uniroma1.it lamorgia@di.uniroma1.it mei@di.uniroma1.it

Alberto Maria Mongardini Francesco Sassi
Sapienza University of Rome Sapienza University of Rome

Rome, Italy Rome, Italy
mongardini@di.uniroma1.it sassi@di.uniroma1.it

ABSTRACT
In the world of cryptocurrencies, public listing of a new token
often generates signifcant hype, in many cases causing its price
to skyrocket in a few seconds. In this scenario, timing is crucial to
determine the success or failure of an investment opportunity. In
this work, we present an in-depth analysis of sniper bots, automated
tools designed to buy tokens as soon as they are listed on the market.
We leverage GitHub open-source repositories of sniper bots to
analyze their features and how they are implemented. Then, we
build a dataset of Ethereum and BNB Smart Chain (BSC) liquidity
pools to identify addresses that serially take advantage of sniper
bots. Our fndings reveal 14,029 sniping operations on Ethereum and
1,395,042 in BSC that bought tokens for a total of $10,144,808 dollars
and $18,720,447, respectively. We fnd that Ethereum operations
have a higher success rate but require a larger investment. Finally,
we analyze token smart contracts to identify mechanisms that can
hinder sniper bots.

CCS CONCEPTS
• Applied computing → Economics; • Security and privacy →
Social aspects of security and privacy.

KEYWORDS
Trading bots, AMM, Ethereum, BNB Smart Chain

ACM Reference Format:
Federico Cernera, Massimo La Morgia, Alessandro Mei, Alberto Maria
Mongardini, and Francesco Sassi. 2023. Ready, Aim, Snipe! Analysis of
Sniper Bots and their Impact on the DeFi Ecosystem. In Companion Pro-
ceedings of the ACM Web Conference 2023 (WWW ’23 Companion), April
30–May 04, 2023, Austin, TX, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3543873.3587612

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9419-2/23/04. . . $15.00
https://doi.org/10.1145/3543873.3587612

1 INTRODUCTION
The cryptocurrency market is renowned for its high volatility [21],
with cycles where the value of tokens can skyrocket and plum-
met [17]. This behavior is prevalent among tokens with small
market capitalization, especially those that are newly listed. The
rapid increase in value often triggers FOMO [3] (fear of miss-
ing out) among investors, who often purchase tokens based on
hype rather than their intrinsic value. With the emergence of DeFi
(Decentralized Finance) and specifcally Automated Market Mak-
ers (AMMs) [40]—platforms where trading is powered by smart
contracts—every blockchain user can list and make their tokens trad-
able. As a result, hundreds of tokens are listed on AMMs daily [39],
and fnding the next token worth investing in can be a challenging
task. This has created the ideal environment for the emergence of
sniper bots—automated systems designed to buy tokens quickly as
soon as they are listed on an AMM platform.

In this work, we leverage open-source implementations of sniper
bots to gain insight into their features. We fnd that sniper bots im-
plementations are more sophisticated than we might expect. Indeed,
some of them ofer features such as protection against fraudulent
liquidity pools (e.g., honeypots and rug pulls), as well as anti-bots
mechanisms that are commonly implemented in token smart con-
tracts. Then, we build the liquidity pools dataset, consisting of
Ethereum and BSC liquidity pools and their activities. Inspired by
what we learned analyzing the implementation of the sniper bots,
we devised a straightforward approach to detect addresses that
take advantage of sniper bots. We discover that the sniper bots phe-
nomenon is more widespread on BSC than in Ethereum. However,
after analysis of the operations conducted by these addresses, we
surprisingly fnd that Ethereum operations have a higher likelihood
of being closed with a proft, despite requiring a larger investment.
Finally, we leverage Etherscan and BSCScan, two popular explorers
for Ethereum and BSC, respectively, to download the source code
of the smart contracts of the tokens contained in the liquidity pools
dataset. We search among the retrieved smart contracts implemen-
tation of anti-bot mechanisms that can limit the action of the sniper
bots. In line with our previous fndings, we discover that developers
of BSC token smart contracts are more active in countering bots’
activities, implementing more mechanisms to hinder their actions.
Our main contributions are:

1093

https://doi.org/10.1145/3543873.3587612
https://doi.org/10.1145/3543873.3587612
mailto:sassi@di.uniroma1.it
mailto:permissions@acm.org
mailto:mongardini@di.uniroma1.it
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543873.3587612&domain=pdf&date_stamp=2023-04-30

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA Cernera, et al.

• Analysis of sniper bots: To the best of our knowledge,
we are the frst to conduct an in-depth analysis of sniper
bots and their implementation. We explore each phase of a
sniping operation, from the choice of the target liquidity pool
to the sale of the token. For each phase, we report in detail
the diferent techniques implemented by the most popular
open-source sniper bots on GitHub.

• The impact of sniper bots: We propose an identifcation
methodology for addresses that take advantage of sniper bots
serially. We fnd 161 addresses on Ethereum 819 addresses in
BSC. Analyzing the operations of the identifed sniper bots,
we note that sniper bot users behave diferently accordingly
to the platform they operate. We analyze their operations to
estimate their success rate and their proft. We quantify their
impact on the ecosystem of liquidity pools, fnding that they
move a volume of 11,360.7 ETH on Ethereum and 45,606.3
BNB in BSC.

• Smart contract analysis: We describe the most popular
mechanisms to counter bots used by smart contract devel-
opers. Then, we quantify the adoption of anti-bot mecha-
nisms by tokens, leveraging a dataset of almost 600,000 smart
contracts. We observe that 17.9% token smart contracts on
Ethereum and 37.36% on BSC implement at least one mecha-
nism to hinder the action of bots.

2 BACKGROUND

2.1 Ethereum and the Binance Smart Chain
Ethereum [8] is a proof-of-stake blockchain. Its native coin, Ether
(ETH), is the second cryptocurrency by market capitalization, with
over 200 billion USD. Thanks to the Ethereum Virtual Machine
(EVM) it is possible to execute custom machine code with smart
contracts. Smart contracts are programs stored on the Ethereum
blockchain, written in a high-level programming language (e.g., So-
lidity). Smart contracts enable the creation of several kinds of assets,
like, for example, fungible tokens. In Ethereum, the ERC-20 standard
defnes the core methods and Events that tokens should implement.
The methods provide basic functionalities such as transferring to-
kens from one account to another or obtaining an account’s current
token balance. Instead, the Events are a mechanism provided by
Ethereum to ease the tracking of the internal state of smart con-
tracts. Indeed, each time the state of the smart contract change, it
can trigger an Event that is written in an Event Log that developers
can easily track. In the case of ERC-20 tokens, Events are used
to notify signifcant changes, like the transfer of tokens from one
account to another.

2.1.1 The Binance Smart Chain. The Binance Chain [4] was es-
tablished in 2019 by Binance, one of the largest cryptocurrency
exchanges. The BNB Smart Chain (BSC) was later introduced as
a parallel to the Binance Chain to support smart contracts. BSC
uses the Proof of Stake and Authority (PoSA) [5] consensus, and its
native coin, the BNB, is the third-largest cryptocurrency by market
capitalization, with a value of over $48 billion. The BSC is EVM-
compatible (i.e., it leverages the same EVM of Ethereum). Thus, it
can run Ethereum’s smart contracts and has the same addresses
and state management conventions. Because of this compatibility,

the BSC proposes itself as a faster and less expensive alternative to
Ethereum.

2.2 DEX, AMM and Uniswap
Decentralized exchanges (DEXs) are cryptocurrency exchanges that
allow the trade of cryptocurrencies without the need for an inter-
mediary. The most popular DEXs leverage the Automated Market
Maker model (AMM). In this model, trade matching is performed
using liquidity pools, and the price of assets is fxed using a mathe-
matical formula. Uniswap [1] is one the frst dApp to use the AMM
model successfully, with over 3 billion USD locked into smart con-
tracts1. Fig. 1 shows, at a high level, how liquidity pools work in
Uniswap. A liquidity pool is a smart contract that contains a pair
of ERC-20 tokens (�, �) that users can swap. Users that want to
invest in the liquidity pool provide both tokens (�, �) to the smart
contract, becoming liquidity providers. To keep track of the share of
the liquidity owned by each investor, liquidity pools use an ERC-20
token called LP-token. When a liquidity provider adds liquidity to
the liquidity pool, the smart contract mints LP-tokens and transfers
them to the liquidity provider. Conversely, a liquidity provider that
wants to remove its liquidity can transfer the LP-tokens to the liq-
uidity pool smart contract. The smart contract burns the LP-tokens
and returns the tokens (�, �) back to the investor. Any user can
interact with the liquidity pool to swap token � with token � and
vice versa.

Uniswap implements the AMM model using mainly three smart
contracts.

• The Factory contract is used to create the smart contract
that handles liquidity pools. It is responsible for creating one
and only one liquidity pool for each token pair. Each time a
new liquidity pool is created, the Factory contract emits a
PairCreated event.

• The Pair contract implements the AMM logic and keeps
track of the pool’s status, including the token balances. The
Pair contract emits three Events that notify the changes in
the status of the liquidity pool. The Pair contract emits a
Mint (or Burn) event each time an LP-token is minted (or
burned) and a Swap event each time a user swaps tokens
in a liquidity pool. All liquidity pool created by the Factory
smart contract implements these Events.

• The Router ofers an entry point to interact with the liquidity
pools. Interacting with the Router, it is possible to create
liquidity pools, add or remove liquidity, and swap tokens.

3 SNIPER BOTS
Sniper bots are software applications that monitor a specifc activity
to automatically perform an action before anyone else [9]. Examples
of these bots are "Scalping bots," [7] programs designed to purchase
limited-availability goods quickly. These kinds of bots have been
used to buy limited-edition sneakers [24] and Nvidia GPUs during
the 2021 graphic card shortage [7]. The goal of bots’ users is usually
to resell the purchased items at a higher price. In the blockchain
world, sniper bots are typically used to buy tokens as soon as they
are listed on an AMM platform.

1Data retrieved from DefLlama [22], a popular DeFi statistics aggregator, in 2023-01-10

1094

Ready, Aim, Snipe! Analysis of Sniper Bots and their Impact on the DeFi Ecosystem WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

Adds liquidity

(A, B)

LP token

Removes liquidity

(A, B)

LP token

A

B

Swaps

Liquidity
provider

Trader

Liquidity Pool

A
B

Figure 1: Liquidity pool and its main operations.

3.1 Sniper bots dataset
To understand how sniper bots are implemented and the features
they ofer, we leverage Github [16], one of the most popular Inter-
net hosting services for software. We systematically search sniper
bots on Github using keywords such as: "Sniper bots," "Sniping
bots," and other similar variations. This research yielded hundreds
of open-source repositories that are impractical to analyze manu-
ally. Therefore, we decide to focus on sniper bots that have some
popularity. To do so, we leverage GitHub’s star ranking system [6]
as a metric to infer popular repositories. We decided to analyze only
sniper bots with at least 15 stars. Using this criterion, we select 70
sniper bots. Then, we discard from our analysis 25 repositories con-
taining the code of sniper bots unrelated to AMMs. Most of these
sniper bots are used in online video games (8 repositories) and to
buy NFTs as quickly as possible in NFT marketplaces (5 reposito-
ries). Analyzing the remaining repositories, we notice that 17 of
them do not contain open-source code. In these cases, the reposito-
ries are used to promote and sell closed-source sniper bots. Some
others contain only executable fles and instructions to use the bots.
In the end, considering only the open-source implementations, we
focus on analyzing 28 repositories.

3.2 The anatomy of sniper bots
Analyzing the sniper bots’ source codes, we frst notice that almost
all the considered sniper bots target Ethereum or the BNB Smart
Chain (BSC). The only exception is a sniper bot that operates on the
Avalanche [29] blockchain. In particular, 17 sniper bots exclusively
support the BSC, three support Ethereum, and seven ofer multi-
chain support, being able to target both BSC and Ethereum. Looking
more in detail at the implementations, we fnd these bots target the
PancakeSwap and Uniswap AMMs. Only a few of them also ofer
the possibility to snipe tokens released on other AMMs operating
on the Ethereum and BSC blockchains.

Analyzing the code repositories, we fnd that there are two cate-
gories of sniper bots:

• Single-target sniper bots. These sniper bots target a spe-
cifc token, requiring the user to input the smart contract
address of the token. A user can use this kind of sniper bot
to buy the token of a highly hyped project at its listing price,
expecting its value to skyrocket right after. We fnd 25 im-
plementations of this kind of sniper bot.

• Multi-targets sniper bots. The second category of sniper
bots is designed to buy every token as soon as it is listed.

In this case, the goal of their users is more speculative. In-
deed, the strategy behind using these bots is to buy as many
diferent tokens as possible, hoping that at least a few of
them will gain value in the future. In our dataset, we fnd 3
implementations of multi-targets sniper bots.

Despite having diferent goals, these two categories operate
similarly and follow the same execution phases, which we illustrate
in Fig. 2 and report in the following.

(1) Find the liquidity pool. As a frst step, the sniper bot must
identify the liquidity pool from where to buy the target token.
Since these kinds of bots aim to buy the token as soon as
it is listed, the sniper bot looks for newly created liquidity
pools that are available for trading (i.e., actually containing
liquidity). In § 3.2.1, we will explore the strategies the sniper
bots implement to handle this phase.

(2) Scam protection. Then, the sniper bot can perform some
checks to ensure that the token to buy is not a scam. If these
checks fail, the sniper bot will not buy the token, and in the
case of a multi-target sniper bot, it will search for a new
liquidity pool. This kind of security measure is implemented
only by 13 sniper bots. We will explore the diferent imple-
mented scam check solutions in § 3.2.2.

(3) Advanced features. As we will discuss in §5, some token
smart contracts implement techniques to avoid bot inter-
actions. Thus, the sniper bot can implement workarounds
to evade detection and still buy the token. This is an ad-
vanced feature that we fnd implemented in 10 cases. We
will describe the anti-bot mechanisms in § 3.2.3.

(4) Buy the token. Finally, the sniper bot buys the desired
amount of the token. This phase can be performed by in-
teracting with the AMM router, performing a simple swap
operation, or interacting with a custom smart contract. We
will explain these two techniques in § 3.2.4.

(5) Sell the token. The sniper bot can also ofer the possibility
to sell the token automatically. In § 3.2.5, we describe how
this phase is implemented by the 10 sniper bots that ofer
this feature.

3.2.1 Find the liquidity pool. Exploring the source code of the
sniper bots in our dataset, we fnd that they use diferent method-
ologies to discover new liquidity pools. In particular, we fnd that
single-target sniper bots use the following techniques:
Mempool scan. The fastest way to fnd the liquidity pool con-
taining the target token as soon as it is available is to leverage the
blockchain mempool – the list of pending transactions waiting to
be included in the next blockchain blocks. In this case, the sniper
bot monitors the mempool, searching for the frst transaction that
adds liquidity to the target token’s liquidity pool. Technically, this
is done by checking if the bytecode of the transaction contains the
signature of the addLiquidity function of the Uniswap router (i.e.,
the function that is used to add liquidity to a liquidity pool).
Leverage Uniswap smart contracts. These kind of sniper bots
directly interacts with the smart contracts of the AMM. In particular,
it calls the getPair function of Uniswap’s Factory contract at regular
time intervals. This function takes a pair of token addresses as input
and returns as output the address of the liquidity pool that contains
the pair, if it exists, or the zero address if it does not. Thus, the

1095

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA Cernera, et al.

Single-target
sniper bot

Multi-target
sniper bot

§ 3.2.1

Find the liquidity
pool Scam Protection Advanced

features Buy the token Sell the token

§ 3.2.2 § 3.2.3 § 3.2.4 § 3.2.5

Figure 2: The phases of a sniper bot’s execution. We report in blue the phases we always fnd implemented by sniper bots.
Instead, we report in yellow the optional phases that a sniper bot can implement to improve its usability.

sniper bot can use getPair providing as input the token to snipe and
the valuable token they want to buy the token with (e.g., ETH). This
method is slower than the previous one. Indeed, in order for the
Uniswap smart contract to be updated, the transaction that updates
its status must be confrmed in the blockchain.

However, even if the liquidity pool exists, there is no guarantee
that it contains liquidity. Indeed, a user can create a liquidity pool
but not add tokens to it, making any kind of swap impossible. Thus,
once identifed the liquidity pool, to understand if there is liquidity,
the sniper bot performs polling requests to the getReserves function
of the contract. This function returns the quantity of the two tokens
in the pool. When this quantity becomes diferent than zero, the
liquidity has been added, and the sniper bot can perform the swap.
Instead, we fnd that multi-target sniper bots usually follow one of
these approaches:
Event Log monitoring. Sniper bots monitor the blockchain Event
Log looking for new PairCreated events. As mentioned in § 2.2, this
Event is emitted by the Factory contract of Uniswap each time a
new liquidity pool is created. From the data in this Event, the sniper
bot can retrieve the addresses of the two tokens in the liquidity pool
and the address of the liquidity pool itself. As for the previous case,
the sniper bot must verify that the liquidity pool actually contains
the tokens. Thus, before sniping the liquidity pool, it ensures that
there is liquidity through the getReserves function.
Telegram channels. Some sniper bots use Telegram [35], a very
popular messaging app with more than 700 million active users,
as a source to discover new liquidity pools. Indeed, on Telegram,
there are many channels—public groups where only the admin can
write [20]—dedicated to token release announcements. These sniper
bots use Telegram APIs to monitor a list of channels. The sniper
bot parses newly-published messages of these channels, looking
for the address of a liquidity pool created on the target AMM. For
instance, we fnd a sniper bot that monitors Telegram channels [33,
34] reporting newly-listed tokens by the CoinMarketCap [12] and
CoinGecko [11], two of the most popular cryptocurrency aggregator
websites. Usually, the list of monitored channels is customizable by
the user, which can add or remove specifc channels. Additionally,
users can specify a list of token addresses or words blocklisted
to avoid buying specifc tokens or tokens including in their name
specifc words.

3.2.2 Scam protection. We fnd that sniper bots often perform
checks to avoid buying scams or suspicious tokens. This is not sur-
prising, as anecdotal evidence (e.g., SquidGame [27]) and previous
works [9, 23, 39], have shown that investing in liquidity pools can
be risky as thousand of tokens are purposely created to perform

scams. The sniper bots’ countermeasures are mainly designed to
prevent two threats: rug pulls [9, 39] and honeypot tokens [38]. We
fnd that sniper bots employ the following solutions to avoid these
threats:
Trial trade. A possible countermeasure to avoid falling prey to
honeypots is to perform a trial trade. With this practice, the sniper
bot buys a small number of tokens and right after sells them. The
goal of this practice is to check that the token smart contract does
not prevent the sale of the token. Thus, if the trial trade is successful,
the sniper bot purchases the desired token amount.
RugDoc. A second possibility is leveraging the API of RugDoc [30],
a tool designed to help DeFi investors to make informed decisions
about the tokens they choose to invest in. RugDoc performs some
tests on the token to check if it is a honeypot and provides results
through APIs. So, the sniper bot queries the RugDoc’s APIs to
retrieve the tests’ results and infer the level of risk of the target
token. If the estimated level of risk is acceptable, the sniper bot will
proceed with buying the token.
Source code check. Before buying the token, some sniper bots
check the source code of the smart contract. In particular, they only
buy tokens whose smart contract is public and verifed on popular
blockchain explorers like Etherscan (for Ethereum) or BSCScan (for
BSC). These websites ofer contract verifcation where developers
can publish their smart contract source code on the site. The site
will then compile the code and check if the generated bytecode
matches the stored bytecode on the blockchain. If it matches, the
contract is considered verifed. Other than the verifed status, we
fnd sniper bots that avoid buying the token if the smart contract
contains specifc keywords.
Liquidity check. Lastly, some sniper bots ofer the feature to buy
only in liquidity pools with more than a certain amount of liquidity.
To perform this check, snipers bots call the getReserves function of
the liquidity pool’s smart contract.

3.2.3 Advanced features. Some sniper bots ofer advanced features
to circumvent smart contract functionalities designed to directly
or indirectly limit the action of sniper bots. Indeed, as we will see
in Sec. 5, several token smart contracts implement techniques to
hinder sniper bots or bots in general (e.g., trading bots).
Wait �-blocks. This feature enables the user to specify the number
of blocks the sniper bot waits to purchase after the liquidity is
added. This precaution is to avoid penalties imposed by some token
smart contracts that want to penalize automatic trading actions at
the early stages of the liquidity pool. For instance, a smart contract
may blocklist addresses that buy the token too quickly, prohibiting
subsequent token transfers from the blocklisted addresses. Others

1096

Ready, Aim, Snipe! Analysis of Sniper Bots and their Impact on the DeFi Ecosystem WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

may impose a very high fee on purchase transactions (e.g., 99% of
the acquired token returns to the liquidity pool) executed on the
frst blocks the liquidity is added.
Check trading enabled. Some token smart contracts implement
the possibility to enable and disable the transfer of the token at will.
The token creator can use this functionality for diferent technical or
marketing reasons. To handle this case, some sniper bots implement
a procedure to infer when a token enables the transfer functionality
as soon as possible. The sniper bot sends a small transaction. If
the transaction succeeds, the bot performs a second transaction
and buys the intended amount of tokens. Otherwise, we fnd two
diferent approaches implemented by the sniper bots in our dataset:
In the frst, the sniper bot starts to poll the liquidity pool’s smart
contract monitoring the token’s price. If the price oscillates, the
sniper bot infers that the transfer is enabled and attempts to buy the
token. Instead, with the second approach, the sniper bot monitors
the mempool looking for a transaction that contains the bytecode
of commonly known functions used to enable the transfer of the
token, such as: openTrade, enableTrading, tradingStatus.
Multiple buys. There are smart contracts that restrict the number
of tokens an address can buy in the same transaction. This feature
prevents big players—also known as whales— from buying a large
token supply in a short amount of time. Even if not intended to
contrast sniper bots directly, this mechanism can cause the sniper
bots’ buy transactions to fail if the desired quantity of tokens over-
comes the restriction of the smart contract. Some sniper bots ofer
the possibility to buy the desired amount of tokens using multiple
buy transactions, working around the smart contract limitation.

3.2.4 Buy the token. Finally, the sniper bot buys the token. In
particular, we fnd two ways the sniper bots perform the purchase:
Interacting with the Router contract. The sniper bot can buy the
token by sending a transaction to the Router contract of the target
AMM. To fnalize the purchase, the user of the sniper bot has to
specify the number of tokens to buy and the maximum slippage (i.e.,
the diference between the expected and the actual price) tolerated.
Using a custom smart contract. The sniper bot buys the token
by sending a transaction to a custom smart contract rather than
directly to the AMM router. This approach incurs higher costs,
including smart contract deployment fees, but provides advantages.
Indeed, the smart contract enables atomic execution of multiple
operations, such as checking if the token is a honeypot.

3.2.5 Sell the token. While all the sniper bots provide an automatic
way to buy tokens, not all of them ofer the feature to sell them
automatically. Indeed, we fnd that the selling functionalities are
present only in 10 out of 28 sniper bots.
Sell percent gain. The sniper bots that automatically sell tokens
allow the user to set a target proft percentage. Once the token’s
value increases by the designated percentage, the sniper bot auto-
matically sends a swap transaction to sell the token.
Stop loss. Most sniper bots also provide a mechanism to protect
investors from excessive loss, namely a stop loss. The stop loss is a
simple threshold and allows the bot to sell the tokens if the token
price drops below a specifed percentage relative to the buy price.
Trailing stop. Some sniper bots implement a more sophisticated
trading strategy called the Trailing Stop. With the Trailing Stop, the
sniper bot continuously tracks the token’s price. If the maximum

value of the token falls below a given percentage, the sniper bot
automatically sells the token.

4 SNIPER BOTS DETECTION
In the previous section, we focused on understanding how sniper
bots work by analyzing their source code. In this section, we change
perspective, investigating how they are operatively used by analyz-
ing blockchain data.

4.1 Liquidity pools dataset
To study the sniper bots, we create the liquidity pools dataset, a
collection of liquidity pools and their operations in Ethereum and
BSC. To retrieve the data, we run an Ethereum and a BNB Smart
Chain node on our machine and synchronize the two blockchains.
Then, we use Web3 [26], a Python library that allows interaction
with EVM-compliant nodes to query the blockchains and obtain
the data from their inception to March 2022. To collect the data,
we use the same approach of previous works [9, 23, 39]. In par-
ticular, we parse the Event Logs of both blockchains, collecting
Events compliant with the Uniswap smart contract implementation.
Note that all Uniswap forks, including those deployed in the BSC,
also implement these Events. In detail, we retrieve the data of the
following events: PairCreated, Mint, and Swap.

• PairCreated: With this Event, we collect the addresses of liq-
uidity pools and other relevant data: the addresses of the two
tokens they contain, their block of creation, the transaction
hash, and the address that created the pool. We fnd 70,656
liquidity pools on Ethereum and 972,467 on BSC, which con-
tain in their pairs 61,507 unique tokens in Ethereum and
840,862 unique tokens in BSC.

• Mint: By collecting Mint events, we infer when liquidity
providers added liquidity to the pool. From the Event, we col-
lect the address that added the liquidity, the amount of liquid-
ity added, the address of the pool, the transaction hash, and
the block where the operation occurred. We collect 2,359,333
Mint events in Ethereum and 26,972,440 Mint Event in BSC.

• Swap: Gathering Swap events, we obtain information such
as the transaction hash, the block in which the operation
occurs, the address that performs the swap, the address of
the liquidity pool, the number of tokens swapped, the gas
used, and the gas price. We collect 82,430,138 Swap events
in ETH and 749,188,792 Swap events in BSC.

4.2 Sniper bots identifcation
As a frst step towards understanding how sniper bots are opera-
tively used, we have to identify them. Although sniper bots can
target any liquidity pool pair, we focus on sniper bots that target
liquidity pools containing the native coin of the blockchain (BNB or
ETH), which are 86.5% and 91.3% of the liquidity pools on Ethereum
and BSC, respectively. Narrowing our research on these liquidity
pools allows us to easily defne two operations: the buy and the sell.
In particular, we defne as a buy operation any swap that takes as
input ETH (BNB) and provides as output any other ERC-20 (BEP-20)
token. Conversely, we defne as a sell operation any swap that takes
an ERC-20 (BEP-20) token as input and provides as output ETH
(BNB). Furthermore, considering the speculative nature of sniper

1097

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA Cernera, et al.

0

1000

2000

3000
ETH

Address
Sniper Bot

0 100 200 300 400 500
of blocks

0

50K

100K

150K BSC
Address
Sniper Bot

0 10 20 300

1000

2000

3000

0 10 20 300

50K

100K

150K

of

 li
qu

id
ity

 p
oo

ls

Figure 3: The scatter plot shows on the y-axis the number of
liquidity pools where each address performed buy operations.
On the x-axis, we plot the blocks elapsed between the buy
operations and the frst time liquidity is added to the pool.

bots, it is reasonable to assume that a user would never snipe a
liquidity pool he created. Thus, we remove from our dataset all the
buy and sell operations performed in the liquidity pool created by
the same address performing the swap (3,201,920 swaps).

As we saw in the previous subsections, sniper bots are developed
to perform buy operations immediately after the liquidity is added
to the liquidity pool. However, in some cases, they can not always
buy the token in the same block the liquidity is added, but they have
to wait for some blocks to be sure they do not fall prey to scams or
high taxes (see Sec.3.2.3). Even if it is difcult, a standard user could
swap into a new liquidity pool a few blocks after it has been created.
Thus, to avoid this case, we focus only on addresses that serially take
advantage of sniper bots. Moreover, in our identifcation process,
we have to consider that the user can operate with the same address
for sniping tokens but also for his regular trading activities. Thus,
some sniper bots’ addresses could have operations carried out far
from the creation of the liquidity pool. With these considerations,
we outline two conservative thresholds to identify sniper bots’
addresses by looking at their activities:

❖ At least 90% of the address buy operations have to be per-
formed into 5 blocks from the block in which the liquidity
was added for the frst time to the liquidity pool.

❖ The address has to perform a buy operation in at least 5
diferent liquidity pools.

In the following subsection, we analyze the addresses selected by
applying these two thresholds.

4.3 Results
Fig. 3 shows a scatterplot where each address is represented by a
dot (blue for Ethereum addresses and yellow for BSC addresses).
The y-axis displays the number of liquidity pools the address has
traded in, and the x-axis shows the 90th percentile of the time in-
tervals in blocks between the frst addition of liquidity to the pool
and the address’s buy operations. Both fgures contain a zoom of

Table 1: Summary of sniper bots operations and their profts.

Metric Ethereum BSC

Liquidity pools
Sniper bots
Operations
Avg. buy
Avg. gain
Success rate

55,678
161

14,029
0.75 ETH
0.84 ETH

25.6%

710,515
819

1,395,042
0.03 BNB
0.08 BNB

7.0%

the frst 30 blocks. We leverage the Mint events in our liquidity
pools dataset to calculate the time elapsed from the buy operation
and when the liquidity is added for the frst time. We indicate with
red crosses the addresses selected using our thresholds. As we can
see, these addresses perform buy operations extremely close to the
frst liquidity addition and in hundreds of liquidity pools, exhibiting
a pattern highly compatible with sniper bots’ operations. For the
remained sections, we will refer to these addresses as "sniper bots".
Analyzing them, we discover that:
Sniper bots are more prevalent in the BSC. Using our thresh-
olds, we select 161 addresses on Ethereum, and 819 addresses on
BSC, performing 15,052 buy operations and 1,440,945 operations,
respectively. The total Ethereum and BSC liquidity pools targeted
are, respectively, 7,879 and 198,786. To confrm that these addresses
are sniper bots, we quantify how many performed a buy operation
in the same block where the liquidity is added to the pool for the
frst time. This operation is virtually impossible to perform by a
human, as it requires monitoring the mempool. We fnd that 144
(89.4%) addresses on Ethereum and 512 (62.5%) on BSC perform at
least a buy operation at the same block of the frst liquidity addition.
Sniper bots use diferent strategies in Ethereum and BSC.
Ethereum sniper bots perform, on average, fewer operations than
BSC sniper bots (93 vs. 1,759). However, they tend to invest higher
sums than BSC sniper bots, with an average of 0.75 ETH ($673)
against 0.03 BNB ($13). These diferent behaviors are arguably
dictated by the diferent costs of fees on the two blockchains. Indeed,
computing the fee spent to buy tokens by snipers bots, we fnd that,
on average, they spent 0.019 ETH ($23.1) on Ethereum while 0.001
BNB ($0.46) on BSC.
Sniper bots have a relevant economic impact. Summing up
the buy operations, we observe that sniper bots have a signifcant
economic impact. These bots invest 11,360.7 ETH ($10,144,808) in
Ethereum and 45,606.3 BNB ($18,720,447) in the BSC.

4.4 Gains
In this section, we analyze in detail the operations performed by
sniper bots to estimate their proftability. For each sniper bot, we
aggregate all the buy and sell operations performed on a token in a
single sniping operations. Indeed, as mentioned in Sec. 3.2.3, sniper
bots can buy or sell a token using multiple transactions. After this
aggregation, we fnd 14,029 sniping operations in Ethereum and
1,395,042 sniping operations in BSC. For each sniping operation,
we estimate its proft using the following formula:

������� = ���� − ��� − � ��� (1)

1098

Ready, Aim, Snipe! Analysis of Sniper Bots and their Impact on the DeFi Ecosystem WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

Where ���� is the proft obtained by the sell operations, ��� is
the amount spent to buy the token, and � ��� is the transaction
fees paid for buy and sell operations. In the following, we divide
the operations into successful and unsuccessful, considering an
operation successful if the ������� is strictly positive.
Successful operations. Interestingly, we fnd that in BSC only
96,809 (7.0%) of the sniping operations are successful. The success
rate is better on Ethereum, with 3,571 operations (25.6%). Moreover,
we fnd that the average gain of Ethereum (0.84 ETH) is higher than
the average BSC gains (0.08 BNB). Even if sniping operations are
unsuccessful on average, we fnd some extreme cases of proft indi-
cating that sniping tokens can be a high-risk, high-reward strategy.
In particular, we fnd an address2 that performs a sniping operation
with a proft of 299.8 ETH. The address buys 1.86M TrustSwap [13]
tokens paying 90 ETH (0.00004 ETH for each token), exactly in the
same block when the liquidity is added to its liquidity pool (block
10426750). The sniper bot sells 1M of TrustSwap tokens 23 blocks
after the buy, with a price increase of 600% (0.00024 ETH). Then it
sells the remaining tokens for a similar price in 3 subsequent trans-
actions for a total of 390 ETH. If we subtract the initial investment
of 90 ETH and the transaction fees, the address profts 299.8 ETH
from the operation.
Unsuccessful operations. Most of the sniping operations are un-
successful. Indeed, 10,458 (74.5%) Ethereum operations and 1,298,233
(93.0%) BSC operations are unsuccessful. We notice that almost all
BSC operations (85.5%) and a large fraction (48.8%) of Ethereum
sniping operations are unsuccessful because the sniper bots did
not sell the token. Possibly, these addresses did not sell the token
because they could not do so. Indeed, Cernera et al. [9] show that
almost 60% of BSC and Ethereum liquidity pools have a rug pull in
the frst day of their life. Thus, it is possible that the sniper bots did
not sell the tokens before all the liquidity was removed from the
pool. In the cases where the sniper bots sell the tokens, the loss is
generally not too high, with 0.11 ETH ($108) in Ethereum and 0.01
BNB ($4.1) in BSC. Tab. 1 resumes our fndings about sniper bots
and their profts.

5 ANTI-BOT MECHANISMS
In this section, we analyze the source code of smart contracts to
understand how many tokens implement mechanisms that can
directly or indirectly limit the action of sniper bots. As mentioned
in Sec. 3.2.2, Etherscan and BSCScan ofer the possibility to upload
on their website the source code of a smart contract to verify it.
Thus, to build the smart contracts dataset, we query the APIs [18, 19]
of the two explorers to retrieve the smart contracts source code of
the tokens contained in the liquidity pools dataset. At the end of
the process, we are able to retrieve 47,619 out of 61,507 (77.42%)
verifed smart contracts source codes for Ethereum and 545,048 out
of 840,862 (64.82%) for the BSC tokens.

5.1 Smart contract analysis
Since it is not feasible to manually analyze the code of all the re-
trieved smart contracts, we search on the Internet for reference
implementations of anti-bot measures. In particular, we search for
these implementations in sector forums (e.g., OpenZeppelin [25],
20xc0c5c6ea185b331fc97499fb6bf7c1f1a0fc48c

Ethereum StackExchanges [32]), tools for automated token cre-
ation (e.g., Tokensbygen [36], Cointool [14]), or querying Google
with keywords such as: smart contract anti-bot measures, anti-bot
protection, sniper bot countermeasures, token sniper bot protection.
Following our research, we fnd six diferent mechanisms that can
hinder the action of sniper bots and 34 reference implementations.
Next, we create a regular expression for each implementation that
we can use to automatically identify similar snippets of code in
our smart contracts dataset. In Tab. 3 in the Appendix, we describe
the implementations for each mechanism and how we identify the
token smart contracts adopting it. Moreover, we publicly release
the regular expressions we used in [2].

In the following, we briefy describe the six diferent mechanisms
and report the number of smart contracts adopting them.
Disabled trading. This mechanism allows to enable or disable the
transfer of the tokens, and hence the trading, at will. As we discuss
in Sec. 3.2.3, when a liquidity pool has the trading disabled at its
frst blocks of life, sniper bots must implement advanced features
to be successful in their operations. In our dataset, we fnd that the
smart contracts implementing this mechanism are 4,584 (9.62%) on
Ethereum, and 15,170 (2.78%) on the BNB Smart Chain.
Tax during the launch window. With this mechanism, the smart
contract imposes a high tax on each token transaction (e.g., 99%)
during the launch window of the liquidity pool. Sniper bots can
avoid falling prey to this mechanism using the advanced feature
Wait �-blocks (see in Sec. 3.2.3). We identify 9 (0.018%) and 15,540
(2.85%) token smart contracts on the Ethereum and BNB Smart
Chain, respectively, implementing this technique. In particular,
more than 88% of these smart contracts impose the tax only for the
frst two blocks from the token launch, while the remaining smart
contracts defne a diferent number of blocks, either with a fxed
number or through a variable.
Token amount limit. This mechanism consists in limiting the
number of tokens per transaction and/or per address that can be
purchased during the early stage of the liquidity pool. Although
we fnd sniper bots successfully bypassing the transaction limit
(Sec. 3.2.3), we have no evidence of sniper bots being able to evade
the limit per address. We fnd 7,749 (16.27%) on Ethereum and
189,465 (34.76%) on the BSC smart contracts implementing the limit
per transaction mechanism. In contrast, only 18 on Ethereum and
24,714 on the BSC implement the limit per transaction.
Transactions number limit over time. To solve the problem of
multiple transactions used to circumvent the previous mechanism,
some smart contracts do not permit multiple transfer operations
requested by the same address in a given time window. In particular,
we identify 10 (0.02%) and 13,018 (2.38%) token smart contracts
adopt this mechanism on Ethereum and BSC, respectively.
Gas price limit. As shown in Sec. 3.2.1, a common practice used
by sniper bots to ensure their transactions are executed as fast as
possible is to use a gas price higher than those of other transactions
at that moment. Thus, a strategy to slow them down is to set a gas
price limit and block transactions using a gas price higher than a
certain threshold. Using this approach, we fnd the token smart
contracts implementing this strategy are 143 (0.3%) on Ethereum
and 1,157 (0.21%) on the BSC.
Sniper bots blocklist. The last mechanism consists in blocking all
the transactions sent by addresses already known for being sniper

1099

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA Cernera, et al.

Table 2: Smart contracts implementing anti-bot mechanisms.

BSC Ethereum

Disabled trading 15,170 (2.78%) 4,584 (9.62%)
Tax during the launch window 15,540 (2.85%) 9 (0.018%)
Token amount limit 189,465 (34.76%) 7,749 (16.27%)
Transactions number limit 13,018 (2.38%) 10 (0.02%)
Gas price limit 1,157 (0.21%) 143 (0.3%)
Sniper bots blocklist 464 (0.08%) 75 (0.15%)

bots or that perform transactions in the frst blocks of life of the
liquidity pool. Overall, we fnd 464 (0.08%) token smart contracts
on the BSC and 75 (0.15%) on Ethereum.

Tab. 2 summarizes the number of token smart contracts imple-
menting the diferent mechanisms analyzed. As we can see, the
strategy that limits the token amount that can be bought is the
most popular one on both blockchains (16.27% on Ethereum and
34.76% on BSC). Interestingly, we fnd that the second most popular
mechanism to limit the sniper bot actions on BSC (Increased fees)
is implemented by only nine (less than 0.02%) smart contracts on
Ethereum. Instead, the runner-up mechanism on Ethereum (Disable
trading) is implemented by more than 9% of the smart contracts on
Ethereum and only by 2.78% on BSC.

Looking at the number of mechanisms used by each token smart
contract in our dataset, we fnd that usually, they do not implement
any mechanism to limit the actions of the sniper bots. Indeed, there
are 9% token smart contracts on Ethereum and 31.4% on BSC im-
plementing only one mechanism and very few more than one. The
maximum number of mechanisms adopted is four (disabled trading,
token amount limit, transactions number limit, and increased fees),
implemented by 1,024 token smart contracts, all running on the
BSC. From our data, it appears that BSC token creators are more
active in contrasting the action of the sniper bots with 37.36% of
the smart contracts that implement at least a mechanism against
the 17.9% on Ethereum. This is probably because, as we have seen
in Sec. 4.3, the sniper bot phenomenon is more spread on the BSC
ecosystem than on Ethereum.

6 RELATED WORK
Several works study the presence of bots in the AMM market, with
a particular focus on front-running bots that perform arbitrage or
sandwich attacks. Daian et al. [15] investigated the behavior of front-
running bots that exploit arbitrage opportunities by monitoring the
mempool. The bots scan the mempool for large buy transactions
that result in an overpriced token on a particular market. They
then swiftly send a transaction to purchase underpriced assets on
another market and sell them on the overpriced market, capitalizing
on the big buy. Qin et al. [28] propose heuristics to identify arbitrage
operations and quantify their impact on the market. They fnd that
from 2018 to 2021 arbitrage bots obtained a proft of 277.02M USD.
Zhou et al. [41] studied sandwich attacks. This kind of attack is
performed using two transactions. The frst is placed just before the
target transaction (i.e., front-run), and the second just after it (i.e.,
back-run). This strategy allows making a proft when a signifcant
buy is performed in the AMM. They fnd that on Uniswap, an

attacker can obtain an average daily proft of $3,414. Instead, Qin
et al. [28] study the sandwich attacks on a larger scale, taking into
account several marketplaces on Ethereum, quantifying the proft
obtained through sandwich attacks in 174.34M USD. Front-running
bots have also been studied by Torres et al. [37], they analyze 11
million Ethereum blocks fnding more than 200 thousand attacks
with an accumulated proft of $18.41M.

Sniper bots have received little attention from the scientifc com-
munity since they have been partially analyzed only by Cernera
et al. [9]. The paper analyzes blockchain data to identify rug pulls,
fnding 21,594 and 266,340 operations performed respectively in the
AMM markets of Ethereum and the BSC. Then, they identify ad-
dresses that frequently fall prey to rug pull operations and classify
them as sniper bots. With respect to their work, we perform a deep
characterization of sniper bots and analysis of their implementation.
Moreover, we quantify their presence outside rug pull operations
and analyze their investment, gains, and success rate.

7 LIMITATIONS
In this work, we focus only on open-source implementations of
sniper bots that we fnd on GitHub. However, during our investiga-
tion, we fnd also several closed-source implementations [10] and
providers that ofer "Sniper bot as a service" [31]. Thus, there may
be sniper bots that ofer more advanced features that we could not
analyze. From the point of view of the sniper bots identifcation,
we purposely focus on detecting addresses that perform sniping
operations serially. However, it is also possible that some addresses
use single-target sniper bots to perform only one operation or ro-
tate the addresses they use. For these reasons, our work only shows
a lower bound on the usage and impact of sniper bots on the DeFi
ecosystem. Finally, in our investigation of the anti-bot mechanisms
implemented by smart contracts, we rely on reference implementa-
tions, which we fnd disclosed on the web. Even if we added some
fexibility using regexes, the same techniques could have been im-
plemented in diferent ways that we did not cover. Thus, also in
this case, our estimation of the difusion of anti-bot mechanisms is
only a lower bound.

8 CONCLUSION AND FUTURE WORK
This paper provides a thorough analysis of the phenomenon of
sniper bots operating on Ethereum and BSC. First, we analyzed
how sniper bots work, defning the phases composing a sniping
operation. Then, we identifed sniper bots operating on AMMs com-
patible with Uniswap and its forks. We studied their behavior and
quantifed their economic impact on the DeFi ecosystems. Lastly,
we described the anti-bot mechanisms implemented by smart con-
tracts to limit sniper bots and estimated their adoption on Ethereum
and BSC.

As future work, it is interesting to investigate the reasons for the
low success rate of sniper bots, especially on BSC. Another possible
direction is to assess the impact of sniper bots on the listing price
of the target token. Finally, extending our analysis to addresses
that do not use sniper bots serially would be valuable for a more
comprehensive understanding of the phenomenon.

1100

Ready, Aim, Snipe! Analysis of Sniper Bots and their Impact on the DeFi Ecosystem WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA

ACKNOWLEDGMENTS
This work was partially supported by project SERICS (PE00000014)
under the MUR National Recovery and Resilience Plan funded by
the European Union - NextGenerationEU. This work was partially
supported by the MIUR under grant “Dipartimenti di eccellenza
2018-2022" of the Department of Computer Science of Sapienza
University.

REFERENCES
[1] Hayden Adams, Noah Zinsmeister, and Dan Robinson. 2020. Uniswap v2 Core.

(2020).
[2] Anonymous. 2023. Regex for token smart contract mechanisms that hinder sniper

bots. https://doi.org/10.5281/zenodo.7604918.
[3] Dirk G Baur and Thomas Dimpf. 2018. Asymmetric volatility in cryptocurrencies.

Economics Letters 173 (2018), 148–151.
[4] Binance. 2023. BNB Chain Documentation. https://docs.bnbchain.world/docs/

learn/intro.
[5] Binance. 2023. Proof of Authority Explained. https://academy.binance.com/en/

articles/proof-of-authority-explained.
[6] Hudson Borges, Andre Hora, and Marco Tulio Valente. 2016. Understanding

the Factors That Impact the Popularity of GitHub Repositories. In 2016 IEEE
International Conference on Software Maintenance and Evolution (ICSME). 334–
344. https://doi.org/10.1109/ICSME.2016.31

[7] Steven Brock. 2021. Scalping in Ecommerce: Ethics and Impacts. Available at
SSRN 3793357 (2021).

[8] Vitalik Buterin et al. 2014. A next-generation smart contract and decentralized
application platform. white paper 3, 37 (2014).

[9] Federico Cernera, Massimo La Morgia, Alessandro Mei, and Francesco Sassi. 2023.
Token Spammers, Rug Pulls, and SniperBots: An Analysis of the Ecosystem of
Tokens in Ethereum and the Binance Smart Chain (BNB). In 32th USENIX Security
Symposium (USENIX Security 23).

[10] cniperbot. 2023. sniperbot. https://github.com/cniperbot/sniperbot.
[11] CoinGecko. 2023. CoinGecko. https://www.coingecko.com
[12] CoinMarketCap. 2023. CoinMarketCap. https://coinmarketcap.com/
[13] Coinmarketcap. 2023. TrustSwap. https://coinmarketcap.com/currencies/

trustswap/
[14] CoinTool. 2023. CoinTool. https://cointool.app/createToken/bsc.
[15] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,

Lorenz Breidenbach, and Ari Juels. 2020. Flash boys 2.0: Frontrunning in decen-
tralized exchanges, miner extractable value, and consensus instability. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 910–927.

[16] Github. 2023. Github. https://github.com/.
[17] Yashu Gola. 2021. Shiba Inu could surpass Dogecoin after a 700% SHIB price rally

in October. https://cointelegraph.com/news/shiba-inu-could-surpass-dogecoin-
after-a-700-shib-price-rally-in-october.

[18] P.C. Kotsias. 2020. pcko1/etherscan-python. https://doi.org/10.5281/zenodo.
4306855

[19] P.C. Kotsias. 2021. pcko1/bscscan-python. https://doi.org/10.5281/zenodo.
4781726

[20] Massimo La Morgia, Alessandro Mei, Alberto Maria Mongardini, and Jie Wu. 2021.
Uncovering the Dark Side of Telegram: Fakes, Clones, Scams, and Conspiracy
Movements. arXiv preprint arXiv:2111.13530 (2021).

[21] Massimo La Morgia, Alessandro Mei, Francesco Sassi, and Julinda Stefa. 2020.
Pump and dumps in the bitcoin era: Real time detection of cryptocurrency market
manipulations. In 2020 29th International Conference on Computer Communications
and Networks (ICCCN). IEEE, 1–9.

[22] Def Llama. 2023. Def Llama. https://defllama.com/.
[23] Bruno Mazorra, Victor Adan, and Vanesa Daza. 2022. Do not rug on me: Lever-

aging machine learning techniques for automated scam detection. Mathematics
10, 6 (2022), 949.

[24] Sarah E Michigan. 2021. Sneaker bots & Botnets: malicious digital tools that
harm rather than help e-commerce. Rutgers Bus. LJ 17 (2021), 169.

[25] OpenZeppelin. 2023. OpenZeppelin. https://forum.openzeppelin.com/.
[26] Jason Carve Piper Merriam. 2023. Web3.py. https://web3py.readthedocs.io/en/

stable/.
[27] Amy Cheng The Washington Post. 2021. ‘Squid Game’-inspired cryptocurrency

that soared by 23 million percent now worthless after apparent scam. https:
//www.washingtonpost.com/world/2021/11/02/squid-game-crypto-rug-pull/.

[28] Kaihua Qin, Liyi Zhou, and Arthur Gervais. 2022. Quantifying blockchain ex-
tractable value: How dark is the forest?. In 2022 IEEE Symposium on Security and
Privacy (SP). IEEE, 198–214.

[29] Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gün
Sirer. 2019. Scalable and probabilistic leaderless BFT consensus through metasta-
bility. arXiv preprint arXiv:1906.08936 (2019).

[30] RugDoc. 2023. RugDoc API. https://rugdoc.io/
[31] TUF sniperbot. 2023. TUF sniperbot. https://tufsniperbot.com/.
[32] Ethereum StackExchange. 2023. Ethereum StackExchange. https://ethereum.

stackexchange.com/.
[33] Telegram. 2023. CoinGecko & CoinMarketCap Listing Alerts Premium. https:

//t.me/CMC_CG_listing_alerts
[34] Telegram. 2023. Coinmarketcap Fastest Alerts. https://t.me/CMC_fastest_alerts
[35] Telegram. 2023. Telegram. https://telegram.org/faq
[36] TokenByGen. 2023. TokenByGen. https://tokensbygen.com/.
[37] Christof Ferreira Torres, Ramiro Camino, et al. 2021. Frontrunner jones and the

raiders of the dark forest: An empirical study of frontrunning on the ethereum
blockchain. In 30th USENIX Security Symposium (USENIX Security 21). 1343–1359.

[38] Christof Ferreira Torres, Mathis Steichen, and Radu State. 2019. The art of the
scam: demystifying honeypots in ethereum smart contracts. In Proceedings of the
28th USENIX Conference on Security Symposium. 1591–1607.

[39] Pengcheng Xia, Haoyu Wang, Bingyu Gao, Weihang Su, Zhou Yu, Xiapu Luo,
Chao Zhang, Xusheng Xiao, and Guoai Xu. 2021. Trade or trick? detecting and
characterizing scam tokens on uniswap decentralized exchange. Proceedings of
the ACM on Measurement and Analysis of Computing Systems 5, 3 (2021), 1–26.

[40] Jiahua Xu, Krzysztof Paruch, Simon Cousaert, and Yebo Feng. 2021. Sok: Decen-
tralized exchanges (dex) with automated market maker (amm) protocols. Comput.
Surveys (2021).

[41] Liyi Zhou, Kaihua Qin, Christof Ferreira Torres, Duc V Le, and Arthur Gervais.
2021. High-frequency trading on decentralized on-chain exchanges. In 2021 IEEE
Symposium on Security and Privacy (SP). IEEE, 428–445.

1101

https://doi.org/10.5281/zenodo.7604918
https://docs.bnbchain.world/docs/learn/intro
https://docs.bnbchain.world/docs/learn/intro
https://academy.binance.com/en/articles/proof-of-authority-explained
https://academy.binance.com/en/articles/proof-of-authority-explained
https://doi.org/10.1109/ICSME.2016.31
https://github.com/cniperbot/sniperbot
https://www.coingecko.com
https://coinmarketcap.com/
https://coinmarketcap.com/currencies/trustswap/
https://coinmarketcap.com/currencies/trustswap/
https://cointool.app/createToken/bsc
https://github.com/
https://cointelegraph.com/news/shiba-inu-could-surpass-dogecoin-after-a-700-shib-price-rally-in-october
https://cointelegraph.com/news/shiba-inu-could-surpass-dogecoin-after-a-700-shib-price-rally-in-october
https://doi.org/10.5281/zenodo.4306855
https://doi.org/10.5281/zenodo.4306855
https://doi.org/10.5281/zenodo.4781726
https://doi.org/10.5281/zenodo.4781726
https://defillama.com/
https://forum.openzeppelin.com/
https://web3py.readthedocs.io/en/stable/
https://web3py.readthedocs.io/en/stable/
https://www.washingtonpost.com/world/2021/11/02/squid-game-crypto-rug-pull/
https://www.washingtonpost.com/world/2021/11/02/squid-game-crypto-rug-pull/
https://rugdoc.io/
https://tufsniperbot.com/
https://ethereum.stackexchange.com/
https://ethereum.stackexchange.com/
https://t.me/CMC_CG_listing_alerts
https://t.me/CMC_CG_listing_alerts
https://t.me/CMC_fastest_alerts
https://telegram.org/faq
https://tokensbygen.com/

WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA Cernera, et al.

A APPENDIX

Table 3: Implementation of anti-sniper bot mechanisms.

Mechanism Description of the implementation

Disabled trading This strategy involves managing the trading status for a token using a boolean variable, commonly called tradingOpen,
that is initially set to false. Only the smart contract owner can change its status to true to enable trading. We search
for token smart contracts having a method (such as tradingStatus, openTrading) to set a variable that is checked in the
Transfer method and that, if set to false, does not allow the token trading.

Tax during the This solution aims to penalize addresses trading too fast for a human by temporarily increasing the fee to 99% for blocks
launch window close to the token launch. We search for token smart contracts defning a function (typically called getTotalFee) that

checks whether the block of the transaction is greater than the block of the token launch plus a certain threshold and, if
not, raises the fees.

Token amount limit This solution restricts the number of tokens that can be purchased during the launch phase. We search for token smart
contracts that, in the Transfer function, check the amount of tokens to transfer and if this is greater than a certain
variable (e.g., _maxTxAmount), revert the transaction. Some smart contracts perform this check with a specifc function
like checkTxLimit.

Transactions number Some smart contracts check the number of transactions sent by an address in a given time window, setting a cooldown
limit that blocks further transactions for that address until it expires. We look for token smart contracts implementing in

the Transfer function a check that reverts the transaction if its block timestamp is lower or equal to the cooldown
timer associated with the transaction recipient (e.g., cooldownTimer[recipient]). Some smart contracts defne a function
(buyCooldown) to set the variable managing the cooldown and its duration.

Gas price limit Here the goal is to slow down bots setting a gas price limit and block transactions using a gas price higher than a certain
threshold. We look for token smart contract defning functions, commonly called setPriceLimit, setLimitsInEfetc, or
setProtectionSettings, to set a gas price limit.

Sniper bot blocklist This strategy consists in blocking all the transactions sent by addresses already known for being sniper bots. We look
for token smart contracts blocking the transaction if its sender belongs to the blocklist (isSniper). The list is updated
with sniper bots’ addresses buying the token at the same block of its launch.

1102

	Abstract
	1 Introduction
	2 Background
	2.1 Ethereum and the Binance Smart Chain
	2.2 DEX, AMM and Uniswap

	3 Sniper Bots
	3.1 Sniper bots dataset
	3.2 The anatomy of sniper bots

	4 Sniper bots detection
	4.1 Liquidity pools dataset
	4.2 Sniper bots identification
	4.3 Results
	4.4 Gains

	5 Anti-bot mechanisms
	5.1 Smart contract analysis

	6 Related Work
	7 Limitations
	8 Conclusion and Future Work
	Acknowledgments
	References
	A Appendix

