
Mobile Cloud Performance Evaluation
Using Stochastic Models

Francisco Airton Silva , Sokol Kosta, Matheus Rodrigues, Danilo Oliveira , Teresa Maciel,
Alessandro Mei, Member, IEEE, and Paulo Maciel, Member, IEEE

Abstract—Mobile Cloud Computing (MCC) helps increasing performance of intensive mobile applications by offloading heavy tasks to
cloud computing infrastructures. The first step in this procedure is partitioning the application into small tasks and identifying those that
are better suited for offloading. The method call partitioning strategy splits the code into a set of method calls that are offloaded to
remote servers. Quite often, many applications need to make use of multiple servers for parallel processing of intensive computational
operations. Predicting the behavior of such parallelizable applications is not an easy task. Deciding the number of remote servers
determines the performance of the applications and the costs of the cloud usage. On one hand, users are interested in improving the
performance of their applications, so they would like to use as many servers as possible, but on the other hand, they would also like to
reduce their costs by using fewer cloud resources. In this paper, we propose a Stochastic Petri Net (SPN) modeling strategy to
represent method call executions of mobile cloud systems. This approach enables a designer to plan and optimize MCC environments
in which SPNs represent the system behavior and estimate the execution time of parallelizable applications.

Index Terms—Mobile cloud computing, offloading, stochastic petri nsssets

Ç

1 INTRODUCTION

THE CCS Insight Institute forecasts that the global mobile
phone market is expected to reach 2.35 billion units

until 2019 [1]. This huge market-share stimulates mobile
cloud research innovation aiming to satisfy more and more
demanding users. Today, many applications that benefit
from using the cloud have real-time constraints. These con-
straints become hard to meet expectations, mainly consider-
ing sophisticated cloud infrastructures.

Manufacturers keep increasing these devices capacity by
integrating multiple CPU cores, high quality cameras,
graphic processing units, and all-purpose sensors. Never-
theless, such advances escalate applications’ complexity at
a fast pace. Mobile Cloud Computing (MCC) aims at off-
loading resource demanding operations from resource—
constrained devices to powerful machines on the cloud. By
applying such an approach, applications’ executions can
benefit from extra resources.

In this context, computation offloading becomes an
attractive solution for meeting response time requirements
on mobile systems or resource constrained systems [2], [3].
Many intensive mobile applications may benefit from the
cloud resources. Nimmagadda et al. present a navigating
robot application that helps robots recognize surrounding
objects in real time to avoid crashing accidents. When the
robot’s processor is too slow, the computation may need to
be offloaded to more powerful servers [4]. Context-aware
computing is another type of application that can benefit
from computation offloading, where multiple streams of
data from different sources, such as GPS, maps, tempera-
ture sensors, etc., need to be analyzed together in order to
obtain real-time information about a user’s context [5].

MCC offloading is offered by an MCC service provider,
who owns the physical server machines and the offloading
framework utilized by the applications. Even though different
from each other, from the architectural design point of view
and with respect to the technical solutions adopted, all off-
loading frameworks have the same final goal: offload the
heavy tasks from a client device to some remote more powerful
entity. To make it easier for application developers to embrace
the MCC paradigm, many offloading frameworks have been
proposed by researchers [6], [7], [8], [9], [10], [11], [12], [13].

Obviously, task offloading does not come for free. Based
on the revenue model of the MCC service provider, the final
user or the MCC provider has to pay for the cloud resources.
Usually, the MCC provider’s costs are related to the initial
investment in the hardware equipment, while the final user’s
costs are related to the utilization of the offloading frame-
work: in particular, to the number of surrogates allocated
on the cloud [14]. Planning an MCC infrastructure is not
straightforward, due to the many application scenarios it has

� F. A. Silva, M. Rodrigues, D. Oliveira, and P. Maciel are with the Infor-
matics Center, Federal University of Pernambuco (UFPE), Recife, PE
50670-901, Brazil. E-mail: {faps, mdr, dmo4, prmm}@cin.ufpe.br.

� S. Kosta is with CMI, Aalborg University Copenhagen, Kłbenhavn 2450,
Denmark, and the Sapienza University of Rome, Roma 00185, Italy.
E-mail: sok@cmi.aau.dk.

� T. Maciel is with the Department of Statistics and Informatics, Federal
Rural University of Pernambuco (UFRPE), Recife, PE 52171-900, Brazil.
E-mail: tmmaciel@gmail.com.

� A. Mei is with the Sapienza University of Rome, Roma 00185, Italy.
E-mail: mei@di.uniroma1.it.

Manuscript received 30 Mar. 2016; revised 10 Aug. 2017; accepted 27 Aug.
2017. Date of publication 7 Sept. 2017; date of current version 2 Apr. 2018.
(Corresponding author: Francisco Airton Silva.)
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identi�er below.
Digital Object Identi�er no. 10.1109/TMC.2017.2749577

1134 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 5, MAY 2018

1536-1233 � 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on September 01,2023 at 09:16:51 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8211-6060
https://orcid.org/0000-0002-8211-6060
https://orcid.org/0000-0002-8211-6060
https://orcid.org/0000-0002-8211-6060
https://orcid.org/0000-0002-8211-6060
https://orcid.org/0000-0001-8059-634X
https://orcid.org/0000-0001-8059-634X
https://orcid.org/0000-0001-8059-634X
https://orcid.org/0000-0001-8059-634X
https://orcid.org/0000-0001-8059-634X
mailto:
mailto:
mailto:
mailto:

to handle. During the design process, measurements on real
systems are obviously not possible, and also prototype imple-
mentations present insormountable difficulties due to the
necessity of specifying many details that are far from being
decided. In this context, system modeling comes in hand [15].

Different studies have focused on system modeling for
MCC. However, they come with three limitations. The �rst
limitation is related to the observed metrics. Previous papers
evaluate the Reliability [16], [17], [18], [19]; the Availabil-
ity [20], [21], [22]; or the Energy spent by the mobile
device [21], [23], [24]. However, none of these works consid-
ers the Execution Time as a metric, which is one of the most
fundamental objectives of MCC offloading. The second limita-
tion regards the modeling granularity. None of the existing
modeling approaches considers the applications’ structure,
but only the cloud infrastructure components. Representing
the application structure is important because the applica-
tion is expected to be partitioned during the offloading pro-
cess. These partitions should be treated as a bag of tasks and
not as a single job. The third limitation regards the nonexis-
tence of tasks distribution. The related papers model the
cloud side as a blackbox (an agglomerated set of resources),
while in reality the cloud is composed by a set of target serv-
ers, which should not be neglected in the modeling.

In this paper, we propose a Stochastic Petri Nets (SPN)
modeling strategy to represent partitioning of applications
and tackle the three aforementioned related work limita-
tions. SPNs can be used to estimate the performance metrics
of each offloadable task and of the whole application [25],
[26], [27], [28]. The contributions of this work are:

� We design and implement an SPN modeling
approach which enables to predict the system behav-
ior in terms of execution time by calculating three
statistics: (i) estimated application’s execution time
based on the number of remote server instances; (ii)
the number of method calls per time unit; and (iii)
the probability of finishing the application execution
by a specific time.

� Using the same SPN modeling approach, we can rep-
resent the MCC infrastructure and the application.

� An SPN modeling approach which represents the
distribution of tasks enabling to predict the number
of needed target resources.

� We build MCC-Adviser, a graphical tool that gener-
ates and solves SPNs based on the proposed model.
The tool can be used by an application developer or
by a company willing to plan and design an MCC
environment.

The paper is organized as follows: Section 2 highlights
the main concepts related to MCC and SPNs; Section 3

shows related work; Section 4 presents the methodology of
modeling a mobile cloud application using SPNs; Section 5
details case studies to support the proposal; Section 6 illus-
trates the proposed tool, available online; and Section 7
traces conclusions, stressing future directions.

2 BACKGROUND

This section discusses the basic concepts of Stochastic Petri
Nets. The concepts provide the necessary knowledge to
comprehend the proposed mechanisms of this paper.

2.1 Stochastic Petri Nets
Petri nets (PNs) were introduced in the PhD thesis of Carl
Adams Petri [29] at Technical University of Darmstadt,
Germany. The original theory was developed as an
approach to model and analyze communication systems.
PNs are a graphical and mathematical modeling tool appli-
cable to many systems. They are promising tool for describ-
ing and studying information processing systems that are
characterized as being concurrent, asynchronous, distrib-
uted, parallel, nondeterministic, and/or stochastic. As a
graphical tool, PNs can be used as a visual-communication
aid similar to flow charts, block diagrams, and networks. In
addition, tokens are used in these nets to simulate the
dynamic and concurrent activities of systems. As a mathe-
matical tool, it is possible to set up state equations, algebraic
equations, and other mathematical models governing the
behavior of systems. Since Petri’s seminal work, many rep-
resentations and extensions have been proposed allowing
more concise descriptions and representing systems fea-
tures not observed on the early models [30].

SPNs are special cases of PNs. SPN models were proposed
with the goal of developing a tool that allowed the integration
of formal description, proof of correctness, and performance
evaluation. The proposals regarding performance evaluation
aimed at an equivalence between SPN and Continuous Time
Markov Chains (CTMC) [27]. In order to obtain an equiva-
lence between a PN and a CTMC, it was necessary to intro-
duce temporal specifications such that the future evolution of
the model, given the present marking, is independent of the
marking history. Therefore, SPNs can be translated to CTMC,
which may then be solved to reach the desired performance
or dependability results [15], [25], [31], [32].

Fig. 1 exhibits components used to model an SPN, and
Fig. 2 depicts an example of an SPN model. Places are repre-
sented by circles, whereas transitions are depicted as filled
rectangles (immediate transitions) or hollow rectangles
(timed transitions) or gray rectangles (unrefined transi-
tions). The gray rectangle, in particular, has no associated
time yet. It is used to represent that no experiment was exe-
cuted to collect the time for that transition. Arcs (directed

Fig. 1. SPN components.

Fig. 2. Example of an SPN model.

SILVA ET AL.: MOBILE CLOUD PERFORMANCE EVALUATION USING STOCHASTIC MODELS 1135

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on September 01,2023 at 09:16:51 UTC from IEEE Xplore. Restrictions apply.

edges) connect places to transitions and vice versa. Tokens
(small filled circles) may reside in places, which denote the
state (i.e., marking) of an SPN. An inhibitor arc is a special
arc type that depicts a small white circle at one edge, instead
of an arrow, and they usually are used to disable transitions
if there are tokens present in a place. The behavior of an
SPN is defined in terms of a token flow, which means that
tokens are created and destroyed according to the transition
firings [27]. Immediate transitions represent instantaneous
activities, and they have higher firing priority than timed
transitions. Such transitions may also contain a guard condi-
tion, and a user may specify a different firing priority
among other immediate transitions. There are also guard
functions in SPNs. Guard functions are boolean expressions
that control the firing of a transition, declaring some condi-
tion regarding the net’s marking. If a transition’s guard
function produces a true value, it is able to fire, otherwise,
the transition is disabled [31]. Guard functions were not
adopted in this work.

3 RELATED WORK

Table 1 synthesizes the contributions of the most prominent
works related to this paper. The references are ordered by
year (from 2009 to 2016) and encompass 17 studies, catego-
rized by four aspects: Objective, Evaluated Metric, Modeling

Granularity, and the use of Multiple Surrogates. For a better
understanding we comment each aspect in details:

Objective - The first papers in MCC had the objective of
optimizing the offloading process itself. They focused only
on improving the offloading techniques by monitoring the
mobile device, the application, and the network conditions.
Many offloading frameworks have tackled mobile device
constraints by offloading as much as possible heavy tasks
obeying context factors [7], [9], [10], [33], [34], [35]. Once the
benefits of these frameworks became widely acknoweldged
by the research community, a new research trend appeared:
MCC infrastructure planning [17], [18], [20], [21], [23]. The
scope of this field is to obtain an intelligent use of limited
Cloudlet resources by applying sophisticated system evalu-
ation techniques. Formal methods have been applied in
diverse computer areas by evaluating system performance
and assisting software engineers with architecture planning.
Most of them have dedicated to evolve what it is called Soft-
ware Performance Engineering (SPE) [36]. SPE is a sys-
tematic, quantitative approach to constructing software
systems that meet performance requirements, classified
as real-time or responsive systems. SPE uses model pre-
dictions to evaluate trade-offs in software functions, hard-
ware size, quality of results, and resource requirements.
MCC has presented the need for applying SPE methods
requiring to reach higher quality levels. For this reason,

TABLE 1
Related Work Comparison - MCC Modeling

Related Work Objective Evaluted Metric Modeling Granularity Multiple Surrogates

Scavenger, 2009 [33] Offloading Process Optimization Execution Time - Yes
MAUI, 2010 [10] Offloading Process Optimization Execution Time

and Energy
- No

Cuckoo, 2010 [7] Offloading Process Optimization Execution Time - No
ThinkAir, 2012 [9] Offloading Process Optimization Execution Time

and Energy
- Yes

MOCHA, 2012 [34] Offloading Process Optimization Execution Time - Yes
Rahimi et al., 2012 [35] Offloading Process Optimization Execution Time

and Energy
- Yes

COMET, 2012 [11] Offloading Process Optimization Execution Time
and Energy

- No

Scampi, 2012 [38] Offloading Process Optimization Execution Time - No
Ou et al., 2007 [16] MCC Infrastructure Planning Reliability Infrastructure

Components
No

Gabner et al., 2011 [17] MCC Infrastructure Planning Reliability Infrastructure
Components

No

JiSu et al., 2011 [18] MCC Infrastructure Planning Reliability Infrastructure
Components

No

Suraj et al., 2012 [20] MCC Infrastructure Planning Availability Infrastructure
Components

Yes

Oliveira et al., 2013 [21] MCC Infrastructure Planning Availability and
Energy

Infrastructure
Components

No

Shuang et al., 2014 [23] MCC Infrastructure Planning Energy Infrastructure
Components

No

Araujo et al., 2014 [19] MCC Infrastructure Planning Reliability, Availability
and Energy

Infrastructure
Components

No

Matos et al., 2015 [22] MCC Infrastructure Planning Availability Infrastructure
Components

No

Mendonca et al., 2016 [24] MCC Infrastructure Planning Energy Infrastructure
Components

No

MCC-Adviser, 2016 MCC Infrastructure Planning Execution Time Application
Partitions and
Infrastructure
Components

Applies Tasks
Distribution and

Estimates the
Number of Needed

Target Machines

1136 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 5, MAY 2018

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on September 01,2023 at 09:16:51 UTC from IEEE Xplore. Restrictions apply.

the current work focuses on MCC infrastructure planning
applying SPE methods.

Evaluated Metric - One of the most important decisions
when working with performance evaluation is the metric to
observe. The papers that focus on Offloading Process Opti-
mization have explored Execution Time and Energy Saving
whereas the papers that investigate Infrastructure Planning
have looked into Reliability, Availability, and Energy Sav-
ing. Reliability is defined as the probability that a device will
perform its intended functions satisfactorily for a specified
period of time under specified operating conditions [19].
Since the performance of a system usually depends on the
performance of its components, the reliability of the whole
system is a function of the reliability of its components [37].
Availability is defined as the probability that the system is
operating properly at any given time [21]. Availability is the
vital metric for nowadays systems; near 100 percent avail-
ability is becoming mandatory for both users and service
providers. High availability is an important feature for
MCC applications given that the cloud–dependency can
introduce unexpected failures [21]. Energy and Execution
Time are the most utilized metrics when evaluating the
MCC systems. Computing speeds of mobile devices will
not grow at the same pace as servers’ performance [4]. This
is due to several constraints, including: Form Factor—as
users want devices that are smaller and thinner and yet
with more computational capability; Power Consumption—
insofar the current battery technology constrains the clock
speed of processors, doubling the clock speed approxi-
mately octuples the power consumption. As a result of the
above restricitions, it is difficult to offer long battery life-
times with high clock speeds [4]. Therefore, execution time
and energy will continue to be a MCC concern in long term,
motivating further research under these topics. Although
Reliability, Availability, and Energy are very important met-
rics, the current work is the only one that considers the Exe-
cution Time when modeling the MCC infrastructure.
Response time becomes essencial for mobile systems as far
as it increases in complexity [3]. In context-aware comput-
ing, for example, need to be analyzed in order to obtain
real-time information about a user’s context [5]. In many of
these scenarios, the limited computing speed of mobile sys-
tems can be enhanced by offloading.

Modeling Granularity - Such aspect refers to the level of
granularity the MCC architecture is represented—which
MCC architecture parts are modeled. The offloading frame-
works that invested in offloading process optimization did
not use modeling. Among those papers that have applied
modeling most of them did not consider the application as
part of modeling strategy, it is, the SPNs, RBDs or Markov
Chains did not include the behavior and structure of the

application (only infrastructure components). Fig. 3 depicts
an RBD representation of one of the related work [22]. The
model present the application itself as part of the represen-
tation but not partitioned in subparts. In our work the appli-
cation source code is represented and evaluated with SPNs.
Representing the source code enables the software engineer
to access a more acurate result. Taking into account the
availability metric, for example, it is obvious that the
application may stop working prejudicing the availability
in this way.

Multiple Surrogates - The last column refers to the charac-
teristic of modeling or not the target servers (or surrogates).
The target servers are the machines where the offloaded
tasks are processed. There are papers that models these
machines, however, they do not represent the virtual
machine. Besides, different from them, MCC-Adviser is
able to tell how many servers are needed—something new
in MCC field. Another new aspect, and not included at
Table 1, is that MCC-Adviser generates and solves SPNs
providing and automatic statistic report about performance.

4 PLANNING MOBILE CLOUD INFRASTRUCTURES
BASED ON STOCHASTIC MODELS

Consider the scenario illustrated in Fig. 4, where an IT com-
pany plans to design a cloud infrastructure to provide off-
loading solutions for mobile applications. The goal of the
company is to minimize its costs while satisfying final users’
QoS requirements. To do so, the engineers come up with
three different cloud configurations, as presented in Fig. 4.
In this example, three configurations are considered: Cloud
A, which is able to run X Virtual Machines (VMs); Cloud B,
which is able to run two times more VMs than Cloud A;
and Cloud C, which runs three times more VMs than the
Cloud A. One application may be like Cloud C in our exam-
ple and have high parallelization demands, making devel-
opers opt for cloud solutions with many servers. However,
quite often, applications’ QoS could be satisfied by smaller
clouds with fewer VMs, such as is the case in Cloud B in
our example. Using our proposed strategy, the engineers
would analyze the requirements of each application
demanding execution offloading and would create a profile
for each application. This way, the company could mini-
mize its costs by buying the appropriate number of physical
machines while satisfying users’ expected quality of service.

Fig. 3. Infrastructure components model example [22].

Fig. 4. Hypothetical offloading scenario.

SILVA ET AL.: MOBILE CLOUD PERFORMANCE EVALUATION USING STOCHASTIC MODELS 1137

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on September 01,2023 at 09:16:51 UTC from IEEE Xplore. Restrictions apply.

4.1 How to Minimize Cloud Costs
This paper presents an approach and a tool for helping soft-
ware engineers solve the illustrated issue, by trying to com-
promise on the number of server machines to use so that
the costs of building the cloud are minimized while the QoS
of users’ applications are still satisfied. In the rest of the
paper, without losing any generality, we will consider real-
istic user cases of applications partitioned at the method
level. In a method call partitioning strategy, the source code
is partitioned at method level for offloading [6]. We note
that method call partitioning is performed observing data
dependencies, as presented in the Algorithm 1:

Algorithm 1. Offloaded Method Example
1: function rootFunction
2: a m1ðÞ
3: b m2 ðaÞ
4: c m3ðÞ
5: return b; c
6: end function

Due to data dependency, the calls “m1()” and “m2(a)”
must be executed in sequence, while “m3()” can be called in
parallel. The developer would expect that partitioning and
distributing the execution of the rootMethod on several serv-
ers would reduce the total execution time of the method.
Nonetheless, factors such as lack of resources, network
instability, and allocation decision instructiveness may
degrade the performance of the offloading process. In this
context, this paper proposes an approach that provides sta-
tistic information about the mobile application behavior,
representing method calls dependency with stochastic mod-
els. More precisely, this work seeks to answer the following
four questions:

i) How many VMs are needed to satisfy an application’s
required average execution time constraint?

ii) What is the number of method calls per time unit
(throughput)?

iii) What is the mean time to execute one application
when using a certain number of VMs?

iv) What is the probability of finishing the application
execution by a specific time when using a certain
number of VMs?

We answer these questions by providing a way of evalu-
ating the mobile cloud through SPNs. First, a static code
analysis is carried out and SPNs are automatically gener-
ated based on such code. Then, the SPNs are employed to
evaluate the performance of the method call execution. As
an example, Fig. 5 depicts the SPN representation for the
basic structure of a method call.

The SPN method call is composed of four transitions. The
first transition (trigger_time_1) is immediate, associating
zero as the value. The second transition (proc_time) is called
General Time High-level Transition because when the SPN
is generated, no probability is assigned to it. This transition
is depicted by a gray rectangle and the model is later refined
by assigning the respective distribution parameter values.
The other two immediate transitions (trigger_time_0 and
trigger_time_2) are needed to enable the model to return to
the initial state when the execution finishes.

The SPN model comprises four places. The place START,
when containing a token, means that the workload is able to
be processed. The place EXEC represents the phase when
the method started its execution by allocating one resource,
and thus, decreasing the number of markings at the place
RSRC_POOL. Therefore, the number of tokens present at
the place RSRC_POOL represents the current available
Resources Number, RN (e.g., the number of VMs). The
number of tokens (RsrcN) present at the place RSRC_POOL
represents the current available Resources Number.

The pool of resources is a powerful mechanism—just
changing its marking number allows different scenarios to be
analyzed. The delay associated with the transition proc_time
represents the average method processing time. The place
FINISH represents that the method call has completed and is
available for further calls. Finally, when the place SYSTEM_
INACTIVE has a marking (i.e., a token), this indicates that there
are no method calls running at the moment and that the system
is idle. Such SPN pattern can be extended to evidence the
method calls data dependency of any application. The pattern
embraces general features common to concurrent systems.

We have designed and implemented a tool called MCC-
Adviser that can assist software engineers with planning
mobile cloud infrastructure. MCC-Adviser is based on the
Mercury engine [39], [40] and supports the analysis of mobile
applications from different perspectives, being able to auto-
matically compute three metrics: throughput (Tp), mean
time to execution (MTTE) and cumulative distribution func-
tion (CDF) which are evidenced by graphs. These metrics are
calculated by numerically solving CTMCs or by simulation.
The main problem of analytical evaluation methods is the
state space. Real application systems usually generate huge
state spaces. In some situations the simulation is the only fea-
sible approach for performance evaluation [40], [41], [42].

4.2 Throughput
The throughput (Tpn) represents how many method-calls
per unit time one application can execute when offloaded to
the cloud. This metric is obtained based on Equation (1).
[43]. Tpn is obtained by computing the expected value of
tokens at a place, multiplied by the inverse of the transition
delay. Such a transition delay (Timen) corresponds to the
communication time, it is, strictly the time taken to send
and receive bytes

Tpn …
XZ

i…1
P ðmðEXECnÞ … iÞ � i

 !

�
1

Timen
: (1)

Fig. 5. SPN representation of nne application with only one method call
without absorbing state.

1138 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 5, MAY 2018

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on September 01,2023 at 09:16:51 UTC from IEEE Xplore. Restrictions apply.

4.3 Execution Time (MTTE and CDF)
The MTTE is the average time to finish the execution of an
application. It is the expected time to reach a deadlock
marking (SPN with absorbing state; see Fig. 6), and it is
either computed by generating the associated CTMC or by
simulation [44]. The MTTE is based on a set of probability
estimations for when one token goes from the START place
to the FINISH place.

The MCC-Adviser also compute cumulative distribution
functions (CDF) based on the generated SPNs. Fig. 7 depicts
and example of a generated CDF. Analyzing the CDF, it is
possible to estimate the probability of finishing execution
before a specific time ‰P ðT < tÞ� and the probability of fin-
ishing execution in a time interval ‰P ðt1 < T < t2Þ … P
ðT < t2Þ � P ðT � t1Þ�.

There are two general types of offloading, the partial and full
[45]. Let’s consider the scope of offloading a heavy root method.
The partial offloading enables only some method-calls to be off-
loaded due to two possible reasons. First, some method-calls
may have hardware dependencies (e.g.,: GPS or accelerometer).
Second, some method-calls may require so few processing,
making not sense to offload it. In full offloading, as the name
implies, all method-calls are offloaded. Having as scope a
heavy root method, this work consider full offloading. There-
fore, the proposed approach is suitable for any application that
presents a heavy method; for example: image processing, artifi-
cial intelligence, security, and e-health applications. The contri-
bution of this work resides in planning the architecture of the
cloud side based on the tasks distribution performance.

The next section presents some case studies intending to
demonstrate the concepts and methods discussed above.

5 CASE STUDIES

This section presents two case studies to show the applica-
bility of the proposed approach and the advantage of using
the MCC-Adviser tool. As we have explained in detail in
the previous section, MCC-Adviser hides the complexity
of the problem and the underlying SPN model from the end
user, presenting only a User Interface and graphical predic-
tion reports. However, to offer a full understanding of
MCC-Adviser, we give a detailed description of all the steps
involved in the process—from building the SPN to obtain-
ing the results—in this section. We implement and analyze
two real applications: a simple image processing system,
presented in Section 5.1, and a more complex face recogni-
tion application, presented in Section 5.2.

5.1 Case Study One: Image Processing
We implement and analyze three versions (A, B, and C) of
an image processing Android application following the

principles of method call computation offloading [9], [10].
The relevant parts of the offloading source code are pre-
sented in Algorithm 2. The depicted code arrangements only
show the corresponding heaviest methods of the three
applications.

Algorithm 2. Three Versions of Offloaded Functions
1: function reduceColor versionAðimg1Þ
2: img2 reduceColorServer ðimg1Þ
3: img3 reduceColorServer ðimg2Þ
4: img4 reduceColorServer ðimg3Þ
5: return img4
6: end function
7:
8: function reduceColor versionBðimg1; img4Þ
9: img2 reduceColorServer ðimg1Þ

10: img3 reduceColorServer ðimg2Þ
11: img5 reduceColorServer ðimg4Þ
12: return img3; img5
13: end function
14:
15: function reduceColor versionCðimg1; img2; img3Þ
16: img4 reduceColorServer ðimg1Þ
17: img5 reduceColorServer ðimg2Þ
18: img6 reduceColorServer ðimg3Þ
19: return img4; img5; img6
20: end function

Fig. 8 reveals the method calls distribution scheme of the
three applications. The client class resides on the mobile
device and makes image processing calls to the server by
passing one or more inputs (original images). The client
connects to one or more VMs and then calls the method
reduceColorServer in the server side.

The method calls inside Application_A present dependen-
cies by passing image inputs as method arguments (lines 5
to 7). In Application_B, there are two dependent method calls
(lines 16 and 17) and one independent (line 19). The last
application, Application_C, is dependency free.

The server side adopts the Open Source Computer Vision
Library [46] and one Java wrapper called JavaCV [47]. We
implement the computing vision example of Picture’s Col-
our Reduction [48], in which images are transformed by
decreasing the number of colors depending on the picture’s
size. Such an activity may be quite time consuming. The
test-bed was composed of a private cloud comprising four
machines with the same hardware configuration: Intel Core

Fig. 6. Basic SPN representation of one application with only one
method call using absorbing state.

Fig. 7. Example of CDF generated by MCC-adviser.

SILVA ET AL.: MOBILE CLOUD PERFORMANCE EVALUATION USING STOCHASTIC MODELS 1139

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on September 01,2023 at 09:16:51 UTC from IEEE Xplore. Restrictions apply.

i7-3770 3.4 GHz CPU, 4 GB of RAM DDR3, and 500 GB
SATA HD. One machine is configured as the front-end
while the remaining three are processing nodes. The Linux
CentOS 6 [49] operating system and Eucalyptus platform
3.4.0.1 [50] are adopted. An Ethernet network is adopted to
connect the PCs through a single switch and VMs of type
m1.medium (1 CPU, 512 MB of RAM, and 10 GB Disk).

A Petrinet is a particular kind of directed graph, together
with an initial state called t h e initial marking, MO. The
underlying graph N of a Petri net is a directed, weighted,
bipartite graph consisting of two kinds of nodes, called pla-
ces and transitions, where arcs are either from a place t o a
transition or from a transition to a place. In graphical repre-
sentation, places are drawn as circles, transitions as bars or
boxes. Arcs are labeled with their weights (positive inte-
gers), where a k-weighted arc can be interpreted as the set
of k parallel arcs. Labels for unity weight are usually omit-
ted. A marking (state)assignstoeach placeanonnegative inte-
ger. If amarking assigns to place p a nonnegative integer k,
we say that p is marked with k tokens. Pictorially, we place
k black dots (tokens) in placep. A marking i s denoted b y
M, an m-vector, where m is the total number of places. The
pth component of M, denoted by M(p), is the number of
tokens in place p [15].

We have designed and represent high-level SPN models
of the three code arrangements. Application_A is represented
by the SPNs in Figs. 9a and 9b. Application_B is represented
in Figs. 9c and 9d. Finally, Application_C is represented in
Figs. 9e and 9f. Application_A is represented by models with
method calls in a sequential chain fashion. The first and sec-
ond method-calls are dependent, represented in the model
by FINISH_1_START_2 2 (proc_time1)�, where (proc_time1)�
is the set of output transition of proc_time1. The second
method-call is data dependent on the third method-call,
represented by FINISH_2_START_3 2 (proc_time_2)�. Fol-
lowing the same idea, Application_B is modeled using data
dependence representation. Application_B and Application_C
are represented by SPNs comprising parallel tasks. The
model of Application_B presents the first two method-calls
executed in parallel and the third method-call in sequence.
The model of Application_C presents the all three method-
calls being executed in parallel. Parallel tasks can be

expressed by models including each individual task, a fork,
and synchronization transitions. Two tasks are said to be
parallel (or concurrent), if they are causally independent,
enabling one transition firing either before or after another
transition. Therefore, the model must encompass transitions
such that its firing delivers tokens to more than one place.

The proposed SPNs can be refined allowing one to obtain
statistical information regarding the MCC environment.
Hence, the applications were repeatedly executed under
one VM of type m1.medium (1 CPU, 512 MB of RAM, and a
10 GB Disk), capturing the execution time for each method
call. Only one specific 4MB picture was used as input. Next,
a first SPN refinement was proposed by transforming the
high-level transitions into exponentially distributed timed
transitions by assigning the average delays to the respective
transitions. Such transformation of transitions and delays
assignment allows SPN to be solved and the throughput,
MTTE, and CDF to be obtained.

Fig. 10 presents the estimated throughput for applica-
tions A, B, and C. The number of considered resources
ranged from one to four VMs because the approach takes
into account higher granularity plus one. Since Applica-
tion_C can be partitioned into three parts, four VMs were
adopted as an upper limit. Thus, the totally sequential
Application_A does not depend on the resource number.
Therefore, the throughput remains constant considering dif-
ferent numbers of VMs. Application_B owns two blocks of
independent code. Then, using two VMs the throughput
increases. However Application_B has the same result for
two, three, and four VMs since it cannot be partitioned
into more than two parts due to coupled code. Compar-
ing the three applications, the throughput of Applica-
tion_C is the highest because it considers the highest
number of parallel tasks.

The MTTE for Applications A, B, and C can be viewed in
Fig. 11. Similar to the throughput metric, in Application_A,
the MTTE does not vary when the number of VMs changes.
However, Applications B and C have the benefit of parallel-
ism, reaching saturation with two VMs for Application_B
and three VMs for Application_C. Besides that, the software
engineer may consider the MTTE desired by the user and
compare with the results provided by MCC-Adviser. For
example, if the final user demands a minimum MTTE
around 2,800 ms for Application_C, the planner may adopt
three VMs since two VMs do not allow reaching the maxi-
mal performance and four VMs do not offer improvement.

Figs. 12a, 12b, and 12c present CDFs that describe the
execution time of each method. For each application,
the CDF is plotted considering one, two, and three resources
(VMs). The probabilities were computed from t = 0 ms to t =
10,000 ms.

Although the applications have similar behavior, they
are more likely to complete execution over time when the
system is more decoupled. For Application_A (Fig. 12a), the
probabilities are the same for one, two, and three VMs. For
Application_B (Fig. 12b), the probabilities for two and three
VMs are identical—the probability only differs when one
VM is used. In this case, the probability of finishing the exe-
cution is smaller. Application_C (Fig. 12c) has the highest
probabilities for finishing execution faster. In addition, the
probabilities for one, two, and three VMs are distinct.

Fig. 8. Method call distribution obeying code dependency constraints.

1140 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 17, NO. 5, MAY 2018

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on September 01,2023 at 09:16:51 UTC from IEEE Xplore. Restrictions apply.

Application developers and service providers willing to
plan and design an MCC environment should be aware at
when their applications are more likely to finish execution.
The CDF may indicate such a moment through the maxi-
mum probability of absorption. Taking into account only
one VM, the maximum probability of absorption is about
95 percent for the three applications. Best performance could
be observed when using two or three VMs. Application_A
does not reach 100 percent probability in any of the three sce-
narios. Application_B reaches 100 percent probability at
exactly 10,000 ms for two and three VMs. As previously

mentioned, the probability for Application_C usually varies
with the number of resources. However, for two and three
VMs, 100 percent probability is achieved around 8,500 ms.

Willing to obtain the probability of absorption, the service
provider may consider any time within the range. Final users
may require that all applications finish by one specific time.
Given that Application_A is the most constrained, the service
provider should specify the observation of mainly Applica-
tion_A in its Service Level Agreement. If the final user need-
ing the application finishes execution by 5,000 ms, the
probability for Application_A is always around 62 percent.

Fig. 9. SPNs generated by MCC-adviser for the image processing case study discussed in Section 5.1.

SILVA ET AL.: MOBILE CLOUD PERFORMANCE EVALUATION USING STOCHASTIC MODELS 1141

Authorized licensed use limited to: Universita degli Studi di Roma La Sapienza. Downloaded on September 01,2023 at 09:16:51 UTC from IEEE Xplore. Restrictions apply.

