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Abstract

Let G be a connected graph. A subset X of V (G) is g-convex (m-
convex) if it contains all vertices on shortest (induced) paths between
vertices in X. We state characteristic properties of graphs in which every
g-convex set is m-convex, based on which we show that such graphs can
be recognized in polynomial time. Moreover, we state a new convexity-
theoretic characterization of Ptolemaic graphs.
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1 Introduction

A convexity space on a connected graph G is any set of subsets of V (G) which
contains the empty set, the singletons and V (G), and is closed under set in-
tersection. Several notions of convexity were introduced using different path
types; for example, shortest paths (geodesics), induced (or minimal or chordless)
paths and generic paths were used to define geodesic convexity (or g-convexity)
[8] [10] [21], monophonic convexity (or m-convexity) [6] [8], and all-paths con-
vexity (or ap-convexity) [20] [3], respectively. It is not difficult to prove that
m-convexity and ap-convexity are equivalent in G if and only if G is a tree
[17]. On the other hand, very little is known about those graphs in which g-
convexity and m-convexity are equivalent. Of course, they are equivalent in
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distance-hereditary graphs, since there every induced path is a shortest path.
The only remarkable result was stated by Farber and Jamison [8], who proved
that, within the class of connected chordal graphs, g-convexity and m-convexity
are equivalent in G if and only if G is Ptolemaic (i.e., chordal and distance-
hereditary). From the solution to the equivalence problem above one could
learn something more about certain parameters of a graph such as its m-hull
number (mhn), its m-number (mn), its g-number (gn), and its g-hull number
(mhn) [11], for which no general relationship is known apart from the following
inequalities mhn ≤ mn ≤ gn ≤ ghn [11]. The difficulty in finding a character-
ization (e.g., by forbidden induced subgraphs) of graphs in which g-convexity
and m-convexity are equivalent is due to the fact that such graphs can have any
graph as induced subgraph. To see it, let G0 be any nonempty graph and let
G be the graph obtained from G0 by adding two (nonadjacent) vertices u and
v, which are made adjacent to every vertex of G0. Then, a nonempty subset of
V (G) is g-convex if and only if it is either a clique of G or V (G) itself. There-
fore, since every m-convex set of G is also g-convex and the cliques of G are
all m-convex sets, one has that a subset of V (G) is g-convex if and only if it is
m-convex.

In this paper, we make use of prime components (i.e., maximal subgraphs
containing no clique separators) of a graph in order to characterize those graphs
G in which g-convexity and m-convexity are equivalent and we give both a
“local” property (g-convexity and m-convexity are equivalent in every prime
component of G) and “superstructural” properties, which state how prime com-
ponents of G are linked to one another. Moreover, based on these properties,
we provide a polynomial-time algorithm to recognize such graphs. Finally, we
state a stronger result than the above mentioned result by Farber and Jamison
by proving that, within the class of connected bridged graphs, g-convexity and
m-convexity are equivalent in G if and only if G is Ptolemaic.

The paper is organized as follows. Section 2 contains basic definitions and
preliminary results on minimal vertex separators, on α- and γ-acyclic hyper-
graps, and on g- and m-convexities. In Section 3 we give some convexity-
theoretic properties of prime components of a graph. Section 4 contains three
characterizations of graphs in which g-convexity andm-convexity are equivalent.
In Section 5 we show that graphs in which geodesic and monophonic convexities
are equivalent can be recognized in O(n4m) time, where n is the number of
vertices and m the number of edges. Finally, in Section 6 we provide a new
convexity-theoretic characterization of Ptolemaic graphs.

2 Basic definitions and preliminary results

In what follows G will be a finite, connected, undirected, loopless and simple
graph.

A sequence (v1, . . . , vk, vk+1) where the vi, 1 ≤ i ≤ k, are distinct vertices
of G and vi and vi+1, 1 ≤ i ≤ k, are adjacent, is a v1-vk+1 path of length
k if vk+1 is different from the other vi’s, and is a cycle of length k if k > 2
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and v1 = vk+1. A subpath of a path (v1, . . . , vk, vk+1) is any path of the type
(vi1 , . . . , vih) with i1 < · · · < ih. Let u and v be two vertices; a u-v geodesic is
a u-v path of minimum length; the distance, d(u, v), of u and v is the length of
a u-v geodesic.

2.1 Minimal vertex separators

Let S be a proper subset of V (G); the neighborhood of S in G, denoted by
N(S), is the set of vertices in V (G)− S that are adjacent to some vertex in S;
by G− S we denote the subgraph of G induced by V (G)− S. An S-component
of G is a connected component K of G− S such that N(V (K)) = S.

Two vertices of G are separated by S if they belong to distinct connected
components of G − S. S is a minimal separator for two vertices u and v if u
and v are separated by S and by no proper subset of S; S is a minimal vertex
separator of G if there exist two vertices for which S is a minimal separator.
It is well-known that the minimal vertex separators of a chordal graph are all
cliques. We now recall and state some properties of minimal vertex separators.

Fact 2.1. [13] Let S be a minimal separator for u and v. Let K and K ′ be the
connected components of G − S containing u and v, respectively. Every vertex
in S is adjacent to a vertex of K and to a vertex of K ′.

Lemma 2.1. S is a minimal separator for u and v if and only if u and v belong
to two distinct S-components of G.

Proof. (Only if) Let K andK ′ be the connected components of G−S containing
u and v, respectively. By Fact 2.1, N(V (K)) = N(V (K ′)) = S.
(If) LetK andK ′ be the S-components ofG−S containing u and v, respectively.
Since N(V (K)) = N(V (K ′)) = S, no proper subset of S separates u and v.

Corollary 2.1. For every minimal vertex separator S there exist at least two
S-components of G.

Lemma 2.2. Let S be a minimal vertex separator of G. Every vertex in S
is on an induced path between every pair of vertices for which S is a minimal
separator.

Proof. Let us suppose, by contradiction, that there exist two vertices u and v
for which S is a minimal separator and there exists a vertex w in S that lies on
no induced u-v path. Since S is a minimal separator for u and v, S′ = S −{w}
does not separate u and v. Therefore, {w} is a minimal vertex separator of
G − S′ and, hence, w lies on every (induced) u-v path in G − S′. Since every
(induced) u-v path in G − S′ is an (induced) u-v path in G, a contradiction
arises.
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2.2 Hypergraph acyclicity

A minimal vertex separator and a clique of a hypergraph are defined in a similar
way as in a graph. Moreover, a partial edge is any nonempty subset of some
edge.

Fagin [7] introduced four notions of hypergraph acyclicity which prove to be
relevant in the study of convexity in hypergaphs [18] [16] [17]. We now recall
the definitions of α-acyclic and γ-acyclic hypergraphs.

A hypergraphH is α-acyclic if it is the clique hypergraph of a chordal graph,
where the clique hypergraph of a graph G is the hypergraph whose edges are
exactly the maximal cliques of G.

Since every minimal vertex separator of a chordal graph is a clique, one has
that every minimal vertex separator of an α-acyclic hypergraph is a partial edge.

Connected α-acyclic hypergraphs can be represented by trees (e.g., see [2]).
We shall make use of another tree representation (see [19]) whose definition
is now recalled. Let H be a connected α-acyclic hypergraph and let M be
the set of minimal vertex separators of H . A connection tree (also called an
“edge-divider” tree [1]) for H is a tree T with vertex set H ∪M , such that:

1. each edge of T has one end vertex in H and the other in M , and

2. for every two vertices X and Y of T , the set X ∩ Y is a subset of each
vertex along the unique path joining X and Y in T .

Example 2.1 Let H be the α-acyclic hypergraph in Figure 1; a connection tree
T for H is shown in Figure 2.
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E4

fg
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l m

Figure 1: An α-acyclic hypergraph

In what follows, the vertices of T that are in H (or in M) are called H-
vertices (M -vertices, respectively) of T . Let S ⊂ V (H). By TS we denote the
forest obtained from T by deleting the vertices that are subsets of S. If T ′ is
a connected component of TS , by V (T ′) we denote the union of the vertices
(viewed as sets) of T ′.

Lemma 2.3. Let H be a connected α-acyclic hypergraph. Let S ⊂ V (H) and
let u and v be two distinct vertices in V (H) − S. The vertices u and v are
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Figure 2: A connection tree T for the hypergraph in Figure 1

connected in H − S if and only if they belong to two H-vertices of T that are
connected in TS.

Proof. If u and v are adjacent in H , then the statement is trivially true. There-
fore, without loss of generality, we can assume that u and v are not adjacent in
H so that they belong to two distinct H-vertices of T .
(If ) Let E and E′ be two H-vertices of T which are connected in TS and contain
u and v, respectively. Consider the path (E1 = E, S1, E2, . . . , Sk−1, Ek = E′)
from E to E′ in TS . First of all, observe that Sh − S 6= ∅, for all h. Let
i = max(h|u ∈ Eh) and let j = min(h|v ∈ Eh). Since u and v are not adjacent
in H , one has i < j. Let (u, xi, . . . , xj−1, v) be a sequence of vertices obtained
by taking for each h, i ≤ h ≤ j − 1, xh in Sh − S. Note that xh /∈ S for all
h and that every two consecutive vertices in the sequence are adjacent in H .
Then, from the vertex sequence (u, xi, , xj−1, v) we can easily obtain a u-v path
in H which does not pass through S, which proves that u and v are connected
in H − S.

(Only if ) Let (x1, . . . , xk−1, xk) be a u-v path in H that does not pass
through S. Let i1 = max(h > 1|xh is adjacent to x1) and let E1 be an edge
of H that contains x1 and xi1 ; note that E1 − S ⊇ {x1, xi1}. Analogously, let
i2 = max(h > i1|xh is adjacent to xi1 ) and let E2 be an edge of H that contains
xi1 and xi2 ; so, one has that E2 − S ⊇ {xi1 , xi2} and that xi1 ∈ E1 ∩ E2. It
follows that E1 and E2 are H-vertices of TS and xi1 belongs to each vertex in
the path in T between E1 and E2, which implies that E1 and E2 are connected
in TS . Repeating this argument, we obtain a sequence E1, E2, . . . , Eq of edges
of H such that u ∈ E1, v ∈ Eq and, for each j, 1 ≤ j ≤ q − 1, Ej and Ej+1 are
connected in TS. It follows that E1 and Eq are connected in TS, which proves
the statement.

From Lemma 2.3 it follows that the connected components of H − S corre-
spond one-to-one to the connected components of TS. More precisely, if H ′ is a
connected component ofH−S, then there exists one connected component T ′ of
TS such that V (T ′)−S = V (H ′), and if T ′ is a connected component of TS , then
there exists one connected componentH ′ ofH−S such that V (H ′) = V (T ′)−S.
Moreover, if H ′ is a connected component of H−S and T ′ is the corresponding
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connected component of TS, then one has N(V (H ′)) = V (T ′) ∩ S. Finally, H ′

is an S-component of H if and only if S ⊂ V (T ′).

Fact 2.2. Let H be a connected α-acyclic hypergraph, let T be a connection tree
for H and let S be a minimal vertex separator of H. A connected component of
H −S is an S-component if and only if the corresponding connected component
of TS contains an H-vertex that in T is adjacent to the M -vertex S.

Example 2.1 (continued) Consider the minimal vertex separator S = {d, h}
of H . The vertices in M that are subsets of S are {d, h} and {d}. The forest
TS is shown in Figure 3. By Fact 2.2, there are two S-components of H with
vertex sets {g, i} and {b, c, e, f, l,m}, respectively.

We now introduce the notion of γ-acyclicity (see Definition 4 of γ-cyclicity
in [7]).

A hypergraph is γ-acyclic if, for every pair of nondisjoint edges E and E′,
E ∩ E′ separates every vertex in E − E′ from every vertex in E′ − E. For
example, the hypergraph in Figure 1 is not γ-acyclic because the vertices d and
e are not separated by E1 ∩ E4.

dghi
H

ad deh bcef efhlm

eh ef M

Figure 3: The forest TS for S = {d, h}

2.3 g- and m-convexities

In this subsection we recall the notions of g-convexity and m-convexity.
Let u and v be two vertices of G. By Ig(u, v) we denote the set of vertices

that lie on any u-v geodesic. Let X be a subset of V (G); by Ig(X) we denote the
set

⋃
u,v∈X Ig(u, v) with the convention Ig(∅) = ∅; X is g-convex if Ig(X) = X

and the g-convex hull 〈X〉g is the minimal g-convex set of G containing X . By
g(G) we denote the set of g-convex sets of G.

Let u and v be two vertices of G. By Im(u, v) we denote the set of vertices
that lie on any induced u-v path. Let X be a subset of V (G); by Im(X) we
denote the set

⋃
u,v∈X Im(u, v) with the convention Im(∅) = ∅; X is m-convex
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if Im(X) = X and the m-convex hull 〈X〉m is the minimal m-convex set of G
containing X . By m(G) we denote the set of m-convex sets of G.

3 Prime components of a graph

A graph is clique separable if it contains two vertices separated by a clique, and
is prime otherwise. A prime component (also called “maximal prime subgraph”
[15]) of a graph G is a maximal induced subgraph of G that is prime.

A minimal clique separator for two vertices u and v is a clique that is a
minimal separator for u and v; a minimal vertex clique separator of G is a
clique that is a minimal vertex separator of G.

The prime hypergraph of G is the hypergraph whose edges are the vertex
sets of the prime components of G.

Example 3.1 Let G be the graph in Figure 4. The prime hypergraph of G
coincides with the hypergraph H shown in Figure 1. A connection tree T for H
was shown in Figure 2.

a
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i
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Figure 4: The graph in Example 3.1

Fact 3.1. Let H be the prime hypergraph of a graph G.

• The minimal vertex separators of H are exactly the minimal vertex clique
separators of G.

• If C is a minimal vertex clique separator of G then, for every C-component
of G, there exists a C-component of H with the same vertex set, and vice
versa.

By Facts 2.2 and 3.1 one has the following.

Fact 3.2. Let C be a minimal vertex clique separator of a graph G. For every
C-component K of G there exists a prime component P such that V (P )−C ⊆
V (K) and V (P ) ⊇ C.
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Example 3.1 (continued) Consider the minimal vertex clique separator C =
{d, h} of G. By Fact 3.1, C is a minimal vertex clique separator of G and
there are exactly two C-components K and K ′ of G with vertex sets {g, i} and
{b, c, e, f, l,m}, respectively (see Example 2.1). We have that E1 is the vertex
set of a prime component of G such that E1 − C ⊆ V (K) and E1 ⊇ C, and E5

is the vertex set of a prime component of G such that E5 − C ⊆ V (K ′) and
E5 ⊇ C.

Fact 3.3. [15] The prime hypergraph of a graph G is α-acyclic.

In Section 4 we will show that if g(G) = m(G) then the prime hypergraph
of G is γ-acyclic.

We now recall a result on m-convex hulls involving prime components and
minimal vertex clique separators. Let X be a subset of V (G). In the following

• by X ′ we denote the union of X with all minimal clique separators for
pairs of vertices in X , and

• by X ′′ the union of the vertex sets of prime components P of G such that
X ′ ∩ V (P ) is neither the empty set nor a clique.

Example 3.1 (continued) For X = {a, e, f, g}, we have X ′ = X ∪ {d} ∪
{d, h} ∪ {e, h} and X ′′ = {d, g, h, i}.

In [18] (see Theorem 8) it is proven that:

Lemma 3.1. For every subset X of V (G), one has 〈X〉m = X ′ ∪X ′′.

As a consequence of Lemma 3.1 we obtain the following characterization of
m-convex sets in a prime graph.

Corollary 3.1. Let G be a prime graph. m(G) consists of the empty set, the
cliques and V (G).

By Lemma 3.1, if P is a prime component of G and X ⊆ V (P ), then 〈X〉m ⊆
V (P ). On the other hand, since for every subset X of V (G), 〈X〉g ⊆ 〈X〉m,
from Lemma 3.1 it also follows:

Corollary 3.2. Let P be a prime component of G. A subset of V (P ) is g-convex
(m-convex) in G if and only if it is g-convex (m-convex) in P .

4 Characteristic properties

In this section we state some characteristic properties of a connected graph G
in which g-convexity and m-convexity are equivalent. To this aim we need the
following technical lemma.
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Lemma 4.1. Let C be a minimal vertex clique separator of G and let K and
K ′ be two C-components of G. If g(G) = m(G) then, for every pair of vertices
u ∈ N(C) ∩ V (K) and v ∈ N(C) ∩ V (K ′), d(u, v) = 2 and 〈{u, v}〉g = Ig(u, v).

Proof. Let u be a vertex in N(C) ∩ V (K) and v a vertex in N(C) ∩ V (K ′).
Observe that d(u, v) > 1, since u and v are separated by C, and d(u, v) < 4,
since C is a clique. So, either d(u, v) = 2 or d(u, v) = 3. We will show that:

(1) if d(u, v) = 2 then 〈{u, v}〉g = Ig(u, v), and
(2) d(u, v) 6= 3.

(1) If d(u, v) = 2 then every vertex in Ig(u, v) distinct from both u and v belongs
to C (otherwise C would not separate u and v); therefore, since C is a clique,
〈{u, v}〉g = Ig(u, v).
(2) Suppose, by contradiction, that d(u, v) = 3. Since u ∈ N(C) ∩ V (K),
v ∈ N(C)∩ V (K ′) and C is a clique, there exists a u-v geodesic (u, y, z, v) such
that both y and z are in C.

By Fact 2.1, there exists a vertex x in K adjacent to z. Consider the two
vertices x and v; we have that x ∈ N(C)∩V (K), v ∈ N(C)∩V (K ′) and d(x, v) =
2. Therefore, by (1) we have that 〈{x, v}〉g = Ig(x, v). Since d(u, v) = 3, y
cannot be adjacent to v and, hence, y cannot belong to 〈{x, v}〉g = Ig(x, v). On
the other hand, by Lemma 2.2, y belongs to 〈{x, v}〉m. Therefore, 〈{x, v}〉g 6=
〈{x, v}〉m and a contradiction arises.

The next result provides a characterization of a connected graph G in which
g-convexity and m-convexity are equivalent, which involves the following prop-
erty:

(p1) For every minimal vertex clique separator C of G and for every pair of
vertices u and v of two distinct C-components, every vertex in C is on a u-v
geodesic.

Theorem 4.1. g(G) = m(G) if and only if:

1. g(P ) = m(P ) for every prime component P of G, and

2. G has property (p1).

Proof. (Only if ) Proof of (1). By Corollary 3.2.
Proof of (2). Suppose, by contradiction, that there exist a minimal vertex clique
separator C of G, two C-components K and K ′ of G, two vertices u ∈ V (K)
and v ∈ V (K ′) and a vertex w in C that is on no u-v geodesic.
Let p be a u-v geodesic. Let x be the last vertex on p belonging to V (K) and let
y be the first vertex on p belonging to V (K ′). The x-y subpath p′ of p is an x-y
geodesic. By Lemma 2.1, C is a minimal clique separator for x and y so that, by
Lemma 2.2, w ∈ Im(x, y) ⊆ 〈{x, y}〉m. We now prove that w 6∈ 〈{x, y}〉g, which
contradicts the hypothesis g(G) = m(G). By Lemma 4.1, w ∈ 〈{x, y}〉g if and
only if w ∈ Ig(x, y). If w were in Ig(x, y), then there would exist an x-y geodesic
p′′ such that w lies on p′′, but then w would be on the u-v geodesic which is
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obtained from p by substituting p′ with p′′. Since w is on no u-v geodesic,
w /∈ Ig(x, y) and, hence, w /∈ 〈{x, y}〉g.
(If ) Let X be any nonempty subset of V (G). If there exists a prime component
P of G such that X ⊆ V (P ) then, by Corollary 3.2 and condition (1), 〈X〉g =
〈X〉m. Assume that this is not the case, that is, X contains two vertices that are
separated by a clique. Since 〈X〉g ⊆ 〈X〉m, in order to prove that 〈X〉g = 〈X〉m
we need to prove, by Lemma 3.1, that:

(i) 〈X〉g ⊇ X ′

(ii) 〈X〉g ⊇ X ′′.
Proof of (i). Let C be any minimal clique separator for a pair of vertices in X .
By Lemma 2.1 these two vertices belong to two distinct C-components so that,
by condition (2), C is a subset of 〈X〉g. Therefore, 〈X〉g ⊇ X ′.
Proof of (ii). IfX ′′ = ∅ then triviallyX ′′ ⊆ 〈X〉g. Otherwise, let P be any prime
component of G such that X ′ ∩ V (P ) is neither the empty set nor a clique. Let
u and v be two nonadjacent vertices in X ′ ∩ V (P ). By Corollaries 3.1 and 3.2,
〈{u, v}〉m = V (P ) so that, by condition (1), 〈{u, v}〉g = V (P ). Finally, since
{u, v} ⊆ X ′ and X ′ ⊆ 〈X〉g (see above), one has V (P ) = 〈{u, v}〉g ⊆ 〈X〉g. It
follows that X ′′ ⊆ 〈X〉g.

We shall provide two more characterizations of a graph in which g-convexity
and m-convexity are equivalent (see Theorem 4.2 below). To this aim we relate
property (p1) to the following:

(p2) For every minimal vertex clique separatorC ofG and for everyC-component
K of G and for every vertex u ∈ V (K) ∩N(C), the set C ∪ {u} is a clique.

(p3) For every minimal vertex clique separator C of G and for every prime
component P of G containing C and for every vertex u ∈ V (P )∩N(C), the set
C ∪ {u} is a clique.

(p4) The prime hypergraph H of G is γ-acyclic.

Lemma 4.2. The following conditions are equivalent:
(i) G has property (p1)
(ii) G has property (p2)
(iii) G has properties (p3) and (p4).

Proof. (i) ⇒ (ii). Let C be any minimal vertex clique separator of G, let K be
any C-component of G and let u be any vertex in V (K) ∩ N(C). Let w be a
vertex in C adjacent to u. By Corollary 2.1, there exists another C-component
K ′ of G. Let v be a vertex of K ′ adjacent to w (such a vertex exists by Fact
2.1). Of course, (u,w, v) is a geodesic. By (p1) every vertex in C is on a u-v
geodesic and, hence, C ∪ {u} is a clique which proves that G has property (p2).

(ii) ⇒ (i). Let C be any minimal vertex clique separator of G, let K and K ′

be any two C-components of G and let u ∈ V (K) and v ∈ V (K ′). Let p be a
u-v geodesic; let x be the last vertex on p belonging to V (K) and let y be the
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first vertex on p belonging to V (K ′). Since the vertex on p following x is in C
and, analogously, the vertex on p preceding y is in C, by (p2), both x and y are
adjacent to every vertex in C. Let p1 be the u-x subpath of p and let p2 be the
y-v subpath of p. We have that for every vertex w in C the path p1, w, p2 is a
u-v geodesic which proves that G has property (p1).

(ii) ⇒ (iii).
Proof of (p3). Let C be any minimal vertex clique separator of G and let P
be any prime component of G containing C. Let K be the C-component of G
containing V (P )−C. Since every vertex u in V (P )∩N(C) is in V (K)∩N(C),
by (p2) the set C ∪ {u} is a clique.
Proof of (p4). Suppose, by contradiction, that the prime hypergraph H of G is
not γ-acyclic. Then there exist two prime components P and P ′ of G such that
S = V (P ) ∩ V (P ′) 6= ∅ and

(a) S separates no vertex in V (P )− S from no vertex in V (P ′)− S.
By the very definition of a prime component of a graph, there exists a clique
separator C ⊆ V (P ) such that:

(b) C is a minimal clique separator for every pair of vertices, one in V (P )−C
and the other in V (P ′)− C.
Analogously, there exists a clique separator C′ ⊆ V (P ′) such that:

(b’) C′ is a minimal clique separator for every pair of vertices, one in V (P )−
C′ and the other in V (P ′)− C′.
Since S = V (P )∩V (P ′), we have that S ⊂ C (otherwise, C would not separate
any pair of vertices, one in V (P )−C and the other in V (P ′)−C); analogously,
S ⊂ C′. From (a) it follows that:

(c) S separates no vertex in C − C′ from no vertex in C′ − C.
Let v ∈ C′ − C, s ∈ S and x ∈ V (P ) − C. There exists an s-x path p in P
that does not pass through C − S, for, otherwise, s and x would be separated
by a clique, which contradicts that P is prime. Let u be the first vertex on p
that is not in S. By (b), C separates u and v, so that u and v are not adjacent.
Let K be the connected component of G − C′ containing u; by (c), we have
that C − C′ ⊆ V (K). Let us show that K is a C′-component. Suppose, by
contradiction, that N(V (K)) ⊂ C′; then, N(V (K)) would separate every pair
of vertices, one in V (P ) − C′ and the other in V (P ′) − C′ contradicting (b’).
Therefore, K is a C′-component. Since u and v are not adjacent, C′ ∪ {u} is
not a clique and a contradiction with (p2) arises.

(iii) ⇒ (ii). Let C be any minimal vertex clique separator and let K be any C-
component of G. Since the prime hypergraph H of G is γ-acyclic, a nonempty
subset of V (G) is a minimal vertex clique separator if and only if it is the
intersection of two distinct prime components. By Corollary 2.1 and Fact 3.2
there exist two prime components P and P ′ such that C = V (P ) ∩ V (P ′),
V (P ) − C ⊆ V (K), V (P ) ⊇ C and V (P ′) ∩ V (K) = ∅. Let u be a vertex
in V (K) ∩ N(C). If u ∈ V (P ), then, by (p3), the set C ∪ {u} is a clique.
Otherwise, let v be a vertex in C adjacent to u and let Q be a prime component
containing both u and v. If C − V (Q) were not empty, then the nonempty set
S = V (Q) ∩ V (P ′) would not separate u from any vertex in V (P ′) − S, which
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contradicts (p4). Therefore, V (Q) ⊇ C so that, by (p3), the set C ∪ {u} is a
clique.

From Theorem 4.1 and Lemma 4.2 it follows that:

Theorem 4.2. The following statements are equivalent:

• g(G) = m(G)

• g(P ) = m(P ) for every prime component P of G, and G has property (p1)

• g(P ) = m(P ) for every prime component P of G, and G has property (p2)

• g(P ) = m(P ) for every prime component P of G, and G has properties
(p3) and (p4).

5 Recognition

In this section we show that graphs in which geodesic and monophonic convexi-
ties are equivalent can be recognized in O(n4m) time (where n is the number of
vertices and m the number of edges) using the following characterization given
in Theorem 4.1: g(G) = m(G) if and only if

1. g(P ) = m(P ) for every prime component P of G, and

2. for every minimal vertex clique separator C of G and for every pair of
vertices u and v of two distinct C-components, every vertex in C is on a
u-v geodesic.

5.1 Testing condition (1)

The prime components of G and its minimal vertex clique separators can be
computed using the O(nm) decomposition algorithm given in [22] and modified
by [15]. As noted by Tarjan [22], the number of prime components of G is at
most n− 1, for n ≥ 2.

In [5] an O(nm) algorithm to compute the g-convex hull of a given vertex
set is given. By Corollary 3.1, in order to test g(P ) = m(P ), for a given prime
component P of G, it is sufficient to compute the g-convex hull of every pair of
nonadjacent vertices and check that it is equal to V (P ).

Therefore, testing condition (1) requires O(n4m) time.

5.2 Testing condition (2)

It is well-known (for example, see [14]) that the number of minimal (clique)
separators of a chordal graph G is at most k − 2, where k is the number of its
maximal cliques. Since the minimal vertex (clique) separators of the 2-section
H2 of the prime hypergraph H of G are exactly the minimal vertex clique
separators of G and since the maximal cliques of H2 are exactly the vertex sets
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of the prime components of G, which are at most n− 1 (see above), the number
of minimal vertex clique separators of G is at most n− 2.

In order to test condition (2), for every minimal vertex clique separator C
of G we have to perform the following two steps:

Step 1 find the C-components of G;
Step 2 for every pair of vertices u and v of two distinct C-components, compute
Ig(u, v) and check that C ⊆ Ig(u, v).

Step 1 can be performed in O(m) time during a traversal of G. Since comput-
ing Ig(u, v) requires O(m) time (by applying breadth first search) and checking
the inclusion C ⊆ Ig(u, v) requires O(n) time, Step 2 can be performed in
O(n2m) time. Therefore, condition (2) can be tested in O(n3m) time.

6 Ptolemaic graphs

Recall that a graph is Ptolemaic if it is connected, chordal and distance-hereditary
[12]. Farber and Jamison [8] gave two convexity-theoretic characterizations of
Ptolemaic graphs, one of which reads as follows:

Fact 6.1. [8]. Let G be a connected graph. G is Ptolemaic if and only if G is
chordal and g(G) = m(G).

We now state another characterization of Ptolemaic graphs stronger than
Fact 6.1 by considering “bridged” graphs as defined by Farber [9].

A bridge of a cycle c in graphG is a geodesic in G joining two non consecutive
vertices of c which is shorter than both of the paths in c joining those vertices.
A graph G is bridged if every cycle of length at least 4 has a bridge. Of course,
every chordal graph is a bridged graph.

Lemma 6.1. If G is a bridged graph and g(G) = m(G) then every prime
component of G is a complete graph.

Proof. Suppose, by contradiction, that there exists a prime component P of G
that is not a complete graph and let u and v be two vertices in P with d(u, v) = 2.
Since G is bridged, N(u)∩N(v) must be a clique, so that Ig(u, v) = 〈{u, v}〉g. If
Ig(u, v) = V (P ) then P is not prime (contradiction); if Ig(u, v) 6= V (P ) then, by
Corollary 3.1, 〈{u, v}〉g 6= 〈{u, v}〉m, so that g(G) 6= m(G) (contradiction).

Lemma 6.2. [4]. A connected graph is Ptolemaic if and only if its clique
hypergraph is γ-acyclic.

Theorem 6.1. Let G be a connected graph. G is Ptolemaic if and only if G is
a bridged graph and g(G) = m(G).

Proof. (Only if). If G is Ptolemaic then it is both chordal and distance-
hereditary. Since every chordal graph is bridged and for every distance-hereditary
graph g-convexity and m-convexity are equivalent, the statement trivially fol-
lows.
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(If). If G is a bridged graph then, by Lemma 6.1, the prime hypergraph H of
G coincides with the clique hypergraph of G. Moreover, if g(G) = m(G) then,
by Theorem 4.2, G has property (p4), that is, H is γ-acyclic. By Lemma 6.2,
G is Ptolemaic.
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