Computing simple-path convex hulls in hypergraphs

Francesco M. Malvestuto *, Mauro Mezzini, Marina Moscarini

Computer Science Dept., Sapienza University of Rome, Italy

ABSTRACT

In a connected hypergraph a vertex set X is simple-path convex (sp-convex, for short) if either $|X| \leq 1$ or X contains every vertex on every simple path between two vertices in X (Faber and Jamison, 1986 [7]), and the sp-convex hull of a vertex set X is the minimal superset of X that is sp-convex. In this paper, we give a polynomial algorithm to compute sp-convex hulls in an arbitrary hypergraph.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

While several convexity notions exist for graphs (e.g., g-convexity [7], m-convexity [5,7], ap-convexity [4], tp-convexity [3], Steiner convexity [2,10]), fewer convexity notions have been defined explicitly for hypergraphs. The first hypergraph convexity that has been introduced is simple-path convexity (sp-convexity, for short) [7], which is a generalization of ap-convexity. Recently [8], m-convexity has been generalized to hypergraphs and another hypergraph convexity, which is stronger than m-convexity and is called c-convexity, has been introduced; moreover, efficient algorithms to compute m-convex and c-convex hulls have been given [8]. On the other hand, no result on the complexity of the problem of computing the sp-convex hull of a vertex set exists except for the case that the family of sp-convex sets is a convex geometry, in which case an efficient algorithm can be easily derived from well-known properties of totally balanced hypergraphs [1,7]. In this paper we state a characterization of sp-convex sets, which leads to solve the sp-convex hull problem in an arbitrary hypergraph in $O(n^3ms)$ time where n is the number of its vertices, m is the number of its edges and s is the sum of the cardinalities of its edges.

The rest of the paper is organized as follows. Section 2 contains basic notions on hypergraphs and simple-path convexity. In Section 3 we present an sp-convex hull algorithm for totally balanced hypergraphs. In Section 4 we first state a characterization of sp-convex sets in an arbitrary hypergraph and, then, give our sp-convex hull algorithm.

2. Definitions

In this section we recall some hypergraph-theoretic definitions from [6].

A hypergraph is a (possibly empty) set H of nonempty sets; the elements of H are called the (hyper)edges of H and their union the vertex set of H, denoted by $V(H)$. The degree of a vertex of H is the number of edges containing it.

A hypergraph is trivial if it has only one edge, and non-trivial otherwise. A partial hypergraph of hypergraph H is a nonempty subset of H.

The subhypergraph of H induced by a nonempty subset X of $V(H)$ is the hypergraph $(A \cap X; A \in H \setminus \{\emptyset\})$.

A path between two vertices a and b of H is a sequence $\pi = (a_0, A_1, a_1, \ldots, A_k, a_k), k \geq 0$, where $a_0 = a$, $a_k = b$, and if $k \geq 1$ the a_i’s are pairwise distinct vertices of H.

* Corresponding author.

E-mail address: malvestuto@di.uniroma1.it (F.M. Malvestuto).
A_i's are pairwise distinct edges of \(H \), and \([a_{i-1}, a_i] \subset A_i\) for \(1 \leq i \leq k \); by \(V(\pi) \) and \(H(\pi) \) we denote the set of vertices and edges on the path \(\pi \), respectively, that is, \(V(\pi) = \{a_0, a_1, \ldots, a_k\} \) and \(H(\pi) = \{A_1, \ldots, A_k\} \). If \(H \) is a graph (i.e., every edge has cardinality less than 3), then path \(\pi = (a_0, A_1, a_1, \ldots, A_k, a_k) \) will be written simply as \((a_0, a_1, \ldots, a_k)\) and is chordless if no two non-consecutive vertices are adjacent in \(H \).

Two vertices \(a \) and \(b \) of a hypergraph are connected if there exists a path between \(a \) and \(b \). A hypergraph is connected if every two vertices are connected. The connected components of a hypergraph are its maximal connected partial hypergraphs.

A path \(\pi \) in \(H \) is simple [7] if \(|A \cap V(\pi)| = 2\) for each edge \(A \) of \(H(\pi) \). Note that in a graph every path is simple.

Remark 2. Let \(\pi = (a_0, A_1, a_1, \ldots, A_k, a_k) \) be a path between \(a \) and \(b \) in \(H \). Let \(i(1) = \max\{h : a_0 \in A_h\} \). Then, \(\pi' = (a_0, A_1, a_1, \ldots, A_i, A_{i+1}, a_{i+1}, \ldots, A_k, a_k) \) is a path between \(a \) and \(b \) in \(H \). Otherwise, let \(i(2) = \max\{h : h \leq k : a_1(1) \in A_h\} \). Then, \(\pi'' = (a_0, A_1, a_1, \ldots, A_{i(2)}, A_{i(2)+1}, a_{i(2)+1}, \ldots, A_k, a_k) \) is a path between \(a \) and \(b \) in \(H \). If \(i(2) = k \) then \(\pi'' \) is a simple path between \(a \) and \(b \) in \(H \). And so on. Thus, we can construct a simple path between \(a \) and \(b \) in \(H \).

Remark 2. Let \(\pi = (a_0, A_1, a_1, \ldots, A_k, a_k) \) be a simple path in \(H \). If \(H(\pi) \) contains a vertex \(c \) that is not in \(V(\pi) \) and has degree 2 or more, then \(c \) is on the simple path \(\pi' = (a_0, A_1, a_1, \ldots, A_i, c, A_{i+1}, a_{i+1}, \ldots, A_k, a_k) \) where \(i = \min\{h : c \in A_h\} \) and \(i' = \max\{h : c \in A_h\} \).

A simple circuit [7] is a sequence \((a_0, A_1, a_1, \ldots, A_{k-1}, A_k, a_k) \), \(k \geq 2 \), where \((a_0, A_1, a_1, \ldots, A_{k-1}, a_k) \) is a simple path and \(A_k \cap \{a_0, a_1, \ldots, a_{k-1}\} = \{a_0, a_k\} \); the length of the simple circuit is the number \(k \) of its edges. A hypergraph \(H \) is totally balanced if \(H \) contains no simple circuit of length greater than 2.

A vertex of a hypergraph is a nest vertex [7] (corresponding to a simple row [1] of the vertex-edge incidence matrix of \(H \)) if the edges containing it form a nested (that is, totally ordered with respect to set-inclusion) family of sets. A hypergraph is totally balanced if and only if every induced subhypergraph of \(H \) has a nest vertex [7, 17]. Based on this characterization of totally balanced hypergraphs, Anstee and Farber [1] gave a recognition algorithm for totally balanced hypergraphs, which runs in \(O(n^2m) \) time if the input hypergraph has \(n \) vertices and \(m \) edges and consists in recursively deleting nest vertices. Let \(H \) be a connected hypergraph. The sp-interval between two vertices \(a \) and \(b \) of \(H \) is the set \(I(a, b) \) which consists of every vertex on any simple path between \(a \) and \(b \). A subset \(X \) of \(V(H) \) is sp-convex if either \(X \) is empty or \(X \) contains \(I(a, b) \) for every two vertices \(X \) in \(V(H) \). The sp-convex hull of a subset \(X \) of \(V(H) \) is the minimal superset of \(X \) that is sp-convex.

Let \(X \) be an sp-convex set of \(H \). A vertex \(v \) in \(X \) is an extreme point of \(X \) if the set \(X \setminus \{v\} \) is sp-convex. The family of sp-convex sets of \(H \) is a convex geometry if every sp-convex set equals the sp-convex hull of the set of its extreme points. In [7] it was proven that this is the case if and only if \(H \) is totally balanced.

3. Background

A brute-force method for constructing the sp-convex hull of a vertex set \(X \subseteq V(H) \) begins by setting \(Y = X \); then, till we can no longer enlarge \(Y \), we repeatedly add to \(Y \) the set \(I(a, b) \) for every two vertices \(a \) and \(b \) in \(Y \). Unfortunately, this procedure is not efficient because, for a given value of \(Y \) it is NP-hard to compute \(I(a, b) \) for two given vertices \(a \) and \(b \) in \(Y \). To see it, let \(G(H) \) be the bipartite graph with bipartition \((V(H), H)\) where there is an arc \((a, A) \), \(a \in V(H) \) and \(A \in H \), if and only if \(a \in A \). For convenience, we call the elements of \(V(H) \) and \(H \) the vertex-nodes and edge-nodes of \(G(H) \), respectively. Note that a path in \(H \) is simple if and only if it is a chordless path in \(G(H) \), that is, no edge-node on the path is adjacent to three vertex-nodes on the path. As proven in [9], given three vertices \(a, b \) and \(c \) of a bipartite graph it is NP-complete to decide whether or not \(c \) is on a chordless path between \(a \) and \(b \). In other words, it is NP-complete to decide whether or not \(c \) belongs to \(I(a, b) \).

In the special case that \(H \) is a totally balanced hypergraph (in which case the family of sp-convex sets of \(H \) is a convex geometry), the following result easily entails the problem of computing sp-convex hulls is polynomial.

Proposition 1. (See Corollary 1.5.8 in [7].) Let \(H \) be a totally balanced and connected hypergraph. A subset \(X \) of \(V(H) \), is sp-convex if and only if there is an ordering \(a_1, a_2, \ldots, a_m \) of the vertices of \(V(H) \setminus X \) such that, for all \(i = 1, \ldots, m \), \(a_i \) is a nest vertex of the subhypergraph of \(H \) induced by \(X \cup \{a_1, a_1, \ldots, a_m\} \).

Corollary 1. Let \(H \) be a totally balanced and connected hypergraph with \(n \) vertices and \(m \) edges, and let \(X \) be a subset of \(V(H) \). The sp-convex hull of \(X \) can be constructed in \(O(n^2m) \) time.

Proof. By Proposition 1, the sp-convex hull of \(X \) can be obtained by repeatedly deleting the nest vertices of \(H \) that do not belong to \(X \). Therefore, the sp-convex hull problem reduces to a selective deletion of nest vertices of \(H \), which can be done in \(O(n^2m) \) time using the above-mentioned Anstee–Farber algorithm. \(\square \)

4. Computing sp-convex hulls

In this section we shall state a characterization of sp-convex sets which leads to a polynomial algorithm for finding the sp-convex hull of a given vertex set in an arbitrary hypergraph. To achieve this, we need the following definition.

Let \(X \) be a subset of \(V(H) \). Two edges \(A \) and \(B \) of \(H \) are connected outside \(X \) (X-connected, for short), written \(A \equiv_X B \), if

\[
\left(A \cap B\right) \setminus X \neq \emptyset \quad \text{or}
\]

\[
A = B
\]
there exists an edge \(C \) of \(H \) such that
\[(A \cap C) \setminus X \neq \emptyset \quad \text{and} \quad C \equiv_X B.\]

The edge relation \(\equiv_X \) is an equivalence relation; the classes of the resultant partition of \(H \) will be referred to as the \(X \)-connected components of \(H \), and \(H \) is \(X \)-connected if it has exactly one \(X \)-connected component. For an \(X \)-connected component \(C \) of \(H \), we call the set \(X \cap V(C) \) the boundary of \(C \). In what follows, given two distinct vertices \(a \) and \(b \) in \(X \cap V(C) \), by \(C_{a,b} \) we denote the hypergraph obtained from \(C \) by deleting the vertices in \(X \setminus \{a, b\} \) and the edges that contain both \(a \) and \(b \). Note that \(C_{a,b} \) need not contain \(a \) (or \(b \)) (see the example below).

Theorem 1. A vertex set \(X \) is \(sp \)-convex if and only if either \(|X| \leq 1 \) or, for every nontrivial \(X \)-connected component \(C \) of \(H \) with \(|X \cap V(C)| > 1 \) and for every two distinct vertices \(a \) and \(b \) in the boundary of \(C \), there exists no path between \(a \) and \(b \) in \(C_{a,b} \).

Proof. (only if) Assume that \(X \) is \(sp \)-convex. Let \(C \) be any nontrivial \(X \)-connected component of \(H \) with \(|X \cap V(C)| > 1 \), and let \(a \) and \(b \) be two distinct vertices in the boundary of \(C \). If \(a \) or \(b \) is not a vertex of \(C_{a,b} \) then trivially there exists no path between \(a \) and \(b \) in \(C_{a,b} \). Assume that both \(a \) and \(b \) are vertices of \(C_{a,b} \). By construction, if \(C_{a,b} \) and \(C \) are not adjacent in \(C_{a,b} \). Moreover, if \(a \) and \(b \) were connected in \(C_{a,b} \) then by Remark 1 there would exist a simple path \(\pi_{a,b} = (a_0, a_1, a_2, \ldots, a_k) \), \(k \geq 2 \), between \(a \) and \(b \) in \(C_{a,b} \). Therefore, there would exist a simple path \(\pi = (a_0, a_1, a_2, \ldots, a_k) \) between \(a \) and \(b \) in \(H \) where \(A_1 \) is an edge of \(C \) being the disjoint union of \(B_h \) with some subset of \(X \setminus \{a, b\} \), for all \(h \). But then one would have \(V(\pi) \setminus X \neq \emptyset \) which contradicts the hypothesis that \(X \) is \(sp \)-convex.

If (Assume that, for every nontrivial \(X \)-connected component \(C \) of \(H \) with \(|X \cap V(C)| > 1 \) and for every two distinct vertices \(a \) and \(b \) in the boundary of \(C \), there exists no path between \(a \) and \(b \) in \(C_{a,b} \). Suppose by contradiction that \(X \) is not \(sp \)-convex. Then, there would exist a simple path \(\pi \) between two vertices \(a \) and \(b \) in \(X \) such that \(V(\pi) \setminus X \neq \emptyset \). Let \(c \) be a vertex on \(\pi \) that does not belong to \(X \). Let \(u \) be the last vertex on \(\pi \) that is in \(X \) and precedes \(c \) in \(\pi \) and let \(v \) be the first vertex on \(\pi \) that is in \(X \) and follows \(c \). Then \(u, v \) and \(c \) are vertices of some nontrivial \(X \)-connected component \(C \) of \(H \); furthermore, \(u, v \) and \(c \) belong to the boundary of \(C \) and are connected in \(C_{u,v} \), which contradicts the hypothesis. \(\Box \)

Example. Let \(H = \{A_1, A_2, A_3, A_4, A_5\} \) where \(A_1 = \{1, 2\}, A_2 = \{1, 2, 3\}, A_3 = \{3, 4\}, A_4 = \{3, 4, 5\} \). The hypergraph \(H \) is shown in Fig. 1.

Let \(X = \{1, 3, 4\} \). The \(X \)-components of \(H \) are shown in Fig. 2 and \(C \) is the only \(X \)-component of \(H \) that is not a trivial hypergraph. The boundary of \(C \) is \(\{1, 3\} \). The hypergraph \(C_{13} \) is shown in Fig. 3.

Since \(3 \) is not a vertex of \(C_{13} \), there exists no path joining 1 and 3 in \(C_{13} \). By Theorem 1 the set \(X \) is \(sp \)-convex, which is confirmed by the fact that the only simple paths joining two vertices in \(X \) are: \((1, A_2, 3), (1, A_2, 3, A_3, 4), (1, A_2, 3, A_4, 4), (3, A_3, 4), (3, A_4, 4) \).

Using Theorem 1 we easily obtain a polynomial algorithm for computing the \(sp \)-convex hull of a given vertex set \(X \). However, we can speed up the construction of the \(sp \)-convex hull of \(X \) using Remark 2. Suppose that \(C \) is a nontrivial \(X \)-connected component of \(H \) and \(\pi = (a_0, A_1, a_1, A_2, \ldots, A_k, a_k) \) is a simple path between two distinct vertices \(a \) and \(b \) in the boundary of \(C \) and assume that \(C_{a,b}(\pi) \) contains a vertex \(c \) of degree 2 or more which is not in \(X \). From Remark 2 we know that another simple path between \(a \) and \(b \) in \(C_{a,b} \) is given by \(\pi' = (a_0, A_1, a_1, \ldots, A_i', c, A_i'\ldots, A_k, a_k) \) where \(i' = \min \{h < k: c \in A_h\} \) and \(h' = \max \{h < k: c \in A_h\} \). Thus, we obtain the following algorithm.

SPCH algorithm

Input: a connected hypergraph \(H \) and a subset \(X \) of \(V(H) \).

Output: the \(sp \)-convex hull of \(X \) in the variable \(Y \).

begin
\[Y := \emptyset; \]
\[Z := X; \]

while \(Y \neq Z \) do

begin
\[Y := Z; \]

for every nontrivial \(Y \)-connected component \(C \) of \(H \) do

for every two distinct vertices \(a \) and \(b \) in the boundary of \(C \) that are connected in \(C_{a,b} \) do

find a simple path \(\pi \) between \(a \) and \(b \) in \(C_{a,b} \);

add to \(Y \) the vertices of \(C_{a,b}(\pi) \) with degree 2 or more

end

end

end

end

We will evaluate the complexity of the SPCH algorithm in terms of the number \(n \) of vertices of \(H \), of the number \(m \) of edges of \(H \) and of the size \(s = \sum_{A \in H} |A| \) of \(H \).
We make use of the bipartite graph $G(H)$ to represent H. Thus, $G(H)$ is connected and has $m + n$ nodes and s arcs.

For a given value of Y, we mark the vertex-nodes of $G(H)$ that belong to Y. Then, we can construct the Y-connected components of H with their boundaries in $O(s)$ time and their number is $O(m)$. For a given Y-connected component C of H there exist $O(n^2)$ pair of vertices in the boundary of C. Let $\{a, b\}$ be a pair of vertices in the boundary of C. In the bipartite graph $G(C)$ we unmark a and b and we mark the edge-nodes adjacent to both a and b. Thus, we can construct $G(C_{a,b})$ by ignoring the marked nodes of $G(C)$ and, if a and b are connected in $G(C_{a,b})$, in $O(s)$ time we can construct a shortest path π between a and b in $G(C_{a,b})$ and find the set Y' of vertex-nodes of $G(C_{a,b}(\pi))$ with degree 2 or more. Note that π is also a chordless path in $G(C_{a,b})$ and, hence, a simple path between a and b in $C_{a,b}$. Finally, we can add Y' to Z in $O(n)$ time. Therefore, since $n < s$, processing a given value of Y requires $O(n^2ms)$ time. Since Y can assume $O(n)$ distinct values the complexity of the SPCH algorithm is $O(n^3ms)$.

References