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Abstract Furthermore, obtaining manually labeled corpora
with word senses is costly and the task must be
repeated for new domains, languages, or sense in-
ventories. Ng (1997) estimates that a high accu-
racy domain independent system IS D would
probably need a corpus of about 3.2 million sense
tagged words. At a throughput of one word per
minute (Edmonds, 2000), this would require about
27 person-years of human annotation effort.

Combination methods are an effective way
of improving system performance. This
paper examines the benefits of system
combination for unsupervised WSD. We
investigate several voting- and arbiter-
based combination strategies over a di-
verse pool of unsupervised WSD systems.
Our combination methods rely on predom-
inant senses which are derived automati- ~ This paper focuses on unsupervised methods
cally from raw text. Experiments usingthe ~ Which we argue are useful for broad coverage
SemCor and Senseval-3 data sets demon- Sense disambiguation. UnsupervisatsD algo-

strate that our ensembles vyield signifi- rithms fall into two general classes: those that per-
cantly better results when compared with ~ form token-basedVSD by exploiting the simi-
state-of-the-art. larity or relatedness between an ambiguous word
i and its context (e.g., Lesk 1986); and those that
1 Introduction perform type-basedVSD, simply by assigning

Word sense disambiguatioW(SD), the task of all insta_nces of an a_tmbiguous word its most fre-
identifying the intended meanings (senses) ofiuént (i.e., predominant) sense (e.g., McCarthy
words in context, holds promise for many NLP €t al- 2004; Galley and Mckeown 2003). The pre-
applications requiring broad-coverage Ianguagélom'nant senses are automatically acquired from
understanding. Examples include summarization/aW text without recourse to manually annotated
question answering, and text simplification. Re-data. The motivation for assigning all instances
cent studies have also shown tN&SD can ben- ©f @ word to its most prevalent sense stems from
efit machine translation (Vickrey et al., 2005) andthe observation that current supervised approaches
information retrieval (Stokoe, 2005). rarely outperform the simple heuristic of choos-
Given the potential oMWSD for many NLP N9 the most common sense in the training data,
tasks, much work has focused on the computadesPite taking local context into account (Hoste
tional treatment of sense ambiguity, primarily us-6t al-, 2002). Furthermore, the approach allows
ing data-driven methods. Most accursSDsys-  S€nse inventories to be tailored to specific do-
tems to date are supervised and rely on the avail'amns.
ability of training data, i.e., corpus occurrences of The work presented here evaluates and com-
ambiguous words marked up with labels indicat-pares the performance of well-established unsu-
ing the appropriate sense given the context (sepervisedWSD algorithms. We show that these
Mihalcea and Edmonds 2004 and the referencealgorithms yield sufficiently diverse outputs, thus
therein). A classifier automatically learns disam-motivating the use of combination methods for im-
biguation cues from these hand-labeled exampleqroving WSD performance. While combination
Although supervised methods typically achieveapproaches have been studied previously for su-
better performance than unsupervised alternativepervised WSD (Florian et al., 2002), their use
their applicability is limited to those words for in an unsupervised setting is, to our knowledge,
which sense labeled data exists, and their accuiovel. We examine several existing and novel
racy is strongly correlated with the amount of la-combination methods and demonstrate that our
beled data available (Yarowsky and Florian, 2002)combined systems consistently outperform the



state-of-the-art (e.g., McCarthy et al. 2004). Im-parametrized and can be adjusted to take the into
portantly, ourWSD algorithms and combination account gloss length or to ignore function words.
methods do not make use of training material inpjstriputional and WordNet  Similarity

any way, nor do they use the first sense informaMCCarthy et al. (2004) propose a method for
tion available in WordNet. automatically ranking the senses of ambiguous
In the following section, we briefly describe the \yords from raw text. Key in their approach is the
unsupervisedVSD algorithms considered in this gpservation that distributionally similar neighbors
paper. Then, we present a detailed comparison qfften provide cues about a word's senses. As-
their performance on SemCor (Miller etal., 1993).syming that a set of neighbors is available, sense
Next, we introduce oursystem combinqtion meth'ranking is equivalent to quantifying the degree
ods and report on our evaluation experiments. Wt similarity among the neighbors and the sense
conclude the paper by discussing our results. descriptions of the polysemous word.
2 The Disambiguation Algorithms tributionally) similar words to an ambiguous tar-
In this section we briefly describe the unsuperget wordw andsensegv) = fs;;s;;::: 5,9 the set
vised WSD algorithms used in our experiments. of senses fow. For each sensg and for each
We selected methods that vary along the follow-neighborn;, the algorithm selects the neighbor’s
ing dimensions: (a) the type &¥SD performed sense which has the highest WordNet similarity
(i.e., token-based vs. type-based), (b) the represeficore (vns$ with regard tos. The ranking score
tation and size of the context surrounding an amof senses is then increased as a function of the
biguous word (i.e., graph-based vs. word-based/NordNet similarity score and the distributional
document vs. sentence), and (c) the number angimilarity score @s9 between the target word and
type of semantic relations considered for disamthe neighbor:

biguation. We base most of our discussion below wnsgs; n;)

on the WordNet sense inventory; however, the agRankScorés) = ;\mdSS(\M nj) wnsggn)
proaches are not limited to this particular lexicon N ﬁzse%see/v) Y

but could be adapted for other resources with tra-

ditional dictionary-like sense definitions and alter-Wherewnsgsi; n;) = n&zgr?s)émj)wnsis; ns).

native structure. The predominant sense is simply the sense with

Extended Gloss Overlap  Gloss Overlap was the highest ranking scor®@&nkScorgand can be
originally introduced by Lesk (1986) for perform- consequently used to perform type-based disam-
ing token-based WSD. The method assigns a sendéguation. The method presented above has four
to atarget word by comparing the dictionary defin-parameters: (a) the semantic space model repre-
itions of each of its senses with those of the wordsenting the distributional properties of the target
in the surrounding context. The sense whose defiwords (it is acquired from a large corpus repre-
nition has the highest overlap (i.e., words in com-sentative of the domain at hand and can be aug-
mon) with the context words is assumed to be thenented with syntactic relations such as subject or
correct one. Banerjee and Pedersen (2003) augbject), (b) the measure of distributional similarity
ment the dictionary definition (gloss) of each sensdor discovering neighbors (c) the number of neigh-
with the glosses of related words and senses. Thieors that the ranking score takes into account, and
extended glossesicrease the information avail- (d) the measure of sense similarity.
able in estimating the overlap between ambiguougexijcal Chains  Lexical cohesion is often rep-
words and their surrounding context. resented via lexical chains, i.e., sequences of re-
The range of relationships used to extend thgated words spanning a topical text unit (Mor-
glosses is a parameter, and can be chosen fropy and Hirst, 1991). Algorithms for computing
any combination of WordNet relgtions. For every|exical chains often perfornwSD before infer-
senses, of the target word we estimate: ring which words are semantically related. Here
we describe one such disambiguation algorithm,
proposed by Galley and McKeown (2003), while
omitting the details of creating the lexical chains
wherecontextis a simple (space separated) conthemselves.
catenation of all wordsgy; for jneien;i&0in Galley and McKeown'’s (2003) method consists
a context window of lengtt8n around the target of two stages. First, a graph is built represent-
word wp. The overlap scoring mechanism is alsoing all possible interpretations of the target words

SenseSco(e) = Y OverlapgcontextRel(sc))

Rel2Relations



in question. The text is processed sequentially, Method [ WSD [ Context | Relations |
comparing each word against all words previously LexChains| types | document| first-order
read. If a relation exists between the senses of theOverlap tokens| sentence | first-order
current word and any possible sense of a previousSimilarity | types | corpus higher-order
word, a connection is formed between the appro- SSI tokens| sentence | higher-order
priate words and senses. The strength of the con-
nection is a function of the type of relationshipand ~ Table 1: Properties of thé/SD algorithms
of the distance between the words in the text (in
terms of words, sentences and paragraphs). Words
are represented as nodes in the graph and seman- -
tic relations as weighted edges. Again, the set oframmar conS|st|r_lg of a small ““mb‘?r of rules.
relations being considered is a parameter that ca\|4a“d Interconnections are compuf[ed in advance
be tuned experimentally. on the lexical database, not at runtime.

In the disambiguation stage, all occurrences of a Disambiguation is performed in an iterative
given word are collected together. For each sens&shion. At each step, for each serssef a word
of a target word, the strength of all connectionsin C (the set of senses of words yet to be disam-
involving that sense are summed, giving that senskiguated), SSI determines the degree of connectiv-
a unified score. The sense with the highest unifieity betweens and the other senses ig:
score is chosen as the correct sense for the target
word. In subsequent stages the actual connections
comprising the winning unified score are used as a do _Zlmemm(s,sﬂ)m
basis for computing the lexical chains. SSIScorés) = =5 jtercon(sd)]

The algorithm is based on the “one sense per d20nfsy
discourse” hypothesis and uses information from
every occurrence of the ambiguous target word inwhere Interconr(s;s) is the set of interconnec-
order to decide its appropriate sense. It is theretions between senssands’. The contribution of a
fore a type-based algorithm, since it tries to de-single interconnection is given by the reciprocal of
termine the sense of the word in the entire docits length, calculated as the number of edges con-
ument/discourse at once, and not separately forecting its ends. The overall degree of connectiv-
each instance. ity is then normalized by the number of contribut-

. . ing interconnections. The highest ranking sesse

Structural Semantic Interconnections  In- ot\yordwi is chosen and the sensesvafare re-
spired by lexical chains, Navigli and Velardi .\, ed from the context. The procedure termi-

(2005) developed Structural Semantic Intercon; stas when eithef is the empty set or there is no

nections (SSI), a WSD algorithm which makes Usgense such that i8SIScorexceeds a fixed thresh-
of an extensive lexical knowledge base. The lattep

is primarily based on WordNet and its standard re-

lation set (i.e., hypernymy, meronymy, antonymy,

similarity, nominalization, pertainymy) but is also Summary The properties of the different
enriched with collocation information represent-WSD algorithms just described are summarized
ing semantic relatedness between sense pairs. Caft Table 1. The methods vary in the amount of
locations are gathered from existing resourceslata they employ for disambiguation. SSI and Ex-
(such as the Oxford Collocations, the Longmanended Gloss Overlap (Overlap) rely on sentence-
Language Activator, and collocation web sites).level information for disambiguation whereas Mc-
Each collocation is mapped to the WordNet sens€arthy et al. (2004) (Similarity) and Galley and
inventory in a semi-automatic manner (Navigli, McKeown (2003) (LexChains) utilize the entire

2005) and transformed intoralatednes&dge. document or corpus. This enables the accumula-
Given a local word contex€ = fwy;::;;wag, tion of large amounts of data regarding the am-
SSI builds a graphG = (V;E) such thatv =  biguous word, but does not allow separate consid-
8 ] . . eration of each individual occurrence of that word.
i:1sense$N,) and (s;) 2 E if there Is at least LexChains and Overlap take into account a re-

one interconnectiorj betweens (a sense of the stricted set of semantic relations (paths of length
word) ands’ (a sense of its context) in the lexical one) between any two words in the whole docu-
knowledge base. The set of valid interconnectionsnent, whereas SSI and Similarity use a wider set
is determined by a manually-created context-fre@f relations.



3 Experiment 1: Comparison of In the predominant sense detection task, in case of

Unsupervised Algorithms for WSD ties in SemCor, any one of the predominant senses
was considered correct. Also, all algorithms were
3.1 Method designed to randomly choose from among the top

We evaluated the disambiguation algorithms outscoring options in case of a tie in the calculated
lined above on two tasks: predominant sense aGcores. This introduces a small amount of ran-
quisition and token-baseWSD. As previously domness (less than 0.5%) in the accuracy calcu-
explained, Overlap and SSI were not designed fofation, and was done to avoid the pitfall of default-
acquiring predominant senses (see Table 1), bukg to the first sense listed in WordNet, which is
a token-basedVSD algorithm can be trivially usually the actual predominant sense (the order of
modified to acquire predominant senses by dissenses in WordNet is based primarily on the Sem-
ambiguating every occurrence of the target wordCor sense distribution).
in context and selecting the sense which was cho-
sen most frequently. Type-bas@éSD algorithms 3.2  Parameter Settings
simply tag all occurrences of a target word with itsWe did not specifically tune the parameters of our
predominant sense, disregarding the surrounding/SD algorithms on the SemCor corpus, as our
context. goal was to use hand labeled data solely for testing
Our first set of experiments was conducted orpurposes. We selected parameters that have been
the SemCor corpus, on the same 2,595 polysesonsidered “optimal” in the literature, although
mous nouns (53,674 tokens) used as a test set lagimittedly some performance gains could be ex-
McCarthy et al. (2004). These nouns were attestedected had parameter optimization taken place.
in SemCor with a frequency 2 and occurred in For Overlap, we used the semantic relations
the British National Corpus (BNC) more than 10proposed by Banerjee and Pedersen (2003),
times. We used the WordNet 1.7.1 sense inventorypamely  hypernyms, hyponyms, meronyms,
The following notation describes our evaluationholonyms, and troponym synsets. We also
measuresW is the set of all noun types in the adopted their overlap scoring mechanism which
SemCor corpusj\\Vj = 2;595), andW is the set treats each gloss as a bag of words and assigns an
of noun types with a dominant sensensegv) n word overlap the score af?. Function words
is the set of senses for noun type while fs(w)  were not considered in the overlap computation.
and f\(w) refer tow's first sense according to the For LexChains, we used the relations reported
SemCor gold standard and our algorithms, respedn Galley and McKeown (2003). These are all
tively. Finally, T(w) is the set of tokens ofv and first-order WordNet relations, with the addition of
sensg(t) denotes the sense assigned to takao-  the siblings— two words are considered siblings

cording to SemCaor. if they are both hyponyms of the same hypernym.
We first measure how well our algorithms canThe relations have different weights, depending
identify the predominant sense, if one exists: on their type and the distance between the words
in the text. These weights were imported from
w2 Wk j fs(w) = fn(w)gj Galley and McKeown into our implementation
ACCys = —— . -
Wi j without modification.

Because the SemCor corpus is relatively small
A baseline for this task can be easily defined for(less than 700,00 words), it is not ideal for con-
each word type by selecting a sense at randorstructing a neighbor thesaurus appropriate for Mc-
from its sense inventory and assuming that this iarthy et al.'s (2004) method. The latter requires

the predominant sense: each word to participate in a large number of co-
occurring contexts in order to obtain reliable dis-

Baseling, = - 1_ _ 1 _ tributional information. To overcome this prob-
W] WE'Wf jsense@w)j lem, we followed McCarthy et al. and extracted

the neighbor thesaurus from the entire BNC. We

We evaluate the algorithms’ disambiguation per-also recreated their semantic space, using a RASP-
formance by measuring the ratio of tokens forparsed (Briscoe and Carroll, 2002) version of the
which our models choose the right sense: BNC and their set of dependencies (i.e., Verb-
Object, Verb-Subject, Noun-Noun and Adjective-
> jft 2 T(W)jfm(w) =sensgt)gj  Noun relations). Similarly to McCarthy et al., we
ACGysg= waW - - used Lin's (1998) measure of distributional simi-
WZZWJT(W)J larity, and considered only the 50 highest ranked




[Method | AcCps | ACCuscdir | ACCwsdps] ] | Overlap| LexChains| Similarity |

[Baseline | 345 | - | 230 | LexChaing 28.05

LexChaing 48_3’T$ — 40_7’#T$ Similarity 35.87 33.10

Overlap 49_4’T$ 36_55 42_5’T$ SSi 30.48 31.67 37.14
Similarity | 54.97 - 46.5°%

SS| 537 42.7 479 Table 3: Algorithms’ pairwise agreement in de-
’ Uppeand\ 100 ‘ = ‘ 68.4 ‘ tecting the predominant sense (as % of all words)

Table 2: Results of individual disambiguation al-
gorithms on SemCor noufhg™: sig. diff. from
Baseline,': sig. diff. from Similarity, ®: sig diff.
from SSI,%: sig. diff. from Overlap,p < 0:01)

Interestingly, using the predominant sense de-
tected by the Gloss Overlap and the SSI algo-
rithm to tag all instances is preferable to tagging
each instance individually (compare Aggqdir
and AcGysgps for Overlap and SSI in Table 2).
neighbors for a given target word. Sense similar-This means that a large part of the instances which
ity was computed using the Lesk's (Banerjee andvere nottagged individually with the predominant

Pedersen, 2003) similarity meashre sense were actually that sense.
A close examination of the performance of the
3.3 Results individual methods in the predominant-sense de-

T - ._tection task shows that while the accuracy of all
Th rforman f the individual algorithms i L
e performance of the individual algorithms Sthe methods is within a range of 7%, the actual

shown in Table 2. We also include the baseline ds f hich h algorith . i
discussed in Section 3 and the upper bound offords for which each aigorithm gives the cor-
defaulting to the first (i.e., most frequent) Senserect predominant sense are very different. Table 3

provided by the manually annotated SemCor. WeShOWfs the degre(_—:‘ of overlap in assigning the ap-
report predominant sense accuracy (Acand propriate predominant sense among the four meth-

. - ods. As can be seen, the largest amount of over-
WSD r when using th maticall - o )
SD accuracy when using the automatically ac lap is between Similarity and SSI, and this cor-

quired predominant sense (Aggxps). For token- responds approximately t§ of the words they

based algorithms, we also report th&SD per- .
g ' P P correctly label. This means that each of these two

formance in context, i.e., with f the pre- : ;
doom;a%? sencsoe t(ig:g e_ ) thout use o the pre methods gets more than 350 words right which the
crdir)- [Sther labels incorrectly.

As expected, the accuracy scores in the WS If we had an “oracle” which would tell us

task are lower than the respective scores in the hich method to choose for each word. we would
predominant sense task, since detecting the prg\-' '

: . chieve approximately 82.4% in the predominant
dominant sense correctly only insures the correct . o
tagging of the instances of the word with that >°"S€ task, giving us 58% in the WSD task. We

first sense. All methods perform significantly bet-S¢€ that there is a large amount of complementa-

ter than the baseline in the predominant sense d%—? gnbee:]\'qvaelfgJh?Oa:l?ﬁg;gmi’e\gz:}:ﬁ;r:)?hseurgcﬁ_ﬁses
tection task (using °-test, as indicated in Ta- b '

ble 2). LexChains and Overlap perform signif-SLrjggefofsitﬁt thﬁ errrrorls tozthengwf[jrllw;juarlnmetgl\?dns:
icantly worse than Similarity and SSI, Whereas;eesgarfse éil#\eilob ec?)r?]b’ir?in thaeirsoregic?tior?s
LexChains is not significantly different from Over- 9 9 y 9 P '

lap. Likewise, the difference in performance be- L
tween SSI and Similarity is not significant. With 4 Combination Methods
respect to WSD, all the differences in performanceay, important finding in machine learning is that
are statistically significant. a set of classifiers whose individual decisions are
1This measure is identical to the Extended gloss OverlapCombined in some way (&nsemblpcan be more
from Section 2, but instead of searching for overlap betweerfa'_ccurelte than _a”Y (_)f Its component C|a55|f'er5_v pro-
an extended gloss and a word’s context, the comparison iwided that the individual components are relatively
dog‘iﬁenﬁee&:"‘{o eXte”O:ted g'ossets gf wwosynsets.  _accurate and diverse (Dietterich, 1997). This sim-
e LexChains results presente ere are not direc . . . i
comparable to those reported by Galley and McKeown)b_Ie '_dea has been apP“ed toa Va_”ety of classi
(2003), since they tested on a subset of SemCor, and includdication problems ranging from optical character

monosemous nouns. They also used the first sense in Semecognition to medical diagnosis, part-of-speech
Cor in case of ties. The results for the Similarity method are

slightly better than those reported by McCarthy et al. (2004)tagging (see Diette_riCh 1997 and van Haltgren
due to minor improvements in implementation. et al. 2001 for overviews), and notably supervised



WSD (Florian et al., 2002). | Method | Accps | ACCusdps |

Since our effort is focused exclusively on un- Similarity 54.9 46.5
supervised methods, we cannot use most ma- SSI 53.5 47.9
chine learning approaches for creating an en- \oting 5735 [ 498%

semble (e.g., stacking, confidence-based combina-
tion), as they r_equire a Iabeled_training set. We Rank-based | 58.17 | 50.3%t
therefore examined several basic ensemble com- Arbiter-based 56.3% | 48 7St
bination approaches that do not require parameter - :
estimation from training data. | UpperBnd 100 | 68.4 |

We define Scor€M;;sj) as the (normalized) _ L s i
score which a methoM!; gives to word sensg,. ~ |aple 4: Ensemble Combination Results $ig.
The predominant sense calculated by methbd d!ff. from Slmllarlty, $: sig. diff. from SSI,¥: sig.
for word w is then determined by: diff. from Voting, p < 0:01)

PrMixture 57.2% | 50.4'%

PMiiw) = sjgggg;/vx)Score(Mi;sj) SS| as the arbiter since it had the best accuracy on

the WSD task (see Table 2). For each disagreed

All ensemble methods receive a féiglC, of in-  word w, and for each senseof w assigned by
dividual methods to combine, so we denote eaciny of the systems in the ensemifeigi-,, we
ensemble method UylethOdNam(EfMigF:l)- calculate the following score:

Direct Voting Each ensemble component has
one vote for the predominant sense, and the sense

V.V'th the most yotes IS chosc_en. The scorllng funCi/vhereSSIScofé(s) is a modified version of the
tion for the voting ensemble is defined as: score introduced in Section 2 which exploits as a
k context fors the set of agreed senses and the re-
ScorVotingfMigle, );s)) = ZleC[S; PYMi;w)]  maining words of each sentence. We exclude from
. = the context used by SSI the sensew@fhich were
%o 1 if s=PM;;w) not chosen by any of the systems in the ensem-
v ble . This effectively reduces the number of senses
considered by the arbiter and can positively influ-
Probability Mixture Each method provides ence the algorithm’s performance, since it elimi-

a probability distribution over the senses. Thesgates noise coming from senses which are likely
probabilities (normalized scores) are summed, angb be wrong.

the sense with the highest score is chosen:

ScordArbiter(fMigk_,);s) = SSIScorg(s)

whereeds;PSMiiw)1 = o Sioopwise

) 5 Experiment 2: Ensembles for
ScordProbMix(fMigk,); s)) = ZScore(Mi ) Unsupervised WSD
1= 5.1 Method and Parameter Settings

Rank-Based Combination = Each method We assess the performance of the different en-
provides a ranking of the senses for a given targesemble systems on the same set of SemCor nouns
word. For each sense, its placements according ton which the individual methods were tested. For
each of the methods are summed and the sensiee best ensemble, we also report results on dis-
with the lowest total placement (closest to firstambiguating all nouns in the Senseval-3 data set.
place) wins. We focus exclusively on nouns to allow com-
K parisons with the results obtained from SemCor.
ScorgRankindfMigk.;);s)) = Zl( i 1)¢Placa(s) We used the same parameters as in Experiment 1
= for constructing the ensembles. As discussed ear-
) o lier, token-based methods can disambiguate target
wherePlacg(s) is the number of distinct scores \y4rds either in context or using the predominant
that are larger or equal ®corgM;;s). sense. SSI was employed in the predominant sense
Arbiter-based Combination One WSD setting in our arbiter experiment.
method can act as an arbiter for adjudicating dis-
agreements among component systems. It mak&s2 Results
sense for the adjudicator to have reasonabl®ur results are summarized in Table 4. As can be
performance on its own. We therefore selectedgeen, all ensemble methods perform significantly



’Ensemble ‘ ACCpS ‘ ACCWsd:ps ‘ S4r- O Similarity B Voting.
[ Rank-based 58.1 | 50.3 \ - |Oss B ProbMix

B Arbiter B Ranking

[¢)]
N
T

Overlap 57.6 (j0.5) | 49.7 ( 0.6) <
LexChains | 57.2 (j0.7) | 50.2 ( 0.1) <507
Similarity | 56.3 (j 1.8) | 49.4 (j 0.9) ¥ i
Ssl 56.3 (1.8) | 48.2 (j 2.1) St
846

Table 5: Decrease in accuracy as a result of res ,,|
moval of each method from the rank-based ensem-
ble. a2

40

-4 59 f1(»19 b’zg-gg 100+
L e . .. Noun frequency bands
better than the best individual methods, i.e., Simi-

larity and SSI. On the WSD task, the voting, prob-giq re 1: WSD accuracy as a function of noun fre-
ability mixture, and rank-based ensembles signif- :
; . quency in SemCor
icantly outperform the arbiter-based one. The per-

formances of the probability mixture, and rank-

based combinations do not differ significantly but | Method | Precisior{ Recall | Fscorg
both ensembles are significantly better than vot- |Baseline | 36.8 | 36.8 | 36.8 |
ing. One of the factors contributing to the arbiter’s SSI 62.5 625 | 625

worse performance (compared to the other ensem- | IRST-DDD 63.3 61.2 | 62.2
bles) is the fact that in many cases (almost 30%), |Rank-based 63.9 63.9 63.9
none of the senses suggested by the disagreeing [UpperBnd | 68.7 | 68.7 | 68.7 |
methods is correct. In these cases, there is no way
for the arbiter to select the correct sense. We als®able 6: Results of individual disambiguation al-
examined the relative contribution of each compo-gorithms and rank-based ensemble on Senseval-3
nent to overall performance. Table 5 displays thenouns
drop in performance by eliminating any particular
component from the rank-based ensemble (indi-
cated byj ). The system that contributes the mostpares the domain of the context surrounding the
to the ensemble is SSI. Interestingly, Overlap andarget word with the domains of its senses and uses
Similarity yield similar improvements in WSD ac- a version of WordNet augmented with domain la-
curacy (0.6 and 0.9, respectively) when added tdels (e.g., economy, geography). Our baseline se-
the ensemble. lects the first sense randomly and uses it to disam-
Figure 1 shows the WSD accuracy of the besbiguate all instances of a target word. Our upper
single methods and the ensembles as a function sound defaults to the first sense from SemCor. We
the noun frequency in SemCor. We can see tha€port precision, recall and Fscore. In cases where
there is at least one ensemble outperforming anprecision and recall figures coincide, the algorithm
single method in every frequency band and thahas 100% coverage.
the rank-based ensemble consistently outperforms As can be seen the rank-based, ensemble out-
Similarity and SSl in all bands. Although Similar- performs both SSI and the IRST-DDD system.
ity has an advantage over SSlI for low and mediunThis is an encouraging result, suggesting that there
frequency words, it delivers worse performancemay be advantages in developing diverse classes
for high frequency words. This is possibly due toof unsupervised WSD algorithms for system com-
the quality of neighbors obtained for very frequentbination. The results in Table 6 are higher than
words, which are not semantically distinct enoughthose reported for SemCor (see Table 4). This is
to reliably discriminate between different senses. expected since the Senseval-3 data set contains
Table 6 lists the performance of the rank-basednonosemous nouns as well. Taking solely polyse-
ensemble on the Senseval-3 (houn) corpus. Wous nouns into account, SSI's Fscore is 53.39%
also report results for the best individual methodand the ranked-based ensemble’s 55.0%. We fur-
namely SSI, and compare our results with the begher note that not all of the components in our en-
unsupervised system that participated in Sensevasemble are optimal. Predominant senses for Lesk
3. The latter was developed by Strapparava et ahnd LexChains were estimated from the Senseval-
(2004) and performs domain driven disambigua3 data, however a larger corpus would probably
tion (IRST-DDD). Specifically, the approach com- yield more reliable estimates.




6 Conclusions and Discussion Dietterich, T. G. 1997. Machine learning research: Four cur-
rent directions Al Magazinel8(4):97—-136.
In this paper we have presented an evaluatioRdmonds, Philip. 2000. Designing a task for SENSEVAL-2.

_ _ Technical note.
StUdy of four well-known approaCheS to unsuper Florian, Radu, Silviu Cucerzan, Charles Schafer, and David

vised WSD. Our comparison involved type- and " yarowsky. 2002. Combining classifiers for word sense dis-
token-based disambiguation algorithms relying on  ambiguationNatural Language Engineeriniy1):1-14.
different kinds of WordNet relations and different Galley. Michel and Kathleen McKeown. 2003. Improving

. word sense disambiguation in lexical chaining. Rro-
amounts of corpus data. Our experiments revealed ceedings of the 18th IJCARcapulco, pages 1486-1488.

two important findings. First, type-based disam-Hoste, \eronique, Iris Hendrickx, Walter Daelemans, and

; ; ; ; _ Antal van den Bosch. 2002. Parameter optimization for
biguation yields results superior to a token-based machine-learning of word sense disambiguatioban-

approach. Using predominant senses is preferable guage Engineering(4):311-325.
to disambiguating instances individually, even forLesk, Michael. 1986. Automatic sense disambiguation us-

_ ; ing machine readable dictionaries: How to tell a pine cone
token-based algorithms. Second, the outputs of from an ice cream cone. IRroceedings of the 5th SIG-

the different approaches examined here are suffi- poc. New York, NY, pages 24-26.
ciently diverse to motivate combination methodsLin, Dekang. 1998. An information-theoretic definition of

; . _ similarity. In Proceedings of the 15th ICMLMadison,
for unsupervised WSD. We defined several ensem WI, pages 296-304.

bles on the predominant sense outputs of individyccarthy, Diana, Rob Koeling, Julie Weeds, and John Car-
ual methods and showed that combination systems roll. 2004. Finding predominant senses in untagged text.

outperformed their best components both on the 'Z”Bgig%efdi”gs of the 42th ACBarcelona, Spain, pages

SemCor and Senseval-3 data sets. Mihalcea, Rada. 2005. Unsupervised large-vocabulary word
The work described here could be usefully em- sense disambiguation with graph-based algorithms for se-

; . i _guence data labeling. Proceedings of the HLT/EMNLP
ployed in two tasks: (a) to create preliminary an Vancouver, BC, pages 411-418.

notations, thus supporting the “annotate aUtomatiMihalcea, Rada and Phil Edmonds, editors. 20B4oceed-
cally, correct manually” methodology used to pro-  ings of the SENSEVAL-Barcelona, Spain. _
vide high volume annotation in the Penn Treebani/iller, George A., Claudia Leacock, Randee Tengi, and

. . . . . Ross T. Bunker. 1993. A semantic concordancePrior
project; and (b) in combination with supervised ceedings of the ARPA HLT Workshdgorgan Kaufman,

WSD methods that take context into account; for pages 303-308.

; Vlohammad, Saif and Graeme Hirst. 2006. Determining word
instance, such methods could default to an unSLM sense dominance using a thesauruPrisceedings of the

pervised system for unseen words or words with EACL Trento, Italy, pages 121-128.

uninformative contexts. Morris, Jane and Graeme Hirst. 1991. Lexical cohesion com-
; _puted by thesaural relations as an indicator of the structure

In the TUture we plan to integrate more com of text. Computational Linguistic(17):21-43.
ponents into our ensembles. These include NQYayigli, Roberto. 2005. Semi-automatic extension of large-

only domain driven disambiguation algorithms scale linguistic knowledge bases. Rroceedings of the

;. 18th FLAIRSFlorida.
(Strapparava et al., 2004) but also graph theoretlfﬁavigli, Roberto and Paola Velardi. 2005. Structural seman-

ones _(Miha|Cea, 2005) as W_e”_as algorithms that " i interconnections: a knowledge-based approach to word
guantify the degree of association between senses sense disambiguatioPAMI 27(7):1075-1088.

i - i g, Tou Hwee. 1997. Getting serious about word sense dis-
ar_1d their co Occumng contexts (Mohammad and" ambiguation. InProceedings of the ACL SIGLEX Work-
Hirst, 2006). Increasing the number of compo-  shop on Tagging Text with Lexical Semantics: Why, What,
nents would allow us to employ more sophisti- and How? Washington, DC, pages 1-7.

cated combination methods such as unsupervisegokoe. Christopher. 2005. Differentiating homonymy and
polysemy in information retrieval. IRroceedings of the

rank aggregation algorithms (Tan and Jin, 2004).  HLT/EMNLP Vancouver, BC, pages 403—410.
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