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Abstract
Definition extraction is the task of au-
tomatically identifying definitional sen-
tences within texts. The task has proven
useful in many research areas including
ontology learning, relation extraction and
question answering. However, current ap-
proaches – mostly focused on lexico-
syntactic patterns – suffer from both low
recall and precision, as definitional sen-
tences occur in highly variable syntactic
structures. In this paper, we propose Word-
Class Lattices (WCLs), a generalization of
word lattices that we use to model tex-
tual definitions. Lattices are learned from
a dataset of definitions from Wikipedia.
Our method is applied to the task of def-
inition and hypernym extraction and com-
pares favorably to other pattern general-
ization methods proposed in the literature.

1 Introduction

Textual definitions constitute a fundamental
source to look up when the meaning of a term is
sought. Definitions are usually collected in dictio-
naries and domain glossaries for consultation pur-
poses. However, manually constructing and up-
dating glossaries requires the cooperative effort of
a team of domain experts. Further, in the presence
of new words or usages, and – even worse – new
domains, such resources are of no help. Nonethe-
less, terms are attested in texts and some (usually
few) of the sentences in which a term occurs are
typically definitional, that is they provide a formal
explanation for the term of interest. While it is not
feasible to manually search texts for definitions,
this task can be automatized by means of Machine
Learning (ML) and Natural Language Processing
(NLP) techniques.

Automatic definition extraction is useful not
only in the construction of glossaries, but also

in many other NLP tasks. In ontology learning,
definitions are used to create and enrich concepts
with textual information (Gangemi et al., 2003),
and extract taxonomic and non-taxonomic rela-
tions (Snow et al., 2004; Navigli and Velardi,
2006; Navigli, 2009a). Definitions are also har-
vested in Question Answering to deal with “what
is” questions (Cui et al., 2007; Saggion, 2004).
In eLearning, they are used to help students as-
similate knowledge (Westerhout and Monachesi,
2007), etc.

Much of the current literature focuses on the use
of lexico-syntactic patterns, inspired by Hearst’s
(1992) seminal work. However, these methods
suffer both from low recall and precision, as defi-
nitional sentences occur in highly variable syntac-
tic structures, and because the most frequent def-
initional pattern – X is a Y – is inherently very
noisy.

In this paper we propose a generalized form of
word lattices, called Word-Class Lattices (WCLs),
as an alternative to lexico-syntactic pattern learn-
ing. A lattice is a directed acyclic graph (DAG), a
subclass of non-deterministic finite state automata
(NFA). The lattice structure has the purpose of
preserving the salient differences among distinct
sequences, while eliminating redundant informa-
tion. In computational linguistics, lattices have
been used to model in a compact way many se-
quences of symbols, each representing an alter-
native hypothesis. Lattice-based methods differ
in the types of nodes (words, phonemes, con-
cepts), the interpretation of links (representing ei-
ther a sequential or hierarchical ordering between
nodes), their means of creation, and the scor-
ing method used to extract the best consensus
output from the lattice (Schroeder et al., 2009).
In speech processing, phoneme or word lattices
(Campbell et al., 2007; Mathias and Byrne, 2006;
Collins et al., 2004) are used as an interface be-
tween speech recognition and understanding. Lat-
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tices are adopted also in Chinese word segmenta-
tion (Jiang et al., 2008), decompounding in Ger-
man (Dyer, 2009), and to represent classes of
translation models in machine translation (Dyer et
al., 2008; Schroeder et al., 2009). In more com-
plex text processing tasks, such as information re-
trieval, information extraction and summarization,
the use of word lattices has been postulated but is
considered unrealistic because of the dimension of
the hypothesis space.

To reduce this problem, concept lattices have
been proposed (Carpineto and Romano, 2005;
Klein, 2008; Zhong et al., 2008). Here links repre-
sent hierarchical relations, rather than the sequen-
tial order of symbols like in word/phoneme lat-
tices, and nodes are clusters of salient words ag-
gregated using synonymy, similarity, or subtrees
of a thesaurus. However, salient word selection
and aggregation is non-obvious and furthermore
it falls into word sense disambiguation, a notori-
ously AI-hard problem (Navigli, 2009b).

In definition extraction, the variability of pat-
terns is higher than for “traditional” applications
of lattices, such as translation and speech, how-
ever not as high as in unconstrained sentences.
The methodology that we propose to align patterns
is based on the use of star (wildcard *) charac-
ters to facilitate sentence clustering. Each clus-
ter of sentences is then generalized to a lattice of
word classes (each class being either a frequent
word or a part of speech). A key feature of our
approach is its inherent ability to both identify def-
initions and extract hypernyms. The method is
tested on an annotated corpus of Wikipedia sen-
tences and a large Web corpus, in order to demon-
strate the independence of the method from the
annotated dataset. WCLs are shown to general-
ize over lexico-syntactic patterns, and outperform
well-known approaches to definition and hyper-
nym extraction.

The paper is organized as follows: Section 2
discusses related work, WCLs are introduced in
Section 3 and illustrated by means of an example
in Section 4, experiments are presented in Section
5. We conclude the paper in Section 6.

2 Related Work

Definition Extraction. A great deal of work
is concerned with definition extraction in several
languages (Klavans and Muresan, 2001; Storrer
and Wellinghoff, 2006; Gaudio and Branco, 2007;

Iftene et al., 2007; Westerhout and Monachesi,
2007; Przepiórkowski et al., 2007; Degórski et
al., 2008). The majority of these approaches use
symbolic methods that depend on lexico-syntactic
patterns or features, which are manually crafted
or semi-automatically learned (Zhang and Jiang,
2009; Hovy et al., 2003; Fahmi and Bouma, 2006;
Westerhout, 2009). Patterns are either very sim-
ple sequences of words (e.g. “refers to”, “is de-
fined as”, “is a”) or more complex sequences of
words, parts of speech and chunks. A fully au-
tomated method is instead proposed by Borg et
al. (2009): they use genetic programming to learn
simple features to distinguish between definitions
and non-definitions, and then they apply a genetic
algorithm to learn individual weights of features.
However, rules are learned for only one category
of patterns, namely “is” patterns. As we already
remarked, most methods suffer from both low re-
call and precision, because definitional sentences
occur in highly variable and potentially noisy syn-
tactic structures. Higher performance (around 60-
70% F1-measure) is obtained only for specific do-
mains (e.g., an ICT corpus) and patterns (Borg et
al., 2009).

Only few papers try to cope with the general-
ity of patterns and domains in real-world corpora
(like the Web). In the GlossExtractor web-based
system (Velardi et al., 2008), to improve precision
while keeping pattern generality, candidates are
pruned using more refined stylistic patterns and
lexical filters. Cui et al. (2007) propose the use
of probabilistic lexico-semantic patterns, called
soft patterns, for definitional question answering
in the TREC contest1. The authors describe two
soft matching models: one is based on an n-gram
language model (with the Expectation Maximiza-
tion algorithm used to estimate the model param-
eter), the other on Profile Hidden Markov Mod-
els (PHMM). Soft patterns generalize over lexico-
syntactic “hard” patterns in that they allow a par-
tial matching by calculating a generative degree
of match probability between the test instance and
the set of training instances. Thanks to its gen-
eralization power, this method is the most closely
related to our work, however the task of defini-
tional question answering to which it is applied is
slightly different from that of definition extraction,
so a direct performance comparison is not possi-

1Text REtrieval Conferences: http://trec.nist.
gov
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ble2. In fact, the TREC evaluation datasets cannot
be considered true definitions, but rather text frag-
ments providing some relevant fact about a target
term. For example, sentences like: “Bollywood is
a Bombay-based film industry” and “700 or more
films produced by India with 200 or more from
Bollywood” are both “vital” answers for the ques-
tion “Bollywood”, according to TREC classifica-
tion, but the second sentence is not a definition.

Hypernym Extraction. The literature on hy-
pernym extraction offers a higher variability of
methods, from simple lexical patterns (Hearst,
1992; Oakes, 2005) to statistical and machine
learning techniques (Agirre et al., 2000; Cara-
ballo, 1999; Dolan et al., 1993; Sanfilippo and
Poznański, 1992; Ritter et al., 2009). One of the
highest-coverage methods is proposed by Snow et
al. (2004). They first search sentences that con-
tain two terms which are known to be in a taxo-
nomic relation (term pairs are taken from Word-
Net (Miller et al., 1990)); then they parse the sen-
tences, and automatically extract patterns from the
parse trees. Finally, they train a hypernym clas-
sifer based on these features. Lexico-syntactic pat-
terns are generated for each sentence relating a
term to its hypernym, and a dependency parser is
used to represent them.

3 Word-Class Lattices

3.1 Preliminaries

Notion of definition. In our work, we rely on
a formal notion of textual definition. Specifically,
given a definition, e.g.: “In computer science, a
closure is a first-class function with free variables
that are bound in the lexical environment”, we as-
sume that it contains the following fields (Storrer
and Wellinghoff, 2006):

• The DEFINIENDUM field (DF): this part of
the definition includes the definiendum (that
is, the word being defined) and its modifiers
(e.g., “In computer science, a closure”);

• The DEFINITOR field (VF): it includes the
verb phrase used to introduce the definition
(e.g., “is”);

2In the paper, a 55% recall and 34% precision is achieved
with the best experiment on TREC-13 data. Furthermore, the
classifier of Cui et al. (2007) is based on soft patterns but also
on a bag-of-word relevance heuristic. However, the relative
influence of the two methods on the final performance is not
discussed.

• The DEFINIENS field (GF): it includes the
genus phrase (usually including the hyper-
nym, e.g., “a first-class function”);

• The REST field (RF): it includes additional
clauses that further specify the differentia of
the definiendum with respect to its genus
(e.g., “with free variables that are bound in
the lexical environment”).

Further examples of definitional sentences an-
notated with the above fields are shown in Table
1. For each sentence, the definiendum (that is, the
word being defined) and its hypernym are marked
in bold and italic, respectively. Given the lexico-
syntactic nature of the definition extraction mod-
els we experiment with, training and test sentences
are part-of-speech tagged with the TreeTagger sys-
tem, a part-of-speech tagger available for many
languages (Schmid, 1995).

Word Classes and Generalized Sentences. We
now introduce our notion of word class, on which
our learning model is based. Let T be the set
of training sentences, manually bracketed with the
DF, VF, GF and RF fields. We first determine the
set F of words in T whose frequency is above a
threshold θ (e.g., the, a, is, of, refer, etc.). In our
training sentences, we replace the term being de-
fined with 〈TARGET〉, thus this frequent token is
also included in F .

We use the set of frequent words F to generalize
words to “word classes”. We define a word class
as either a word itself or its part of speech. Given
a sentence s = w1, w2, . . . , w|s|, where wi is the
i-th word of s, we generalize its words wi to word
classes ωi as follows:

ωi =

{
wi if wi ∈ F
POS(wi) otherwise

that is, a word wi is left unchanged if it occurs
frequently in the training corpus (i.e., wi ∈ F )
or is transformed to its part of speech (POS(wi))
otherwise. As a result, we obtain a general-
ized sentence s′ = ω1, ω2, . . . , ω|s|. For instance,
given the first sentence in Table 1, we obtain the
corresponding generalized sentence: “In NN, a
〈TARGET〉 is a JJ NN”, where NN and JJ indicate
the noun and adjective classes, respectively.

3.2 Algorithm
We now describe our learning algorithm based
on Word-Class Lattices. The algorithm consists of
three steps:
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[In arts, a chiaroscuro]DF [is]VF [a monochrome picture]GF.
[In mathematics, a graph]DF [is]VF [a data structure]GF [that consists of . . . ]REST.
[In computer science, a pixel]DF [is]VF [a dot]GF [that is part of a computer image]REST.

Table 1: Example definitions (defined terms are marked in bold face, their hypernyms in italic).

• Star patterns: each sentence in the training
set is pre-processed and generalized to a star
pattern. For instance, “In arts, a chiaroscuro
is a monochrome picture” is transformed to
“In *, a 〈TARGET〉 is a *” (Section 3.2.1);

• Sentence clustering: the training sentences
are then clustered based on the star patterns
to which they belong (Section 3.2.2);

• Word-Class Lattice construction: for each
sentence cluster, a WCL is created by means
of a greedy alignment algorithm (Section
3.2.3).

We present two variants of our WCL model,
dealing either globally with the entire sentence or
separately with its definition fields (Section 3.2.4).
The WCL models can then be used to classify any
input sentence of interest (Section 3.2.5).

3.2.1 Star Patterns
Let T be the set of training sentences. In this step,
we associate a star pattern σ(s) with each sentence
s ∈ T . To do so, let s ∈ T be a sentence such that
s = w1, w2, . . . , w|s|, where wi is its i-th word.
Given the set F of most frequent words in T (cf.
Section 3.1), the star pattern σ(s) associated with
s is obtained by replacing with * all the words
wi 6∈ F , that is all the tokens that are non-frequent
words. For instance, given the sentence “In arts,
a chiaroscuro is a monochrome picture”, the cor-
responding star pattern is “In *, a 〈TARGET〉 is a
*”, where 〈TARGET〉 is the defined term.

Note that, here and in what follows, we discard
the sentence fragments tagged with the REST field,
which is used only to delimit the core part of defi-
nitional sentences.

3.2.2 Sentence Clustering
In the second step, we cluster the sentences in our
training set T based on their star patterns. For-
mally, let Σ = (σ1, . . . , σm) be the set of star
patterns associated with the sentences in T . We
create a clustering C = (C1, . . . , Cm) such that
Ci = {s ∈ T : σ(s) = σi}, that is Ci contains all
the sentences whose star pattern is σi.

As an example, assume σ3 = “In *, a
〈TARGET〉 is a *”. The sentences reported in Ta-
ble 1 are all grouped into cluster C3. We note that
each cluster Ci contains sentences whose degree
of variability is generally much lower than for any
pair of sentences in T belonging to two different
clusters.

3.2.3 Word-Class Lattice Construction
Finally, the third step consists of the construction
of a Word-Class Lattice for each sentence cluster.
Given such a cluster Ci ∈ C, we apply a greedy
algorithm that iteratively constructs the WCL.

Let Ci = {s1, s2, . . . , s|Ci|} and consider
its first sentence s1 = w1

1, w
1
2, . . . , w

1
|s1| (wj

i

denotes the i-th token of the j-th sentence).
We first produce the corresponding general-
ized sentence s′1 = ω1

1, ω
1
2, . . . , ω

1
|s1| (cf. Sec-

tion 3.1). We then create a directed graph
G = (V,E) such that V = {ω1

1, . . . , ω
1
|s1|} and

E = {(ω1
1, ω

1
2), (ω1

2, ω
1
3), . . . , (ω1

|s1|−1, ω
1
|s1|)}.

Next, for the subsequent sentences in Ci, that
is, for each j = 2, . . . , |Ci|, we determine the
alignment between the sentence sj and each
sentence sk ∈ Ci such that k < j based on the
following dynamic programming formulation
(Cormen et al., 1990, pp. 314–319):

Ma,b = max {Ma−1,b−1 +Sa,b,Ma,b−1,Ma−1,b}
where a ∈ {1, . . . , |sk|} and b ∈ {1, . . . , |sj |},
Sa,b is a score of the matching between the a-th
token of sk and the b-th token of sj , and M0,0,
M0,b and Ma,0 are initially set to 0 for all a and b.

The matching score Sa,b is calculated on the
generalized sentences s′k of sk and s′j of sj as fol-
lows:

Sa,b =

{
1 if ωk

a = ωj
b

0 otherwise

where ωk
a and ωj

b are the a-th and b-th word classes
of s′k and s′j , respectively. In other words, the
matching score equals 1 if the a-th and the b-th
tokens of the two original sentences have the same
word class.

Finally, the alignment score between sk and sj

is given by M|sk|,|sj |, which calculates the mini-
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In

arts
science

mathematics

NN1

NN4

computer

, a 〈TARGET〉

pixel
graph

chiaroscuro

is a

monochrome

JJ NN2

structure
picture

dot

NN3

data

Figure 1: The Word-Class Lattice for the sentences in Table 1. The support of each word class is reported
beside the corresponding node.

mal number of misalignments between the two to-
ken sequences. We repeat this calculation for each
sentence sk (k = 1, . . . , j − 1) and choose the
one that maximizes its alignment score with sj .
We then use the best alignment to add sj to the
graph G. Such alignment is obtained by means
of backtracking from M|sk|,|sj | to M0,0. We add
to the set of vertices V the tokens of the gen-
eralized sentence s′j for which there is no align-
ment to s′k and we add to E the edges (ωj

1, ω
j
2),

. . . , (ωj
|sj |−1, ω

j
|sj |). Furthermore, in the final lat-

tice, nodes associated with the hypernym words in
the learning sentences are marked as hypernyms
in order to be able to determine the hypernym of a
test sentence at classification time.

3.2.4 Variants of the WCL Model
So far, we have assumed that our WCL model
learns lattices from the training sentences in
their entirety (we call this model WCL-1). We
now propose a second model that learns separate
WCLs for each field of the definition, namely:
the DEFINIENDUM (DF), DEFINITOR (VF) and
DEFINIENS (GF) fields (see Section 3.1). We re-
fer to this latter model as WCL-3. Rather than ap-
plying the WCL algorithm to the entire sentence,
the very same method is applied to the sentence
fragments tagged with one of the three definition
fields. The reason for introducing the WCL-3
model is that, while definitional patterns are highly
variable, DF, VF and GF individually exhibit a
lower variability, thus WCL-3 should improve the
generalization power.

3.2.5 Classification
Once the learning process is over, a set of WCLs is
produced. Given a test sentence s, the classifica-
tion phase for the WCL-1 model consists of deter-
mining whether it exists a lattice that matches s. In
the case of WCL-3, we consider any combination

of DEFINIENDUM, DEFINITOR and DEFINIENS

lattices. While WCL-1 is applied as a yes-no clas-
sifier as there is a single WCL that can possibly
match the input sentence, WCL-3 selects, if any,
the combination of the three WCLs that best fits
the sentence. In fact, choosing the most appro-
priate combination of lattices impacts the perfor-
mance of hypernym extraction. The best combi-
nation of WCLs is selected by maximizing the fol-
lowing confidence score:

score(s, lDF, lVF, lGF) = coverage · log(support)

where s is the candidate sentence, lDF, lVF and lGF
are three lattices one for each definition field, cov-
erage is the fraction of words of the input sentence
covered by the three lattices, and support is the
sum of the number of sentences in the star patterns
corresponding to the three lattices.

Finally, when a sentence is classified as a def-
inition, its hypernym is extracted by selecting the
words in the input sentence that are marked as “hy-
pernyms” in the WCL-1 lattice (or in the WCL-3
GF lattice).

4 Example

As an example, consider the definitions in Table
1. As illustrated in Section 3.2.2, their star pat-
tern is “In *, a 〈TARGET〉 is a *”. The corre-
sponding WCL is built as follows: the first part-
of-speech tagged sentence, “In/IN arts/NN , a/DT
〈TARGET〉/NN is/VBZ a/DT monochrome/JJ pic-
ture/NN”, is considered. The corresponding gen-
eralized sentence is “In NN , a 〈TARGET〉 is a
JJ NN”. The initially empty graph is thus popu-
lated with one node for each word class and one
edge for each pair of consecutive tokens, as shown
in Figure 1 (the central sequence of nodes in the
graph). Note that we draw the hypernym token
NN2 with a rectangle shape. We also add to the
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graph a start node • and an end node •©, and con-
nect them to the corresponding initial and final
sentence tokens. Next, the second sentence, “In
mathematics, a graph is a data structure that con-
sists of...”, is aligned to the first sentence. The
alignment of the generalized sentence is perfect,
apart from the NN3 node corresponding to “data”.
The node is added to the graph together with the
edges a→ NN3 and NN3 → NN2 . Finally, the
third sentence in Table 1, “In computer science, a
pixel is a dot that is part of a computer image”,
is generalized as “In NN NN , a 〈TARGET〉 is
a NN”. Thus, a new node NN4 is added, corre-
sponding to “computer” and new edges are added:
In→NN4 and NN4→NN1. Figure 1 shows the re-
sulting WCL-1 lattice.

5 Experiments

5.1 Experimental Setup

Datasets. We conducted experiments on two
different datasets:

• A corpus of 4,619 Wikipedia sentences, that
contains 1,908 definitional and 2,711 non-
definitional sentences. The former were ob-
tained from a random selection of the first
sentences of Wikipedia articles3. The de-
fined terms belong to different Wikipedia
domain categories4, so as to capture a
representative and cross-domain sample of
lexical and syntactic patterns for defini-
tions. These sentences were manually an-
notated with DEFINIENDUM, DEFINITOR,
DEFINIENS and REST fields by an expert
annotator, who also marked the hypernyms.
The associated set of negative examples
(“syntactically plausible” false definitions)
was obtained by extracting from the same
Wikipedia articles sentences in which the
page title occurs.

• A subset of the ukWaC Web corpus (Fer-
raresi et al., 2008), a large corpus of the En-
glish language constructed by crawling the
.uk domain of the Web. The subset includes
over 300,000 sentences in which occur any
of 239 terms selected from the terminology
of four different domains (COMPUTER SCI-

3The first sentence of Wikipedia entries is, in the large
majority of cases, a definition of the page title.

4en.wikipedia.org/wiki/Wikipedia:Cate-
gories

ENCE, ASTRONOMY, CARDIOLOGY, AVIA-
TION).

The reason for using the ukWaC corpus is that, un-
like the “clean” Wikipedia dataset, in which rel-
atively simple patterns can achieve good results,
ukWaC represents a real-world test, with many
complex cases. For example, there are sentences
that should be classified as definitional according
to Section 3.1 but are rather uninformative, like
“dynamic programming was the brainchild of an
american mathematician”, as well as informative
sentences that are not definitional (e.g., they do not
have a hypernym), like “cubism was characterised
by muted colours and fragmented images”. Even
more frequently, the dataset includes sentences
which are not definitions but have a definitional
pattern (“A Pacific Northwest tribe’s saga refers to
a young woman who [..]”), or sentences with very
complex definitional patterns (“white body cells
are the body’s clean up squad” and “joule is also
an expression of electric energy”). These cases can
be correctly handled only with fine-grained pat-
terns. Additional details on the corpus and a more
thorough linguistic analysis of complex cases can
be found in Navigli et al. (2010).

Systems. For definition extraction, we experi-
ment with the following systems:

• WCL-1 and WCL-3: these two classifiers
are based on our Word-Class Lattice model.
WCL-1 learns from the training set a lattice
for each cluster of sentences, whereas WCL-
3 identifies clusters (and lattices) separately
for each sentence field (DEFINIENDUM,
DEFINITOR and DEFINIENS) and classifies a
sentence as a definition if any combination
from the three sets of lattices matches (cf.
Section 3.2.4, the best combination is se-
lected).

• Star patterns: a simple classifier based on
the patterns learned as a result of step 1 of our
WCL learning algorithm (cf. Section 3.2.1):
a sentence is classified as a definition if it
matches any of the star patterns in the model.

• Bigrams: an implementation of the bigram
classifier for soft pattern matching proposed
by Cui et al. (2007). The classifier selects as
definitions all the sentences whose probabil-
ity is above a specific threshold. The proba-
bility is calculated as a mixture of bigram and
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Algorithm P R F1 A
WCL-1 99.88 42.09 59.22 76.06
WCL-3 98.81 60.74 75.23 83.48
Star patterns 86.74 66.14 75.05 81.84
Bigrams 66.70 82.70 73.84 75.80
Random BL 50.00 50.00 50.00 50.00

Table 2: Performance on the Wikipedia dataset.

unigram probabilities, with Laplace smooth-
ing on the latter. We use the very same set-
tings of Cui et al. (2007), including threshold
values. While the authors propose a second
soft-pattern approach based on Profile HMM
(cf. Section 2), their results do not show sig-
nificant improvements over the bigram lan-
guage model.

For hypernym extraction, we compared WCL-
1 and WCL-3 with Hearst’s patterns, a system
that extracts hypernyms from sentences based on
the lexico-syntactic patterns specified in Hearst’s
seminal work (1992). These include (hypernym
in italic): “such NP as {NP ,} {(or | and)} NP”,
“NP {, NP} {,} or other NP”, “NP {,} includ-
ing { NP ,} {or | and} NP”, “NP {,} especially {
NP ,} {or | and} NP”, and variants thereof. How-
ever, it should be noted that hypernym extraction
methods in the literature do not extract hypernyms
from definitional sentences, like we do, but rather
from specific patterns like “X such as Y”. There-
fore a direct comparison with these methods is not
possible. Nonetheless, we decided to implement
Hearst’s patterns for the sake of completeness. We
could not replicate the more refined approach by
Snow et al. (2004) because it requires the annota-
tion of a possibly very large dataset of sentence
fragments. In any case Snow et al. (2004) re-
ported the following performance figures on a cor-
pus of dimension and complexity comparable with
ukWaC: the recall-precision graph indicates preci-
sion 85% at recall 10% and precision 25% at re-
call of 30% for the hypernym classifier. A variant
of the classifier that includes evidence from coor-
dinate terms (terms with a common ancestor in a
taxonomy) obtains an increased precision of 35%
at recall 30%. We see no reasons why these figures
should vary dramatically on the ukWaC.

Finally, we compare all systems with the ran-
dom baseline, that classifies a sentence as a defi-
nition with probability 1

2 .

Algorithm P R†
WCL-1 98.33 39.39
WCL-3 94.87 56.57
Star patterns 44.01 63.63
Bigrams 46.60 45.45
Random BL 50.00 50.00

Table 3: Performance on the ukWaC dataset († Re-
call is estimated).

Measures. To assess the performance of our
systems, we calculated the following measures:

• precision – the number of definitional sen-
tences correctly retrieved by the system over
the number of sentences marked by the sys-
tem as definitional.

• recall – the number of definitional sen-
tences correctly retrieved by the system over
the number of definitional sentences in the
dataset.

• the F1-measure – a harmonic mean of preci-
sion (P) and recall (R) given by 2PR

P+R .

• accuracy – the number of correctly classi-
fied sentences (either as definitional or non-
definitional) over the total number of sen-
tences in the dataset.

5.2 Results and Discussion

Definition Extraction. In Table 2 we report
the results of definition extraction systems on the
Wikipedia dataset. Given this dataset is also used
for training, experiments are performed with 10-
fold cross validation. The results show very high
precision for WCL-1, WCL-3 (around 99%) and
star patterns (86%). As expected, bigrams and star
patterns exhibit a higher recall (82% and 66%, re-
spectively). The lower recall of WCL-1 is due to
its limited ability to generalize compared to WCL-
3 and the other methods. In terms of F1-measure,
star patterns and WCL-3 achieve 75%, and are
thus the best systems. Similar performance is ob-
served when we also account for negative sen-
tences – that is we calculate accuracy (with WCL-
3 performing better). All the systems perform sig-
nificantly better than the random baseline.

From our Wikipedia corpus, we learned over
1,000 lattices (and star patterns). Using WCL-
3, we learned 381 DF, 252 VF and 395 GF lat-
tices, that then we used to extract definitions from
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Algorithm Full Substring
WCL-1 42.75 77.00
WCL-3 40.73 78.58

Table 4: Precision in hypernym extraction on the
Wikipedia dataset

the ukWaC dataset. To calculate precision on this
dataset, we manually validated the definitions out-
put by each system. However, given the large size
of the test set, recall could only be estimated. To
this end, we manually analyzed 50,000 sentences
and identified 99 definitions, against which recall
was calculated. The results are shown in Table 3.
On the ukWaC dataset, WCL-3 performs best, ob-
taining 94.87% precision and 56.57% recall (we
did not calculate F1, as recall is estimated). In-
terestingly, star patterns obtain only 44% preci-
sion and around 63% recall. Bigrams achieve
even lower performance, namely 46.60% preci-
sion, 45.45% recall. The reason for such bad
performance on ukWaC is due to the very dif-
ferent nature of the two datasets: for example, in
Wikipedia most “is a” sentences are definitional,
whereas this property is not verified in the real
world (that is, on the Web, of which ukWaC is
a sample). Also, while WCL does not need any
parameter tuning5, the same does not hold for bi-
grams6, whose probability threshold and mixture
weights need to be best tuned on the task at hand.

Hypernym Extraction. For hypernym extrac-
tion, we tested WCL-1, WCL-3 and Hearst’s pat-
terns. Precision results are reported in Tables 4
and 5 for the two datasets, respectively. The Sub-
string column refers to the case in which the cap-
tured hypernym is a substring of what the annota-
tor considered to be the correct hypernym. Notice
that this is a complex matter, because often the se-
lection of a hypernym depends on semantic and
contextual issues. For example, “Fluoroscopy is
an imaging method” and “the Mosaic was an in-
teresting project” have precisely the same genus
pattern, but (probably depending on the vagueness
of the noun in the first sentence, and of the adjec-
tive in the second) the annotator selected respec-

5WCL has only one threshold value θ to be set for deter-
mining frequent words (cf. Section 3.1). However, no tuning
was made for choosing the best value of θ.

6We had to re-tune the system parameters on ukWaC,
since with the original settings of Cui et al. (2007) perfor-
mance was much lower.

Algorithm Full Substring
WCL-1 86.19 (206) 96.23 (230)
WCL-3 89.27 (383) 96.27 (413)
Hearst 65.26 (62) 88.42 (84)

Table 5: Precision in hypernym extraction on the
ukWaC dataset (number of hypernyms in paren-
theses).

tively imaging method and project as hypernyms.
For the above reasons it is difficult to achieve high
performance in capturing the correct hypernym
(e.g. 40.73% with WCL-3 on Wikipedia). How-
ever, our performance of identifying a substring
of the correct hypernym is much higher (around
78.58%). In Table 4 we do not report the preci-
sion of Hearst’s patterns, as only one hypernym
was found, due to the inherently low coverage of
the method.

On the ukWaC dataset, the hypernyms returned
by the three systems were manually validated and
precision was calculated. Both WCL-1 and WCL-
3 obtained a very high precision (86-89% and 96%
in identifying the exact hypernym and a substring
of it, respectively). Both WCL models are thus
equally robust in identifying hypernyms, whereas
WCL-1 suffers from a lack of generalization in
definition extraction (cf. Tables 2 and 3). Also,
given that the ukWaC dataset contains sentences
in which any of 239 domain terms occur, WCL-3
extracts on average 1.6 and 1.7 full and substring
hypernyms per term, respectively. Hearst’s pat-
terns also obtain high precision, especially when
substrings are taken into account. However, the
number of hypernyms returned by this method is
much lower, due to the specificity of the patterns
(62 vs. 383 hypernyms returned by WCL-3).

6 Conclusions

In this paper, we have presented a lattice-based ap-
proach to definition and hypernym extraction. The
novelty of our approach is:

1. The use of a lattice structure to generalize
over lexico-syntactic definitional patterns;

2. The ability of the system to jointly identify
definitions and extract hypernyms;

3. The generality of the method, which applies
to generic Web documents in any domain and
style, and needs no parameter tuning;
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4. The high performance as compared with the
best-known methods for both definition and
hypernym extraction. Our approach outper-
forms the other systems particularly where
the task is more complex, as in real-world
documents (i.e., the ukWaC corpus).

Even though definitional patterns are learned
from a manually annotated dataset, the dimension
and heterogeneity of the training dataset ensures
that training needs not to be repeated for specific
domains7, as demonstrated by the cross-domain
evaluation on the ukWaC corpus.

The datasets used in our experiments are avail-
able from http://lcl.uniroma1.it/wcl.
We also plan to release our system to the research
community. In the near future, we aim to apply the
output of our classifiers to the task of automated
taxonomy building, and to test the WCL approach
on other information extraction tasks, like hyper-
nym extraction from generic sentence fragments,
as in Snow et al. (2004).
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acquisition of lexical knowledge from combined
machine-readable dictionary sources. In Proceed-
ings of the third Conference on Applied Natural Lan-
guage Processing, pages 80–87.

Helmut Schmid. 1995. Improvements in part-of-
speech tagging with an application to german. In
Proceedings of the ACL SIGDAT-Workshop, pages
47–50.

Josh Schroeder, Trevor Cohn, and Philipp Koehn.
2009. Word lattices for multi-source translation. In
Proceedings of the European Chapter of the Asso-
ciation for Computation Linguistics (EACL 2009),
pages 719–727, Athens, Greece.

Rion Snow, Dan Jurafsky, and Andrew Y. Ng. 2004.
Learning syntactic patterns for automatic hypernym
discovery. In Proceedings of Advances in Neural
Information Processing Systems, pages 1297–1304.

Angelika Storrer and Sandra Wellinghoff. 2006. Auto-
mated detection and annotation of term definitions in
german text corpora. In Proceedings of the Fifth In-
ternational Conference on Language Resources and
Evaluation (LREC 2006), Genova, Italy.

Paola Velardi, Roberto Navigli, and Pierluigi
D’Amadio. 2008. Mining the Web to create
specialized glossaries. IEEE Intelligent Systems,
23(5):18–25.

Eline Westerhout and Paola Monachesi. 2007. Extrac-
tion of dutch definitory contexts for eLearning pur-
poses. In Proceedings of CLIN.

Eline Westerhout. 2009. Definition extraction using
linguistic and structural features. In Proceedings
of the RANLP 2009 Workshop on Definition Extrac-
tion, pages 61–67.

Chunxia Zhang and Peng Jiang. 2009. Automatic ex-
traction of definitions. In Proceedings of 2nd IEEE
International Conference on Computer Science and
Information Technology, pages 364–368.

Zhao-man Zhong, Zong-tian Liu, and Yan Guan. 2008.
Precise information extraction from text based on
two-level concept lattice. In Proceedings of the
2008 International Symposiums on Information Pro-
cessing (ISIP ’08), pages 275–279, Washington,
DC, USA.

1327


