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Abstract

We present a new framework for an intrin-
sic evaluation of word vector representa-
tions based on the outlier detection task.
This task is intended to test the capabil-
ity of vector space models to create se-
mantic clusters in the space. We carried
out a pilot study building a gold standard
dataset and the results revealed two im-
portant features: human performance on
the task is extremely high compared to the
standard word similarity task, and state-
of-the-art word embedding models, whose
current shortcomings were highlighted as
part of the evaluation, still have consider-
able room for improvement.

1 Introduction

Vector Space Models have been successfully used
on many NLP tasks (Turney and Pantel, 2010)
such as automatic thesaurus generation (Crouch,
1988; Curran and Moens, 2002), word similar-
ity (Deerwester et al., 1990; Turney et al., 2003;
Radinsky et al., 2011) and clustering (Pantel and
Lin, 2002), query expansion (Xu and Croft, 1996),
information extraction (Laender et al., 2002), se-
mantic role labeling (Erk, 2007; Pennacchiotti et
al., 2008), spelling correction (Jones and Martin,
1997), and Word Sense Disambiguation (Navigli,
2012). These models are in the main based on the
distributional hypothesis of Harris (1954) claim-
ing that words that occur in the same contexts tend
to have similar meanings. Recently, more com-
plex models based on neural networks going be-
yond simple co-occurrence statistics have been de-
veloped (Mikolov et al., 2013; Pennington et al.,
2014) and have proved beneficial on key NLP ap-
plications such as syntactic parsing (Weiss et al.,
2015), Machine Translation (Zou et al., 2013), and

Question Answering (Bordes et al., 2014).

Word similarity, which numerically measures
the extent to which two words are similar, is gen-
erally viewed as the most direct intrinsic evalua-
tion of these word vector representations (Baroni
et al., 2014; Levy et al., 2015). Given a gold stan-
dard of human-assigned scores, the usual evalu-
ation procedure consists of calculating the corre-
lation between these human similarity scores and
scores calculated by the system. While word sim-
ilarity has been shown to be an interesting task
for measuring the semantic coherence of a vec-
tor space model, it suffers from various prob-
lems. First, the human inter-annotator agreement
of standard datasets has been shown to be rela-
tively too low for it to be considered a reliable
evaluation benchmark (Batchkarov et al., 2016).
In fact, many systems have already surpassed the
human inter-annotator agreement upper bound in
most of the standard word similarity datasets (Hill
et al., 2015). Another drawback of the word sim-
ilarity evaluation benchmark is its simplicity, as
words are simply viewed as points in the vector
space. Other interesting properties of vector space
models are not directly addressed in the task.

As an alternative we propose the outlier detec-
tion task, which tests the capability of vector space
models to create semantic clusters (i.e. clusters of
semantically similar items). As is the case with
word similarity, this task aims at evaluating the
semantic coherence of vector space models, but
providing two main advantages: (1) it provides
a clear gold standard, thanks to the high human
performance on the task, and (2) it tests an inter-
esting language understanding property of vector
space models not fully addressed to date, and this
is their ability to create semantic clusters in the
vector space, with potential applications to various
NLP tasks.
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2 Outlier Detection Task

The proposed task, referred to as outlier detec-
tion henceforth, is based on a standard vocabu-
lary question of language exams (Richards, 1976).
Given a group of words, the goal is to identify the
word that does not belong in the group. This ques-
tion is intended to test the student’s vocabulary
understanding and knowledge of the world. For
example, book would be an outlier for the set of
words apple, banana, lemon, book, orange, as it
is not a fruit like the others. A similar task has
already been explored as an ad-hoc evaluation of
the interpretability of topic models (Chang et al.,
2009) and word vector dimensions (Murphy et al.,
2012; Fyshe et al., 2015; Faruqui et al., 2015).

In order to deal with the outlier detection task,
vector space models should be able to create se-
mantic clusters (i.e. fruits in the example) compact
enough to detect all possible outliers. A formal-
ization of the task and its evaluation is presented
in Section 2.1 and some potential applications are
discussed in Section 2.2.

2.1 Formalization
Formally, given a set of words W =
{w1, w2, . . . , wn, wn+1}, the task consists of
identifying the word (outlier) that does not belong
to the same group as the remaining words. For
notational simplicity, we will assume that w1, ...
, wn belong to the same cluster and wn+1 is the
outlier. In what follows we explain a procedure
for detecting outliers based on semantic similarity.

We define the compactness score c(w) of a
word w ∈ W as the compactness of the cluster
W \{w}, calculated by averaging all pair-wise se-
mantic similarities of the words in W \ {w}:

c(w) =
1
k

∑
wi∈W\{w}

∑
wj∈W\{w}

wj 6=wi

sim(wi, wj) (1)

where k = n(n−1). We propose two measures for
computing the reliability of a system in detecting
an outlier given a set of words: Outlier Position
(OP) and Outlier Detection (OD). Given a set W
of n+1 words, OP is defined as the position of the
outlier wn+1 according to the compactness score,
which ranges from 0 to n (position 0 indicates the
lowest overall score among all words in W , and
position n indicates the highest overall score). OD
is, instead, defined as 1 if the outlier is correctly

detected (i.e. OP (wn+1) = n) and 0 otherwise.
To estimate the overall performance on a dataset
D (composed of |D| sets of words), we define the
Outlier Position Percentage (OPP) and Accuracy
measures:

OPP =

∑
W∈D

OP (W )
|W |−1

|D| × 100 (2)

Accuracy =
∑

W∈D OD(W )
|D| × 100 (3)

The compactness score of a word may be ex-
pensive to calculate if the number of elements in
the cluster is large. In fact, the complexity of cal-
culatingOP andOD measures given a cluster and
an outlier is (n+1)×n×(n−1) = O(n3). How-
ever, this complexity can be effectively reduced to
(n+1)×2n = O(n2). Our proposed calculations
and the proof are included in Appendix A.

2.2 Potential applications
In this work we focus on the intrinsic semantic
properties of vector space models which can be
inferred from the outlier detection task. In addi-
tion, since it is a task based partially on seman-
tic similarity, high-performing models in the out-
lier detection task are expected to contribute to
applications in which semantic similarity has al-
ready shown its potential: Information Retrieval
(Hliaoutakis et al., 2006), Machine Translation
(Lavie and Denkowski, 2009), Lexical Substitu-
tion (McCarthy and Navigli, 2009), Question An-
swering (Mohler et al., 2011), Text Summariza-
tion (Mohammad and Hirst, 2012), and Word
Sense Disambiguation (Patwardhan et al., 2003),
to name a few. Furthermore, there are other NLP
applications directly connected with the semantic
clustering proposed in the outlier detection task.
Ontology Learning is probably the most straight-
forward application, as a meaningful cluster of
items is expected to share a common hypernym,
a property that has already been exploited in re-
cent studies using embeddings (Fu et al., 2014;
Espinosa-Anke et al., 2016). In fact, building on-
tologies is a time-consuming task and generally re-
lies on automatic or semi-automatic steps (Velardi
et al., 2013; Alfarone and Davis, 2015). Ontolo-
gies are one of the basic components of the Se-
mantic Web (Berners-Lee et al., 2000) and have al-
ready proved their importance in downstream ap-
plications like Question Answering (Mann, 2002),
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Big cats European
football teams

Solar System
planets Months

Cluster
elements

tiger FC Barcelona Mercury January
lion Bayern Munich Venus March

cougar Real Madrid Earth May
jaguar AC Milan Mars July
leopard Juventus Jupiter September
cheetah Atletico Madrid Saturn November
wildcat Chelsea Uranus February

lynx Borussia Dortmund Neptune June
1st Outlier dog Miami Dolphins Sun Wednesday

2nd Outlier mouse McLaren Moon winter
3rd Outlier dolphin Los Angeles Lakers Triton date
4th Outlier shark Bundesliga Comet Halley year
5th Outlier savanna football eclipse astrology
6th Outlier jungle goal astronaut birthday
7th Outlier day couch lunch ball
8th Outlier car fridge window paper

Table 1: First four clusters (including outliers) of the 8-8-8 outlier detection dataset.

which in the main rely on large structured knowl-
edge bases (Bordes et al., 2014).

In this paper we do not perform any quantita-
tive evaluation to measure the correlation between
the performance of word vectors on the outlier de-
tection task and downstream applications. We ar-
gue that the conclusions drawn by recent works
(Tsvetkov et al., 2015; Chiu et al., 2016) as a
result of measuring the correlation between stan-
dard intrinsic evaluation benchmarks (e.g. word
similarity datasets) and downstream task perfor-
mances are hampered by a serious methodological
issue: in both cases, the sample set of word vectors
used for measuring the correlation is not represen-
tative enough, which is essential for this type of
statistical study (Patton, 2005). All sample vec-
tors came from corpus-based models1 trained on
the same corpus and all perform well on the con-
sidered intrinsic tasks, which constitute a highly
homogeneous and not representative sample set.
Moreover, using only a reduced selected set of ap-
plications does not seem sufficient to draw gen-
eral conclusions about the quality of an intrinsic
task, but rather about its potential on those spe-
cific applications. Further work should focus on
these issues before using downstream applications
to measure the impact of intrinsic tasks for evalu-
ating the quality of word vectors. However, this is
out of the scope of this paper.

1In the case of Chiu et al. (2016) all word vectors in
the sample come from the Skip-Gram model of Word2Vec
(Mikolov et al., 2013).

3 Pilot Study

We carried out a pilot study on the outlier detec-
tion task. To this end, we developed a new dataset,
8-8-8 henceforth. The dataset consisted of eight
different topics each made up of a cluster of eight
words and eight possible outliers. Four annotators
were used for the creation of the dataset. Each an-
notator was asked to first identify two topics, and
for each topic to provide a set of eight words be-
longing to the chosen topic (elements in the clus-
ter), and a set of eight heterogeneous outliers, se-
lected varying their similarity to and relatedness
with the elements of the cluster2. In total, the
dataset included sixty-four sets of 8 + 1 words for
the evaluation. Tables 1 and 2 show the eight clus-
ters and their respective outliers of the 8-8-8 out-
lier detection dataset.

When we consider the time annotators had to
spend creating the relatively small dataset for this
pilot study, the indications are that building a
large-scale dataset may not need to be very time-
consuming. In our study, the annotators spent
most of their time reading and understanding the
guidelines, and then thinking about suitable topics.
In fact, with a view to constructing a large-scale
dataset, this topic selection step may be carried out
prior to giving the assignments to the annotators,
providing topics to annotators according to their

2We release the full dataset and guidelines for the
creation of the topics at http://lcl.uniroma1.it/
outlier-detection
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IT companies German car
manufacturers

Apostles of
Jesus Christ

South American
countries

Cluster
elements

Apple Mercedes Benz Peter Brazil
Foxconn BMW Andrew Colombia
Amazon Audi James Argentina

HP Opel John Peru
Microsoft Volkswagen Thaddaeus Venezuela

IBM Porsche Bartholomew Chile
Google Alpina Thomas Ecuador
Sony Smart Matthew Bolivia

1st Outlier Opel Michelin Noah Bogotá
2nd Outlier Boeing Bridgestone Mary Rio de Janeiro
3rd Outlier Nestlé Boeing Pope Benedict XVI New York
4th Outlier Adidas Samsung Ambrose Madrid
5th Outlier computer Michael Schumacher crucifixion town
6th Outlier software Angela Merkel church government
7th Outlier chair Capri airplane bottle
8th Outlier plant pineapple Microsoft telephone

Table 2: Last four clusters (including outliers) from the 8-8-8 outlier detection dataset.

expertise. The time spent for the actual creation of
a cluster (including outliers) was in all cases less
than ten minutes.

3.1 Human performance

We assessed the human performance of eight an-
notators in the task via accuracy. To this end,
each annotator was given eight different groups
of words, one for each of the topics of the 8-8-
8 dataset. Each group of words was made up of
the set of eight words comprising the cluster, plus
one additional outlier. All the words were shuf-
fled and given to the annotator without any addi-
tional information (e.g. annotators did not know
the topic of the cluster). The task for the annota-
tors consisted of detecting the outlier in each set of
nine words. To this end, each annotator was asked
to provide two different answers: one without any
external help, and a second one in which the anno-
tator could use the Web as external help for three
minutes before giving his answer. This human
performance in the outlier detection task may be
viewed as equivalent to the inter-annotator agree-
ment in word similarity, which is used to measure
the human performance in the task.

The results of the experiment were the follow-
ing: an accuracy of 98.4% for the first task in
which annotators did not use any external help,
and an accuracy of 100% for the second task
in which annotators were allowed to use exter-
nal help. This contrasts with the evaluation per-
formed in word similarity, which is based on

human-assigned scores with a relatively low inter-
annotator agreement. For example, the inter-
annotator agreements in the standard WordSim-
353 (Finkelstein et al., 2002) and SimLex-999
(Hill et al., 2015) word similarity datasets were,
respectively, 0.61 and 0.67 according to average
pair-wise Spearman correlation. In fact, both
upper-bound values have already been surpassed
by automatic models (Huang et al., 2012; Wieting
et al., 2015).

3.2 Word embeddings performance

We tested the performance of three standard word
embedding models in the outlier detection task:
the CBOW and Skip-Gram models of Word2Vec
(Mikolov et al., 2013) and GloVe (Pennington et
al., 2014). We report the results of each of the
models trained on the 3B-words UMBC webbase
corpus 3 (Han et al., 2013), and the 1.7B-words
English Wikipedia4 with standard hyperparame-
ters5. For each of the models, we used as multi-
word expressions the phrases contained in the pre-
trained Word2Vec word embeddings trained on the
Google News corpus. The evaluation was per-
formed as explained in Section 2.1, using cosine

3http://ebiquity.umbc.
edu/blogger/2013/05/01/
umbc-webbase-corpus-of-3b-english-words/

4We used the Wikipedia dump of November 2014.
5The dimensionality of the vectors was set to 300 for the

three models. Context-size 5 for CBOW and 10 for Skip-
Gram and GloVe; hierarchichal softmax for CBOW and neg-
ative sampling for Skip-Gram and GloVe.
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Model Corpus OPP Acc.

CBOW
UMBC 93.8 73.4

Wikipedia 95.3 73.4

Skip-Gram
UMBC 92.6 64.1

Wikipedia 93.8 70.3
Google News 94.7 70.3

GloVe
UMBC 81.6 40.6

Wikipedia 91.8 56.3

Table 3: Outlier Position Percentage (OPP) and
Accuracy (Acc.) of different word embedding
models on the 8-8-8 outlier detection dataset.

as similarity measure (sim in Equation 1).
Table 3 shows the results of all the word embed-

ding models on the 8-8-8 outlier detection dataset.
Outliers, which were detected in over 40% of
cases by all models, were consistently given high
compactness scores. This was reflected in the
OPP results (above 80% in all cases), which
proves the potential and the capability of word
embeddings to create compact clusters. All the
models performed particularly well in the Months
and South American countries clusters. However,
the best model in terms of accuracy, i.e. CBOW,
achieved 73.4%, which is far below the human
performance, estimated in the 98.4%-100% range.

In fact, taking a deeper look at the output we
find common errors committed by these models.
First, the lack of meaningful occurrences for a
given word, which is crucial for obtaining an ac-
curate word vector representation, seems to have
been causing problems in the cases of the wildcat
and lynx instances of the Big cats cluster, and of
Alpina from the German car manufacturers clus-
ter. Second, the models produced some errors on
outliers closely related to the words of the clus-
ters, incorrectly considering them as part of the
cluster. Examples of this phenomenon are found
in the outliers Bundesliga from the European foot-
ball teams cluster, and software from the IT com-
panies cluster. Third, the ambiguity, highlighted
in the word Smart from the German car manufac-
turers cluster and in the Apostles of Jesus Christ
cluster, is an inherent problem of all these word-
based models. Finally, we encountered the issue
of having more than one lexicalization (i.e. syn-
onyms) for a given instance (e.g. Real, Madrid,
Real Madrid, or Real Madrid CF), which causes
the representations of a given lexicalization to be
ambiguous or not so accurate and, in some cases,

to miss a representation for a given lexicalization
if that lexicalization is not found enough times
in the corpus6. In order to overcome these am-
biguity and synonymy issues, it might be inter-
esting for future work to leverage vector repre-
sentations constructed from large lexical resources
such, as FreeBase (Bordes et al., 2011; Bordes
et al., 2014), Wikipedia (Camacho-Collados et
al., 2015a), or BabelNet (Iacobacci et al., 2015;
Camacho-Collados et al., 2015b).

4 Conclusion

In this paper we presented the outlier detection
task and a framework for an intrinsic evaluation
of word vector space models. The task is in-
tended to test interesting semantic properties of
vector space models not fully addressed to date.
As shown in our pilot study, state-of-the-art word
embeddings perform reasonably well in the task
but are still far from human performance. As op-
posed to the word similarity task, the outlier de-
tection task achieves a very high human perfor-
mance, proving the reliability of the gold stan-
dard. Finally, we release the 8-8-8 outlier detec-
tion dataset and the guidelines given to the anno-
tators as part of the pilot study, and an easy-to-
use Python code for evaluating the performance
of word vector representations given a gold stan-
dard dataset at http://lcl.uniroma1.it/
outlier-detection.
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A Proposition 1

The complexity for calculating OP (w) can be re-
duced to 2n by calculating the following pseudo-
inverted compactness score7 p(w) instead of the
compactness score c(w) of Equation 1, and defin-
ing OPp(w) as the position of the outlier in W ac-
cording to the inverted pseudo-inverted compact-
ness score:

p(w) =
1
k′
( ∑

wi∈W
wi 6=w

sim(wi, w)+
∑

wi∈W
wi 6=w

sim(w,wi)
)

(4)
where k′ = 2(|W | − 1).

Proof. Since OP (w) is given by the position of
c(w) with respect to the remaining words in W
and ≤ represents a relation of total order, we only
have to prove the following statement:

c(w) ≤ c(w′)⇔ p(w′) ≤ p(w),∀w,w′ ∈W
(5)

Given any w ∈W , we can calculate the sum of all
pair-wise similarities of the words in W (i.e. µ) as
follows:

µ =
∑

wi∈W\{w}

∑
wj∈W\{w}

wj 6=wi

sim(wi, wj)+

+
∑

wi∈W\{w}
sim(wi, w) +

∑
wi∈W\{w}

sim(w,wi)

= k · c(w) + k′ · p(w)
(6)

where k = (|W | − 1)(|W | − 2). Therefore,

µ = k · c(w) + k′ · p(w),∀w ∈W (7)

Since k, k′ (being both k and k′ positive values)
and µ are all fixed values only depending on W ,
we can trivially infer the following statement from
Equation 7 given any w,w′ ∈W :

c(w) ≤ c(w′)⇔ p(w′) ≤ p(w) (8)
7In this proposition we do not assume any special prop-

erty to the function sim(., .) for generalization. If sim(., .)
were symmetrical (e.g. cosine similarity is symmetrical), we
could simply define the pseudo-inverted compactness score
as p(w) =

∑
wi∈W sim(wi, w), which would lead to a com-

plexity of n.

Hence, we have proved the proposition.
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