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Abstract 
Linguistic resources are essential for the success of many AI 
tasks. Building a new lexical resource from scratch or 
combining heterogeneous resources is not only complex and 
time-consuming, but can also lead to knowledge 
inconsistency and redundancy. 
In this paper, we present a novel method for the large-scale 
semantic enrichment of a computational linguistic resource. 
To this end, with the aid of a controlled vocabulary, we 
identified a set of representative concepts, i.e. a restricted, 
but meaningful number of concepts from WordNet, such 
that each of them can replace any of its descendants in the 
taxonomical hierarchy without a substantial loss of 
information in natural language sentences (e.g. restaurant#1 
is a representative for bistro#1 or cybercafe#1). Then, we 
manually enriched these representative concepts with 
collocations extracted from a variety of linguistic resources. 
After this manual step, representative concepts are still 
related with words, rather than with concepts (e.g. for 
taxi#1: fare, passenger, driver, etc.). The final step is to 
automatically disambiguate these terms, using a word sense 
disambiguation algorithm named Structural Semantic 
Interconnections (SSI). SSI is a knowledge-based WSD 
algorithm that is particularly performant when words in a 
context are highly semantically associated. As a result, the 
precision of this automatic disambiguation step is very high, 
to a point that residual disambiguation errors could be 
tolerated. In any case, since SSI provides semantic patterns 
to justify its sense choices, manual corrections by human 
annotators would be considerably facilitated, achieving a 
significant speed-up in semantic annotation. Furthermore, 
SSI helps in supporting a consistency of the lexical 
knowledge base. 

1. Introduction  
Relevant tasks in the field of Artificial Intelligence have a 
strong bias on language (e.g. Word Sense Disambiguation, 
Information Retrieval, Question Answering, etc.).  
The contribution of linguistic resources is then essential to 
the success of these tasks. Since the early Eighties, machine 
readable dictionaries have been developed with the aim of 
making explicit knowledge available for computational 
tasks. With the advent of computational lexicons and 
ontologies, the focus has been shifted on how to effectively 
acquire, structure, and exploit such massive quantities of 
knowledge. Unfortunately, large-scale linguistic resources, 

when available, do not seem to provide all the semantic 
information needed for complex AI tasks. For instance, 
WordNet (Fellbaum, 1998) has a rich taxonomy, but 
encodes few (and sometimes incomplete) conceptual 
relations. Other resources, like CyC (Lenat, 1995) or 
Microkosmos (Mahesh and Nirenburg, 1995), are only 
partially available and cannot be fully exploited or 
investigated. 
The recent construction of resources built around the idea 
of frames (FrameNet (Baker et al., 1998)) or focused on 
verbs (VerbNet (Kipper et al., 2000), PropBank 
(Kingsbury and Palmer, 2002)) constitutes an interesting, 
but problematic contribution. The main obstacles for their 
extensive exploitation are indeed their heterogeneity, as 
well as their limited size (usually some thousand elements). 
Combining heterogeneous resources as a larger-scale effort 
is a hard task and does not often lead to a coherent result, 
because of the different philosophies followed in 
constructing the resources to be integrated. Furthermore, 
structuring wide-coverage knowledge is per se a complex 
and time-consuming task, potentially leading to strong 
inconsistencies. 
In this paper, we present a novel approach to the semi-
automatic construction of a conceptually rich, large-scale 
linguistic resource, built on top of WordNet. We started 
from the Longman controlled vocabulary, a set of basic 
words used to define all the terms in the dictionary. Each 
defining word corresponds to a number of WordNet 
concepts, i.e. its semantic interpretations. As defining 
words allow to describe all the entries of the Longman 
dictionary, in Section 2 we will show that the 
corresponding WordNet concepts, that we call 
representative concepts, subsume a good portion of the 
WordNet sense inventory without a substantial loss of 
information. 
Then, for each representative concept (i.e. for each sense of 
a defining word), we extracted collocation triples (l, w, t)
from existing lexical resources (e.g. Oxford Collocations,
Longman Language Activator, etc.), where l is a 
relationship label, w a defining word, and t is a word 
collocated with w. For each collocation, we manually 
disambiguated w, i.e. we chose the corresponding 
representative concept rw.



Finally, we applied an automatic procedure for the 
disambiguation of the collocation context of each 
representative concept rw, i.e. the set of terms { t : rw is the 
appropriate sense for w in (l, w, t) }. To this end, we 
applied SSI, described in Section 3, a word sense 
disambiguation algorithm based on lexico-semantic 
patterns, with promising results in both precision and 
recall. We repeated the experiment by enriching the SSI 
knowledge base with a large number of manually 
disambiguated relation instances. The results are illustrated 
in Section 4. Finally, Section 5 discusses our contribution 
and future work. 

2. Extending Large-Scale Resources 
Automating the task of building large-scale linguistic 
resources is a necessary step, but also imposes a huge effort 
on the side of knowledge integration and validation. 
Starting from a widespread computational lexicon such as 
WordNet (Fellbaum, 1998) allows concentrating on the 
difficult task of populating it with new semantic relations 
between concepts, overcoming the question of constructing 
a resource from scratch. 
Still, relation population is a complex task for many 
reasons. First, assuming that each concept be connected on 
average to some tenth of concepts would lead to the 
extraction, insertion and validation of millions of semantic 
relation instances. Second, problems of redundancy (e.g. 
“apples have flesh” and “pears have flesh” both covered by 
“fruits have flesh”), heterogeneity and inconsistency (e.g. 
“bird related-to flight”, but a penguin does not fly) would 
certainly emerge. 
As a solution, we propose a novel approach aiming at 
determining and enriching a significant and manageable 
portion of the WordNet sense inventory. 

Identification of Representative Concepts 
We started from the controlled vocabulary (CV) of the 
Longman Dictionary of Contemporary English (LDOCE). 
A CV is a selection of the most frequent English words, 
called defining words, used to define all the words in a 
dictionary1. For each word w ∈ CV, WordNet provides one 
or more senses, i.e. its semantic interpretations. We denote 
the set of such concepts by RC.
The Longman CV includes 1,382 nouns, 354 adjectives and 
314 verbs, corresponding respectively to 6,251, 1,810 and 
2,310 WordNet concepts, called synsets (we did not take 
adverbs into account). 
We name RC, i.e. the set of semantic interpretations of 
terms from the controlled vocabulary CV, the set of 
representative concepts. Concepts in RC indeed 
“represent” all the other concepts in the sense inventory 
with a certain degree of generality. A representative 
 
1 A similar effort has been carried out in the Oxford 
Advanced Learners’ Dictionary. 

concept can replace most of its hyponyms (i.e. descendants 
in the taxonomical hierarchy) in any context without a 
substantial loss of information (e.g. restaurant#12 is a 
representative for bistro#1 or cybercafe#1, beverage#1 is a 
representative for cyder#1 or soda#2, etc.). This statement 
is strongly supported by the figures in Table 1, discussed in 
the following paragraphs. 
We say that a generic concept c is covered by a set of 
concepts S if exists c’ ∈ S such that c’ is an ancestor of c in 
the taxonomical hierarchy. We calculated the coverage of 
the WordNet sense inventory with respect to RC as the 
number of covered concepts over the total number of 
WordNet concepts. Due to the WordNet structure, this 
measure is applicable only to nominal and verbal synsets. 
For adjectives, the coverage was calculated as the number 
of synsets containing a concept c’ ∈ RC in their adjective 
cluster. 
The number of nominal concepts covered by RC is very 
high (98.7%). 75% of the verbs are covered, due to the 
large number of roots in the WordNet verb taxonomy, 
while around 42% of the adjectival concepts is covered, 
which is reasonable as the number of adjective clusters 
largely exceeds the amount of adjectival concepts in RC.
In the following, we focus on nominal concepts, but we 
plan to extend our work to the other major part-of-speech 
categories. 
 

Table 1. Representative concepts in figures. 
 Nouns Adj. Verbs 
# of defining words (|CV|) 1,382 354 314 
# of representative 
concepts (|RC|) 6,251 1,810 2,310 

% concepts “covered” 98.7% 42.44% 75.56% 
Average distance from the 
nearest representative 2.53 N/A 1.75 

Average depth of a 
representative 3.64 N/A 0.75 

The average depth of a representative nominal concept in 
the taxonomy is between 3 and 4 (at this depth we find 
concepts like beverage#1, coffee#1, building#1, door#1,
etc.), while the distance of a nominal synset from its closest 
representative (in terms of number of hypernym edges 
connecting the two concepts) is on average between 2 and 
3 edges (e.g. between scooter#2 and vehicle#1 or between 
detective story#1 and fiction#1). 
The identification of a complete set of representative 
concepts allows on one side to reduce the mass of work 
needed to populate a large-scale resource with semantic 
relations, on the other side to specify relations at a medium 
level of abstraction, so that inferences can be made for 
more specific concepts. For instance, in the sentence “the 
murderer used a stiletto to kill the victim”, good 
 
2 By w#i, w-a#i, w-v#i we denote, respectively, the i-th 
sense of the noun, adjective and verb w in WordNet. 



representatives for murderer and stiletto can be, 
respectively, criminal and knife.

Extraction of Collocations 
The next step is to extract collocations from a variety of 
existing lexical resources connecting words in CV with 
other terms. A collocation is represented as a triple: 
 

(l, w, t) ∈ LxCVxV

where L is the set of relation labels (i.e., L = { relatedness,
meronymy, attribute, … }), V is the set of all terms in the 
WordNet dictionary, and CV ⊆ V. For instance, 
(relatedness, fruit, confiture) and (meronymy, wall, brick)
are collocation triples. Notice that L includes both lexical 
and semantic relations, although terms in CV and V are still 
ambiguous (i.e. not yet disambiguated). Furthermore, 
relations in L are either new (e.g. relatedness) or extend the 
existing ones with new instances (e.g. the missing 
meronymy link in WordNet between brick and wall). 
Collocation triples are collected from the following 
resources (through either automatic extraction or manual 
editing, depending on the availability in electronic format): 
 
� WordNet glosses: glosses (i.e. word definitions) and 

usage examples contain a number of words that are 
related to the defined concept. For instance, coffee#1 is 
defined as a beverage consisting of an infusion of 
ground coffee beans; “he ordered a cup of coffee”.

� Collocation web sites: Lexical Freenet 
(www.lexfn.com), OneLook (www.onelook.com) and 
Sharp’s JustTheWord provide collocations for words 
and multi-word expressions (e.g. collocations for 
engine are aircraft, petrol, combustion, car, etc.). 

� Oxford collocations (Lea, 2002): this resource provides 
linguistic interrelations, like noun attributes (e.g. 
powerful as an attribute for engine), phrases (roar of 
the engine), compounds (engine speed, engine room,
etc.), collocated verbs (e.g. start the engine), etc. 

� The Longman Language Activator (Longman, 2003): 
the words in the Activator are organized into groups, 
expressing basic ideas (e.g. music, meal, medical 
treatment, etc.). Compounds, collocations, attributes, 
etc. are provided for each word belonging to a group. 

Each collocation crafted from these heterogeneous 
resources is converted to its triple representation (l, w, t) ∈
LxCVxV, where the set L includes the following relations: 
 
� Relatedness: a generic semantic relation, to be further 

specialized (e.g. between milk and coffee, car and 
driver, etc.). 

� Meronymy: this is an extension of the relation defined 
in WordNet (e.g. between brick and wall, smoke and 
particle, etc.). 

� Attribute: a value t for a property w (e.g. hot is an 
attribute of temperature). 

� Property: a property t holding for w (e.g. temperature is 
a property of liquid, breed is a property of animal, etc.); 
a property can assume different attributes. 

� Quantity: t indicates a quantity of w (e.g. bunch 
expresses a quantity for flowers, bag for potatoes, etc.). 

� Predicate: t is a predicate for w (as to cook for food, to 
grow for flower, etc.). 

Relations like quantity and predicate concern syntactic 
constraints or semantic preferences, while relatedness,
property and attribute express semantic interconnections. 

Semantic Disambiguation of Collocations 
At this stage, relations are still between collocated terms, 
and not between concepts. For interpreting terms in 
collocation triples (l, w, t) as concepts, we proceeded as 
follows: for each triple we manually disambiguated the 
defining word w from the controlled vocabulary by 
choosing the appropriate representative concept rw ∈ RC.
Notice that the mapping from w to rw is trivial for 
collocations extracted from WordNet glosses (a gloss 
provides collocations about the synset it defines). In other 
cases, e.g. the Oxford Collocations and the Longman 
Activator, collocations are provided for each sense of w in 
the respective sense inventory: senses of w are defined in 
natural language, so that they can be manually mapped to 
the corresponding WordNet synsets. 
As a result, each triple (l, w, t) ∈ LxCVxV is mapped to the 
corresponding triple (l, rw, t) ∈ LxRCxV. Each 
representative concept r ∈ RC is now linked to a number of 
terms (given by the set { t ∈ V | (l, r, t) is a valid triple }), 
to be still disambiguated with respect to WordNet. 
Due to the strong semantic, possibly structural, correlation 
between a term t and a representative concept r, we chose 
to apply the Structural Semantic Interconnections (SSI) 
algorithm (Navigli and Velardi, 2004) for the 
disambiguation of these terms. A description of the 
algorithm is provided in the next section. 
After the disambiguation step, relation triples are finally 
encoded as (l, r, s) ∈ LxRCxC, where C is the complete set 
of WordNet concepts and RC ⊆ C (as representative 
concepts are still concepts). This allows the definition of 
our extended lexical resource as O = (C, R), where C is 
again the set of concepts, R = RWN ∪ { relatedness,
meronymy, attribute, property, quantity, predicate }, and 
RWN is the set of WordNet relations. Notice that, while 
relations in RWN are defined over CxC, relations in R \ RWN 
are defined over RCxC.
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Figure 1. Semantic relations connecting food#2 to other concepts. 
 
As a fragment of the extended resource, consider the 
semantic relations manually crafted for food#2 illustrated 
in Figure 1. 

3. Structural Semantic Interconnections 
SSI (Structural Semantic Interconnections (Navigli and 
Velardi, 2004)) is a word sense disambiguation algorithm 
based on structural pattern matching (Bunke and Sanfeliu, 
1990). It disambiguates words in contexts using a “core” 
semantic knowledge base including WordNet and other 
lexical resources. The algorithm consists of an initialisation 
and an iterative step.  
In a generic iteration of the algorithm the input is a list of 
co-occurring terms T = [ t1, …, tn ] and a list of associated 
senses I = ],...,[ 1 ntt SS , i.e. the semantic interpretation of T,
where itS is either the chosen sense for ti (i.e., the result of 
a previous disambiguation step) or the null element (i.e., 
the term is not yet disambiguated).  
A set of pending terms is also maintained, P =

}|{ nullSt it
i = . I is named the semantic context of T and 

is used, at each step, to disambiguate new terms in P.
The algorithm works in an iterative way, so that at each 
stage either at least one term is removed from P (i.e., at 
least a pending term is disambiguated) or the procedure 
stops because no more terms can be disambiguated. The 
output is the updated list I of senses associated with the 
input terms T.
Initially, the list I includes the senses of monosemous terms 
in T. If no monosemous terms are found, the algorithm 
makes an initial guess based on the most probable sense of 
the less ambiguous term. The initialisation policy is further 
adjusted depending upon the specific WSD task 
considered.  
During a generic iteration, the algorithm selects those terms 
t in P showing an interconnection between at least one 

sense S of t and one or more senses in I. Relevant 
interconnections are encoded in a context-free grammar 
describing meaningful lexico-semantic patterns. The 
likelihood for a sense S of being the correct interpretation 
of t is given by a function of the weights of patterns 
connecting S to other synsets in I.
In the case of collocation disambiguation, for each 
representative concept rw ∈ RC, its disambiguation context 
T can be populated with w (the defining word in the CV 
whose semantic interpretation is given by rw) and the set of 
terms t1, t2, …, tn related to rw by the respective relation 
triples (label1, rw, t1), (label2, rw, t2), …, (labeln, rw, tn)
extracted in the previous section. 
Then SSI can be applied to the context T = [w, t1, t2, …, tn], 
by fixing rw as the correct sense of w in I.
As an example, consider the representative concept 
restaurant#1, exposing, among the others, the following 
collocations: menu, chain, waiter, cafeteria.
The initial context T is given by [ restaurant, menu, chain,
waiter, cafeteria ]. I is initialised to [ restaurant#1, -, -, -, 
cafeteria#1 ] (cafeteria is monosemous) and P = { menu,
chain, waiter }. 
During the first iteration, SSI detects, among the others, the 
following interconnections between senses in I and the first 
sense of the word menu (“a list of dishes available at a 
restaurant”): 

#1restaurantmenu#1
gloss
→ (gloss pattern)

1cafeteria##1restaurantmenu#1
glossgloss
←→ (gloss+gloss pattern)

1cafeteria##1restaurantmenu#1
ofkindgloss −

←→ (gloss+hypernymy)

As a result, I and P are updated as follows:  
 
I = [ restaurant#1, menu#1, -, -, cafeteria#1 ]
P = { chain, waiter } 
 



During the second iteration, the fourth sense of chain is 
selected and added to I, thanks to the following semantic 
patterns: 

#1restaurantchain#1 restaurantchain#4
part-has

→→
−kindhas

 
(hypernymy+meronymy pattern)

#1restaurantchain#4
gloss

→ (gloss pattern)

menu#1#1restaurantchain#4
gloss

←→
gloss

 (gloss+gloss pattern)

After this step, I = [ restaurant#1, menu#1, chain#4, -, 
cafeteria#1 ] and P = { waiter }. Finally, waiter is also 
disambiguated. P is now the empty set, so SSI stops and its 
outcome is the list I = [ restaurant#1, menu#1, chain#4,
waiter#1, cafeteria#1 ]. For the sake of space we do not 
describe patterns supporting alternative sense choices 
(discarded by the algorithm because of their smaller 
weight). The semantic patterns identified by SSI are shown 
in Figure 2. For a description of the relation set and pattern 
grammar, and for an extensive running example, the 
interested reader can refer to the bibliography. 
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4. Experiments 
For our experiments, we focused on relatedness relations 
between nominal concepts, leaving the work on other kinds 
of relations (attribute, quantity, predicate, etc.) and 
different parts of speech to future experiments.  
A disambiguation context is then a set of terms t1, t2, …, tn
related to the same concept r, i.e. the set of terms contained 
in the triples (relatedness, r, t1), (relatedness, r, t2), …, 
(relatedness, r, tn). 
We identified 70 disambiguation contexts of different sizes 
(one for each selected representative concept), containing a 
total number of 815 terms to be disambiguated. These 
terms were manually disambiguated by two annotators, 
with adjudication in case of disagreement. The application 
of SSI to such contexts led to a precision result of 85.23% 
and a recall of 76.44%. The results, reported in Table 2(a), 
show that both recall and precision measures tend to grow 
with the context size |T|. The intuition for this behaviour is 
that larger contexts provide richer (and more expressive) 
semantic interconnections. 

Notice that, with respect to other tasks like general-purpose 
WSD, ontology learning, query expansion, etc., these 
disambiguation contexts contain terms with stronger 
interconnections, because collocations express a form of 
tight semantic relatedness. This explains the high precision 
results obtained with medium-size or large contexts 
(around 86.9% on average when 20 ≤ |T| ≤ 40). 
 

Table 2. Performances of simple (a) and enriched (b) 
SSI on different context sizes (|T|). 

 |T|=5 |T|=10 |T|=20 |T|=30 |T|=40 

Tot # terms: 175 170 160 150 160 
(a) Recall 66.86% 75.29% 78.75% 80.00% 82.52% 

Prec. 82.98% 82.58% 86.90% 86.96% 86.84% 

(b) Recall 75.43% 82.94% 83.13% 84.00% 88.13% 
Prec. 84.08% 83.95% 90.48% 86.30% 89.81% 

Then, we enriched the SSI lexical knowledge base with 
about 10,000 manually disambiguated relatedness relations, 
and extended the SSI grammar in order to match patterns 
including relatedness edges (some examples of patterns are 
shown in Figure 3).  
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Figure 3. Some examples of relatedness patterns added 
to the SSI grammar. 
 
In order to measure the improvement obtained on the same 
task as in Table 2(a), relations connecting concepts in the 
test set of 70 sets of collocations were excluded (35% over 
a total number of 10,000 relation instances, about 11 
relations per representative concept on average). The total 
number of “survived” relations actually used in the 
experiment was then 7,000. Such relations concerned 883 
representative concepts.  
The second experiment resulted in a significant 
improvement in terms of recall (82.58% in the average) 
with respect to the first run, while the increase in precision 
(86.84%, i.e. about +1.6%) is not striking. Table 2(b) 
shows that both measures tend to increase with respect to 



the first experiment for all context sizes |T| (with a minor, 
but still significant increase for larger contexts). 
The improvement in recall is chiefly motivated by the 
enrichment of the SSI knowledge base with relatedness 
relations, thus enabling semantic interconnections between 
previously unrelated concepts. Such interconnections are 
transversal in that they overcome the original structure of 
WordNet, founded on its taxonomical hierarchy and 
meronymy relations. 

5. Conclusions 
In this paper we presented a method for the semi-automatic 
enrichment on top of an existing, large-scale linguistic 
resource (we adopted WordNet). Building such a richer 
resource is still a complex task, as a huge number of 
relations should be extracted and validated. The 
introduction of representative concepts allows to focus on a 
restricted, though adequate, number of senses, covering the 
vast majority of WordNet synsets in terms of taxonomical 
subsumption. 
The application of the SSI WSD algorithm to the 
disambiguation of collocations is a crucial choice, in that 
collocation contexts (i.e. the set of terms related to a 
representative concept) reveal strong semantic 
interconnections. Furthermore, the enrichment of the 
pattern grammar with relatedness paths, as well as the 
extension of the SSI knowledge base with relatedness 
instances, showed major improvements in disambiguating 
such contexts. 
The definition of a bootstrapping method for extending our 
experiments to the complete set of representative concepts 
is ongoing. Following (Yarowsky, 1995) and subsequent 
works, such a method would select the best seeds to be fed 
back to the algorithm in order to iteratively increase its 
initial knowledge. The precision of SSI being very high, 
residual disambiguation errors could be possibly tolerated.  
SSI produces a justification of its sense choices in terms of 
the detected semantic patterns and their weights, since not 
all the patterns equally contribute to the choice of a specific 
sense. This constitutes a significant help for the subsequent 
manual validation of senses chosen by the automatic 
procedure. A tool for supporting non-expert annotators in a 
distributed environment in the complex process of sense 
selection and validation on a large scale is being developed 
in our laboratory (Navigli, 2005). Further support is 
provided by the tool in the form of semantic patterns for 
the detection of inconsistencies in the knowledge base 
being extended. 
Additional semantic and lexical patterns will also be 
included to the SSI grammar in order to take into account 
other kinds of crafted relations (e.g. attribute, property,
predicate, etc.). 

Finally we plan to apply the SSI algorithm with the 
improved knowledge base to tasks like Senseval-3 all 
words and gloss WSD, ontology learning and query 
expansion, expecting better performances than those 
obtained in the original runs. 
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