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Abstract
In this paper we present an approach aimed at en-
riching the Open Information Extraction paradigm
with semantic relation ontologization by integrat-
ing syntactic and semantic features into its work-
flow. To achieve this goal, we combine deep syn-
tactic analysis and distributional semantics using
a shortest path kernel method and soft clustering.
The output of our system is a set of automatically
discovered and ontologized semantic relations.

1 Introduction
One of the long standing problems of Artificial Intelligence is
Machine Reading (MR) [Mitchell, 2005; Etzioni et al., 2006;
Poon and et al., 2010], i.e. the problem of automatic, unsuper-
vised understanding of text. Over time the Natural Language
Processing (NLP) community has developed many tools for
this problem. One major approach to the MR problem is via
the Open Information Extraction (OIE) paradigm [Etzioni et
al., 2008; Wu and Weld, 2010], that is the extraction of a
large number of relations from huge corpora such as the Web.
However, these techniques are mainly concerned with the sur-
face, i.e. textual, realization of relations, without performing
any semantic or deep syntactic analysis.

Taking semantics explicitly into account is the main goal
of knowledge acquisition techniques, which represent an-
other important set of tools for tackling the MR problem.
Such approaches are typically based on a small number of
ontologized semantic relation types. One of the most well-
known representative approaches is the Never Ending Lan-
guage Learner (NELL) [Carlson et al., 2010], which focuses
on the continuous learning/extraction of a small, fixed num-
ber of semantic relations from the Web. Other approaches ex-
tract taxonomic structure information from raw text [Velardi
et al., 2013], or exploit semi-structured resources [Hovy et
al., 2013] such as WordNet [Miller et al., 1990], Wikipedia1

and Freebase2. The main outputs of these approaches are
taxonomies [Ponzetto and Strube, 2011], ontologies [Poon
and Domingos, 2010; Hoffart et al., 2013], semantic net-
works [Navigli and Ponzetto, 2012a; Nastase and Strube,

1http://en.wikipedia.org/
2http://www.freebase.com/

2013], relation extraction rules [Krause et al., 2012] and
enriched computational lexicons [Pennacchiotti and Pantel,
2006; Navigli, 2005]. These techniques have already been
shown to enhance the performance of automatic approaches
for a wealth of tasks related to the MR problem, such as
Word Sense Disambiguation [Navigli and Ponzetto, 2012b;
Miller et al., 2012], Information Extraction [Hoffmann et
al., 2011] and many others [Schierle and Trabold, 2008;
Fernández et al., 2011]. Nonetheless, one major drawback of
these approaches is that, either they are not “open”, i.e. they
are limited in the number of learned relation types [Carlson
et al., 2010; Hoffart et al., 2013; Nastase and Strube, 2013],
or they do not scale with the dimension of the input corpus
[Poon and Domingos, 2010].

Starting with Soderland and Mandhani [2007], middle
ground approaches have been proposed which combine the
“open” nature of OIE with the semantic awareness of knowl-
edge acquisition techniques. The last year, especially, has
seen an increasing interest in semantically-enhanced OIE
[Nakashole et al., 2012; Min et al., 2012; Moro and Nav-
igli, 2012; Sun and Grishman, 2012]. At the core of this
new paradigm lie the language phenomena of synonymy and
polysemy, both of which require deep language understand-
ing. However, none of the existing approaches fully addresses
these issues. In this paper we aim at filling this gap by pro-
viding the following novel contributions:
• we leverage syntactic analysis to improve the quality of

the extracted surface realizations of relations;
• we integrate distributional semantics into syntactic anal-

ysis and define a new kernel-based similarity measure
which we use for merging synonymous surface realiza-
tions into full-fledged semantic relations;
• we exploit category-based distributional semantics to

provide semantic type signatures for the acquired se-
mantic relations.

2 Related Work
Since the introduction of the OIE paradigm, the NLP com-
munity has begun to adopt a new point of view for the study
of relation extraction: extending the textual-based ideas of
the OIE paradigm towards a deeper and more complete un-
derstanding of text based on semantic analysis. Over the last
year several approaches have been presented to the problem
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of ontologizing semantic relations, i.e. automatically identi-
fying synonymous relational phrases together with a seman-
tic description of their typical arguments. A major diffi-
culty of the ontologization problem regards two well-known
features of language: synonymy and polysemy. One way
to deal with synonymy is to exploit the distributional se-
mantics of the relational phrases [Sun and Grishman, 2012;
Moro and Navigli, 2012]. First the context terms occurring
in a window surrounding the relational phrases are collected.
Then, cosine similarity is utilized for identifying relational
phrases with similar contexts. However, this approach suffers
from the problem of data sparsity, in that it needs the exact re-
lational phrases to occur several times within a given text. A
second approach exploits the arguments of the relationship, in
order to determine the similarity of relational phrases [Nakas-
hole et al., 2012]. However, the same arguments can be re-
lated by several semantic relations (e.g. married to, is a friend
of, started a company with).

As for the problem of polysemy, to date soft clustering
techniques have been applied. Soft clustering allows rela-
tional phrases to belong to one or more clusters. However,
the current approaches address this problem, either when the
set of semantic relations is small and known in advance [Min
et al., 2012], or by considering static methods, i.e. fixing
a threshold and clustering together those relational phrases
above the threshold [Moro and Navigli, 2012]. In contrast,
in this paper we present an approach to clustering relational
phrases into an unknown number of semantic relations by ex-
ploiting a soft version of the K-medoids algorithm [Han and
Kamber, 2006].

The state-of-the-art systems most closely related to our ap-
proach are PATTY [Nakashole et al., 2012] and WiSeNet
[Moro and Navigli, 2012], neither of which, however, ex-
ploits deep syntactic analysis or advanced soft clustering
techniques. In this paper we take the problem of the auto-
matic ontologization of semantic relations to the next level,
by integrating deep syntactic analysis together with distribu-
tional semantics into a new shortest path kernel method for
clustering synonymous relational phrases. The use of a soft
version of the K-medoids algorithm enables us to effectively
take into account the problems of synonymy and polysemy
associated with relational phrases.

3 Integrating Syntax and Semantics into OIE
Our approach consists of three steps: relation extraction, re-
lation ontologization and relation disambiguation. During the
first step we extract relational phrases from Wikipedia by ex-
ploiting deep syntactic analysis, e.g. we extract the relational
phrases is a member of, is a part of, is a territory of. In the
second step we define a shortest path kernel similarity mea-
sure that integrates semantic and syntactic features to auto-
matically build relation synsets, i.e. clusters of synonymous
relational phrases with semantic type signatures for their do-
main and range. For instance, we cluster together the rela-
tional phrases is a member of and is a part of, while we group
together, in a separate cluster, is a part of and is a territory
of. Finally, we disambiguate the relational phrases extracted
from Wikipedia using these relation synsets, obtaining a large

set of automatically ontologized semantic relations, e.g. we
recognize that the relational phrase is a part of is a synonym
of is a territory of when we consider the sentence Nunavut is
a part of Canada, while it is a synonym of is a member of for
the sentence Taproot Theatre Company is a part of Theatre
Communications Group.

3.1 Step 1: Relation Extraction
In this section we describe the approach that we used to ex-
tract a large number of relational phrases and relation in-
stances from Wikipedia.

Definition 1 A relational phrase π is a sequence of words
that comprises at least one verb and that can be used to ex-
press a semantic relation between a subject and an object.

For instance, a good relational phrase is: is located in; a bad
relational phrase is: and located in.

Definition 2 A relation instance is a triple (p1, π, p2) where
p1, p2 are concepts (i.e., Wikipedia pages) and π is a rela-
tional phrase.

For instance, (Nunavut, is a part of, Canada) is a valid rela-
tion instance. We build upon the heuristic presented by Moro
and Navigli [2012], summarized in the first part of Algorithm
1 (lines 4–13). During this first part, the algorithm analyzes
each sentence of each Wikipedia page and extracts a huge
number of relational phrases between hyperlink pairs using
shallow syntactic analysis (line 10 in Algorithm 1). In con-
trast to [Etzioni et al., 2008], this heuristic exploits the man-
ual annotations in Wikipedia, by extracting unambiguously
hyperlinked arguments. Even so, we still extract overspecific
and noisy information (e.g. is the name Gulliver gives his
nurse in Book II of and but then lost to). To overcome this
problem, first, we filter out all the relational phrases that do
not extract more than a minimum number η of relation in-
stances (lines 14–17 in Algorithm 1, see Section 4 for de-
tails on tuning). Second, and more importantly, we apply a
novel constraint to the surviving relational phrases based on
their syntactic structure. As we have already extracted rela-
tion instances, we propose a simplified and computationally
efficient3 test to check if each relational phrase relates its ar-
guments as subject and object. We build an artificial phrase
for each relational phrase π by concatenating the character
“x”, the relational phrase π and the character “y”, i.e. we ob-
tain “x π y”. Then we apply a dependency parser and check
whether “x” and “y” are marked as subject of a word in π
and object of a, not necessarily the same, word in π (see lines
18–22 of Algorithm 1). For example, the relational phrase is
located in satisfies the constraint (see Figure 1a), while the
relational phrase and located in does not (see Figure 1b).

3.2 Step 2: Relation Ontologization
As a result of the first step we obtain a set I of relation in-
stances and a set P of relational phrases (line 23 of Algorithm
1). In this second step we ontologize the relational phrases P .

3The whole Wikipedia corpus consists of 88 million sentences
with a mean length of 30 words, while using our approach we syn-
tactically parsed just half a million sentences with a mean length of
10.
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Algorithm 1 Extracting relation instances and relational
phrases from Wikipedia.
1: input: W , the set of Wikipedia pages.
2: output: I , the set of relation instances;

P , the set of relational phrases.
3: function EXTRACTRELATIONINSTANCESANDPHRASES(W )
4: I := ∅;P := ∅;
5: for each page ∈W do
6: for each sent ∈ page do
7: H(sent) := all the pairs of hyperlinks in sent
8: for each (h1, h2) ∈ H(sent) do
9: π := text between h1 and h2

10: if π contains a verb then
11: I := I ∪ {(h1, π, h2)}
12: count[π] + +
13: P := P ∪ {π}
14: for each π ∈ P do
15: if count[π] < η then
16: I := I \ {(p, π, q) ∈ I : ∃p, q ∈W}
17: P := P \ {π}
18: for each π ∈ P do
19: dG := depParser(“x ” + π + “ y”)
20: if according to dG, x is not a subject of a word in π or

y is not an object of a word in π then
21: I := I \ {(p, π, q) ∈ I : ∃p, q ∈W}
22: P := P \ {π}
23: return I, P

x is

located

in

y

nsubj
cop

prep

pobj

(a) (b)x

and

located

in

y

cc conj
prep

pobj

Figure 1: The dependency trees for the sentences x is located
in y and x and located in y.

Like any other language component, relational phrases are
affected by the well-known phenomena of synonymy (e.g. is
situated in and is located in) and polysemy4 (e.g. is part of
can be replaced with is a territory of and is a member of de-
pending on the context). To take into account these issues
we exploit soft clustering techniques to synergistically clus-
ter synonymous relational phrases, while at the same time let-
ting polysemous relational phrases belong to more than one
cluster. Finally, we create two semantic type signatures of the
subjects and objects considered by the relational phrases in
each cluster.

In order to perform this step, we consider three different
aspects of each relational phrase: its dependency structure,
the distributional semantics of its words and the semantics of
its arguments.

Distributional Semantics and Shortest Path Dependency
Kernel. Given a relational phrase π and the dependency
tree of the artificial phrase “x π y”, we define πsp as the

4Min et al. [2012] estimated that roughly 20% of relational
phrases can represent at least two different interpretations as dif-
ferent semantic relations.

sequence of words on the shortest path between x and y and
πsp[i] as the i-th word on the path. For instance, given π =
is located in we have πsp = (located, in) and πsp[2] = in
(see Figure 1a). Given two relational phrases π1 and π2, we
assume that π1 and π2 can be synonyms only if they share
the same sequence of dependency relations and semantically
close words within their shortest paths. We formulate this
assumption as follows:

sim(π1, π2) =



0, |πsp1 | 6= |π
sp
2 | or ∃i, s.t.

type(πsp1 [i], πsp1 [i+ 1]) 6=
type(πsp2 [i], πsp2 [i+ 1])

or dsim(πsp1 [i], πsp2 [i]) < θ1

g(π
sp
1 ,π

sp
2 )

Z
otherwise

(1)

where type(πspj [i], πspj [i+1]) is the syntactic dependency be-
tween the i-th and (i + 1)-th words of the shortest path πspj ,
dsim(w1, w2) is a measure of semantic similarity between
words and g(πsp1 , π

sp
2 ) is our kernel, described hereafter, and

Z is a normalization factor.
Since state-of-the-art kernel methods are either used to

find synonymous phrases without considering the special role
of the shortest paths between the arguments of the phrases
[Croce et al., 2011], or they are exploited to learn a classifier
for a specific set of relations [Bunescu and Mooney, 2005],
we define a new kernel similarity measure based on our short-
est path assumption.

Our kernel computes the similarity score between two re-
lational phrases sharing their shortest path as follows:

g(πsp1 , πsp2 ) =

|πsp1 |∑
i=1

dsim(πsp1 [i], πsp2 [i]) + f(πsp1 [i], πsp2 [i])

f(n1, n2) =
∑

w1∈Children(n1),w1 6∈π
sp
1 ,

w2∈Children(n2),w2 6∈π
sp
2 ,

type(n1,w1)=type(n2,w2)

dsim(w1, w2)

Our kernel sums the distributional similarity of the words
along the considered shortest paths and that of their children
(i.e. the function f(n1, n2) in the above equation). Consider
π1 = is a territory of and π2 = is a part of. We start by
comparing the first word of each shortest path, i.e. territory
and part (see Figure 2), and, since they are not the same, we
consider their distributional similarity score which is equal to
0.8. Then we consider the corresponding children (i.e. is and
a), that are not on the shortest paths, of these nodes. In this
case, they are equal in number, type of edges and words, and
so we add 1 for the word is and another 1 for the word a to
our score. Finally, we do the same for the last node on the
shortest path of, obtaining a score of 3.8. We then normalize
this score by the maximum number of considered words, i.e.
4, obtaining a similarity score of 0.95. Instead, the similarity
score between is a territory of and is a member of is 0.75.

To calculate the aforementioned distributional similarity
measure dsim(w1, w2) between the wordsw1 andw2, we ex-
ploit the distributional hypothesis. Given a wordw, following
Mitchell and Lapata [2010], we define a distributional vector
distrV ectl(w) for the words occurring in the left window of
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x is a

territory
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y

nsubj cop det

prep

pobj

x is a

part

of

y

nsubj cop det

prep

pobj

x is a

member
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y

nsubj cop det
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pobj

Figure 2: The shortest paths (in bold) between x and y of the
following phrases: x is a territory of y, x is a part of y, x is a
member of y.

w in which each component is computed as the probability of
a given context word cw to occur on the left of w divided by
its prior probability, Pleft(cw|w)

Pleft(cw) . Similarly, we define the dis-
tributional vector distrV ectr(w) for the context words that
appear to the right of the word w. The probabilities are esti-
mated from a big corpus (see Section 4 for details). Then, we
compute the cosine similarity of the left and right vectors:

dsleft(w1, w2) = cos(distrV ectl(w1), distrV ectl(w2))

dsright(w1, w2) = cos(distrV ectr(w1), distrV ectr(w2)),

and finally, by applying the harmonic mean between the two
scores above, we obtain a single value of distributional simi-
larity for each pair of words:

dsim(w1, w2) = HaMean(dsleft(w1, w2), dsright(w1, w2)).

Distributed Soft Kernel K-medoids Algorithm. We will
now describe the clustering algorithm that we use to build the
set Σ of relation synsets.

Definition 3 A relation synset σ is a set of synonymous rela-
tional phrases.

For instance, σ = {is a territory of, is a part of}. To obtain
the set Σ of relation synsets we exploit a soft version of the K-
medoids algorithm, whose pseudocode is shown in Algorithm
2. As our initial centers C we select all the relational phrases
in P (line 4), thereby avoiding tuning the number of clusters
K. We use the K-medoids algorithm instead of K-means be-
cause we cannot explicitly compute the centroids, but instead
have to select the best approximation by finding the relational
phrase that maximizes the similarity scores against the other
relational phrases in the cluster [Zhang and Rudnicky, 2002].

Next, we start the distributed soft kernel K-medoids algo-
rithm. We define a membership matrix M which describes
the assignment of relational phrases to clusters. Because we
selected each relational phrase as an initial center of a clus-
ter, M is a |P | × |P | square matrix. The i-th row contains
the membership scores of the i-th relational phrase with re-
spect to the various clusters, while the j-th column contains
the membership scores of the relational phrases against the
j-th cluster.

Algorithm 2 Distributed Soft Kernel K-medoids
1: input: P , the set of relational phrases.
2: output: Σ, the set of relation synsets.
3: function SOFTCLUSTERS(P )
4: C := P
5: repeat
6: Distributed update of M using equation 2;
7: C′ := C;
8: C := Distributed update of C using equation 3;
9: until C′ 6= C

10: return Σ := Extract the relation synsets from M ;

During the first phase of the iterations, we update the mem-
bership matrix with the new membership scores with respect
to the current centers (line 6 in Algorithm 2). We distribute
this computation over all the relational phrases, as this phase
requires only the old membership scores of the considered
relational phrase and the similarity scores against the current
centers. We use the following equation to update the mem-
bership score of a relational phrase π against the i-th cluster
represented by its center ci ∈ C:

newWt(π, i) =
(et − 1)Mt−1(π, i) + sim(π, ci)

et

Mt(π, i) =

{
newWt(π, i), if newWt(π, i) > θ2.

0, otherwise.
(2)

where t is the number of the current iteration of the algorithm.
We use an exponential update of the membership scores to en-
sure a smoother convergence of the algorithm. Moreover, we
discard all the membership scores less than a threshold θ2 so
as to limit the number of clusters each relational phrase be-
longs to (see Section 4 for tuning details). During the second
phase of the clustering algorithm we compute the new centers
C for each cluster Ci = {πj : M(j, i) > 0} in the following
manner:

ci = argmax
π?∈Ci

∑
π∈Ci

sim(π, π?). (3)

In order to select each center ci, Formula 3 considers only the
relational phrases in the i-th cluster Ci, so we can distribute
the computation over the number of clusters (line 8 in Algo-
rithm 2). Notice that, as we select the best centroid approxi-
mation, some of the clusters end up being merged during the
iterations by selecting the same relational phrase as center.

We run the algorithm until the centers remain stable (the
convergence is assured by the exponential update) and then
we extract, from the membership matrix, the description of
the automatically created relation synsets Σ, i.e. we create a
set of synonymous relational phrases for each column in the
membership matrix by selecting those relational phrases with
a positive membership score.

Semantic Type Signatures of the Relation Synsets. We
now describe the construction of the semantic description of
the relation synsets that will be used to identify which kind of
arguments a relation synset considers and that will be used in
the next step to disambiguate ambiguous relational phrases.
Definition 4 The semantic type signatures for the domain
(i.e. the concepts occurring to the left) and range (i.e. the
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concepts occurring to the right) of a relation synset σ are two
distributional vectors d(σ) and r(σ) of Wikipedia categories.

Since the arguments of our relation instances, extracted
during the first step (see Section 3.1), are Wikipedia pages,
we can exploit the categories associated with each Wikipedia
page to build semantic type signatures for the domain and
range of relational phrases.

We define a category vector catV ectd(π) for the con-
cepts in the domain of π. Each component of the vector is
computed as the probability that a given category will ap-
pear within the domain of π divided by its prior probability:
Pdomain(category|π)
Pdomain(category)

. Similarly, we define the category vector
catV ectr(π) for the range of π.

In order to avoid overspecific Wikipedia categories and to
keep the number of dimensions low, we consider only the
categories which are at distance ≤ 2 from the root5 of the
Wikipedia category hierarchy. In this way we obtain a set C
of 657 top-level categories. Given a relational phrase π we
have at least η Wikipedia pages in the domain and range of
π (see lines 14–17 of Algorithm 1). We count the number of
times we reach each top-level category in C starting from the
categories of the Wikipedia pages and going up the Wikipedia
category hierarchy. Using these counts we estimate the afore-
mentioned probabilities for the domain and range of π.

To extend these category vectors from relational phrases to
relation synsets we merge (using a weighted arithmetic mean
on the number of extracted relation instances) each category
vector of the relational phrases contained in the same relation
synset. As a result, we obtain two category vectors d(σ) and
r(σ) for each relation synset σ, i.e. our semantic type signa-
ture of σ. In Table 1 we show some of the obtained relation
synsets.

3.3 Step 3: Relation Disambiguation
After the first step we obtained a set I of relation instances
and a set P of relational phrases. Then, in the second step we
ontologized the relational phrases in P obtaining a large set
of relation synsets Σ. Now, in the third step, we disambiguate
each textual relation instance in I with the semantically clos-
est relation synset in Σ.

To disambiguate a relation instance (p1, π, p2) ∈ I we con-
sider all the relation synsets Σπ = {σ ∈ Σ : π ∈ σ} that con-
tain π and we select the semantically closest relation synset:

(p1, argmax
σ∈Σπ

semsim(p1, σ, p2), p2).

Given a relation synset σ with its semantic type sig-
natures d(σ) and r(σ) and given the distributional vec-
tors catV ect(p1) and catV ect(p2) computed similarly to
catV ectl(π) and catV ectr(π), we calculate the cosine simi-
larity between them:

ssd(p1, σ) = cos(catV ect(p1), d(σ))

ssr(p2, σ) = cos(catV ect(p2), r(σ)).

Then we combine these values into their harmonic mean:
semsim(p1, σ, p2) = HaMean(ssd(p1, σ), ssr(p2, σ)).

5en.wikipedia.org/wiki/Category:Main topic classifications

Domain Relation Synset Range
Arts {is located in the small village of, . . ., Places

is located in the small rural town of}
Corporate {is a member of an, . . ., Corporate

groups were the members of the} groups
Geography {is a valley of, is a zone of, . . ., Geography

is a territory of} by place

Table 1: Examples of relation synsets together with their top
Wikipedia category for their domain and range.

4 Experimental Setup
Step 1. To run our relation extraction step we used the En-
glish Wikipedia dump of December 1st, 2012. To fix the
value of our parameter η = 2 (see line 15 of Algorithm 1) we
manually evaluated the accuracy of a random set of 250 rela-
tional phrases for η = {1, . . . , 5}. To syntactically parse the
phrases we used the Stanford parser [Marneffe et al., 2006].

Step 2. To obtain the distributional description of the words
within the relational phrases we used Gigaword [Parker et al.,
2011]. The probabilities of the distributional vectors of do-
main and range were also estimated from Gigaword, using
the optimal parameters of Mitchell and Lapata [2010]. To
set up the two thresholds θ1 and θ2 (see Formula 1 and 2)
needed by our system we built a tuning set composed of 200
manually clustered relational phrases. Then we selected the
values that maximized the pair-counting F-Measure (i.e. the
number of relational phrase pairs clustered in the same way
as the tuning set). We found the following optimal values:
θ1 = 0.6, θ2 = 0.86.

Evaluations. We used Amazon Mechanical Turk for our
evaluations. To ensure high-quality annotations by compe-
tent Turkers we built a gold standard for each evaluation task
which will be described in the following section. To evaluate
the agreement between judges we used the free-margin multi-
rater kappa [Warrens, 2010] obtaining an agreement greater
than 85% for each setup.

Statistics. During the first step we extracted 2, 271, 807 re-
lation instances with 278, 945 distinct relational phrases. As
a result of step 2, after 80 iterations, we obtained 29, 440 rela-
tion synsets with two or more relational phrases and 155, 207
relation synsets with a single relational phrase. The number
of ambiguous relational phrases, i.e. occurring in multiple
synsets, was 18, 457 with a mean ambiguity of almost 3.

5 Experiments
Step 1: Ambiguous relation instances. We created a ran-
dom sample of 2, 000 relation instances extracted during the
first step. For each relation instance (p1, π, p2), we presented
three judges with the title of p1 and p2 and the relational
phrase π together with the first paragraph of the Wikipedia
page of p1 and p2. Then we asked if the relation instance
was correct. The results are shown in the first row of Ta-
ble 2 together with the accuracy of our closest competitor,
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Task Our approach WiSeNet
relation instances 91.8% 82.8%
relational phrases 94.5% 79.8%
relation synsets 85.0% 82.1%

disambiguated relation instances 88.6% 76.7%

Table 2: Accuracy of the outputs of our approach versus
WiSeNet.

i.e. WiSeNet. An error analysis identified the wrong hyper-
links annotation in Wikipedia as the main class of error, e.g.
(Rajura, lies in the heart of the, Coal) is extracted from the
sentence: Rajura lies in the heart of the coal- and cement-
producing areas of Maharashtra, where coal is a hyperlink
and Maharashtra is not linked.

Step 1: Relational phrases. We created a second random
sample of 2, 000 relational phrases. We presented the judges
with each relational phrase and we asked if they could think
of a subject and an object that would fit the phrase. The re-
sults are shown in the second row of Table 2. An error analy-
sis identified the wrong syntactic parsing of relational phrases
as the main class of error, e.g. x site and was designated a y in
which site is considered as a verb instead of a noun compound
modifier.

Step 2: Relation synsets. The third sample consisted of
2, 000 randomly chosen relation synsets which contained at
least two relational phrases. We asked the judges if two re-
lational phrases randomly chosen from the considered rela-
tion synset could be exchanged with each other to express the
same semantic relation. The results are shown in the third
row of Table 2. Antonymy was identified as the main class of
error, i.e. we cluster together was a predecessor of and was
the successor of.

Step 3: Disambiguated relation instances. In this eval-
uation we considered only the relation instances (p1, π, p2)
which contained relational phrases associated with more than
one relation synset, i.e. ambiguous relational phrases which
we disambiguated with our relation synsets in step 3. We
created a random sample containing 2, 000 of these disam-
biguated relation instances. We presented three judges with
the title of p1 and p2 and a randomly chosen relational phrase
from the disambiguated relation synset together with the first
paragraph of the Wikipedia page of p1 and p2. We then asked
if the relation instance was correct, as in the first evaluation.
The results are shown in the fourth row of Table 2.

Discussion. In conclusion, our four evaluations showed the
high quality of our outputs and greater accuracy over that re-
ported by WiSeNet. More importantly, the last evaluation on
the disambiguated relation instances shows that our interme-
diate steps are strong, as we maintain a small gap (roughly
3%) between the accuracy of the relation instances extracted
during the first step and the relation instances disambiguated
in the last step, while our closest competitor has a gap of more
than 6%.

Gold Standard Our approach PATTY YAGO2

163
129 126 31

DBpedia Freebase NELL
39 69 13

Table 3: Number of semantic relations covered by different
resources.

5.1 Coverage of Semantic Relations
To assess the coverage of the extracted semantic relations we
compared our relation synsets against a public dataset de-
scribed in [Nakashole et al., 2012]. This dataset is made up of
163 semantic relations manually identified in five Wikipedia
pages about musicians. The dataset’s authors calculated the
number of these relations covered by well-known knowledge
bases, i.e. YAGO2 [Hoffart et al., 2013], DBpedia [Auer et
al., 2007], Freebase [Bollacker et al., 2008], NELL [Carlson
et al., 2010] and PATTY [Nakashole et al., 2012] (see Table
3). As was done in [Nakashole et al., 2012], we manually
associated each of these semantic relations with one of our
relation synsets that best represented the considered seman-
tic relation in terms of relational phrases and semantic type
signatures, obtaining an increase in the number of recognized
semantic relations over the best system, i.e. PATTY. As can
be seen from Table 3, the number of semantic relations con-
tained in the other resources is considerably lower, showing
that those resources are still missing a lot of useful infor-
mation. In contrast, our approach and PATTY demonstrate
their ability to find and extract a wealth of semantic relations.
Moreover, in contrast to PATTY, our approach takes into ac-
count the phenomenon of polysemous relational phrases.

6 Conclusions and Future Work
We presented an approach that provides a novel integration of
automatic ontologization of semantic relations into the OIE
paradigm by exploiting syntactic and semantic analysis. We
demonstrated the quality of our approach by carrying out ex-
tensive manual evaluations and by comparing our approach
against state-of-the-art resources, with competitive results.

The main contributions of this paper can be summarized as
follows: i) we presented an efficient way to integrate syntax
into the OIE workflow; ii) we introduced a new kernel simi-
larity measure that combines syntax and distributional seman-
tics; iii) we presented an algorithm for associating a semantic
description with the typical arguments of a set of synonymous
relational phrases, and which can also be exploited to disam-
biguate semantic relation instances.

We will release all the data to the research community
(http://lcl.uniroma1.it/wisenet). As future work we plan to
extend our current approach from binary to n-ary semantic
relations, test the approach on other languages and, most im-
portantly, build a hierarchical structure on the relation synsets
along the lines of PATTY.
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