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Abstract

In this paper I look at Natural Language Under-
standing, an area of Natural Language Processing
aimed at making sense of text, through the lens of
a visionary future: what do we expect a machine
should be able to understand? and what are the key
dimensions that require the attention of researchers
to make this dream come true?

1 Introduction

Natural Language Processing (NLP) is a challenging field of
Artificial Intelligence which is aimed at addressing the issue
of automatically processing human language, called natural
language, in written form. This is to be achieved by way of
the automatic analysis, understanding and generation of lan-
guage. While all these tasks are difficult for a machine to
perform, Natural Language Understanding (NLU) — which
involves a semantic (and a pragmatic) level — is particularly
challenging owing to the pervasive ambiguity of language
and the subtly different perceptions humans have of word,
phrase and sentence meanings. NLU aims to make sense
of language by enabling computers to read and comprehend
text. The key question is, therefore, how to derive meaning
from natural language by overcoming its inherent complex-
ities. NLU, in turn, is expected to enable one of the long-
standing goals of Al, that is, machine reading [Etzioni et al.,
2007]. And what would a machine “learn” as a result of read-
ing and understanding text, and storing a semantic represen-
tation of it? Well, new scenarios would open up whereby the
machine became enabled to analyze, aggregate and reason on
huge amounts of information and perform tasks that would be
precluded to humans, simply because of the scale and time in-
volved.

To make this dream come true, however, we need comput-
ers capable of inputting text and outputting semantic repre-
sentations, something that requires a full-fledged NLP archi-
tecture in multiple languages. But while recent progress has
made it possible to perform text processing in dozens of lan-
guages up to the syntactic level, semantic analysis is still a
big challenge, especially if we want the machine to be able
to comprehend text in arbitrary languages. Recent and ongo-
ing work in this direction has been aiming to develop algo-
rithms that can process open text and produce structured se-

mantic representations which, ideally, are independent of the
language they were obtained from and of the way they were
expressed in that language. Before delving into the various
dimensions and “modes” of use, I will briefly review some
history of NLU.

2 Before You Get Started (a Brief History)

The story of Al has its origin in “an ancient wish to forge the
gods” [McCorduck, 2004]. But can we communicate with
our creatures? In history, mythological gods used to talk to
humans and, indeed, Al and NLP are inextricably bound to
each other: when thinking about what might provide proof
of intelligence, as early as 1950 it occurred to Alan Turing
that language was the natural answer [Turing, 1950]. And in
fact we humans often determine the intelligence of our peers
based on verbal communication.

Ironically, the earliest form of (only seemingly) intelligent
NLU was simply a reflection of our expectations: the Eliza
experiment, after the initial illusion of understanding it gave,
hinted at the fact that processing language just as mere strings
is not what humans do. Text implies knowledge of concepts
and of the real world, it requires further reasoning, it arouses
emotions. The dream of formalizing, encoding and later ex-
ploiting such knowledge was nurtured and advanced with
groundbreaking work on frames [Minsky, 1975] and large
projects that are still alive and thriving today, such as Word-
Net [Miller et al., 1990], FrameNet [Baker et al., 1998] and
BabelNet [Navigli and Ponzetto, 2012].

The surge of interest in statistical techniques for NLP
and supervised machine learning in the 1990s led to main-
stream approaches centered around probabilistic frameworks
and high-performance classifiers that could focus on a spe-
cific task in processing text, such as tokenization, part-of-
speech tagging and syntactic parsing. However, the most im-
pressive NLP application made available to the general public
was statistical machine translation, which, after a first series
of word-based approaches put forward by IBM, progressed
in the 2000s to the key idea of translating phrases and not
just words, and then recombining the translated phrases in
the target language [Koehn er al., 2003]. More recently, the
advent of deep learning has again revolutionized the way ma-
chine translation is performed, attaining even better perfor-
mances with results that are surprisingly good. The ques-
tion remains, however, as to whether the system really under-
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stands the text being translated, or, more realistically, whether
it merely mimics the Chinese room metaphor [Searle, 1980].

While neural networks have brought important improve-
ments in virtually all areas of Natural Language Processing,
it is the popularization of word embeddings that has changed
the landscape of most lexical-semantic tasks, that is, those
tasks which deal with the meaning of language. At the core
of this issue lies the lexical ambiguity of language, a prob-
lem addressed by a key field in computational lexical se-
mantics, namely Word Sense Disambiguation [Navigli, 2009,
WSD]. If we look back at the 1990s and the early 2000s,
WSD was performed mainly in the English language, with
a fine-grained inventory of senses and disappointing results
which struggled to surpass 65% accuracy in an all-words dis-
ambiguation setting. Today, thanks to the introduction of a
multilingual knowledge resource like BabelNet [Navigli and
Ponzetto, 2012], we have word sense disambiguation systems
that can scale to hundreds of languages while at the same time
also performing the entity linking task [Moro et al., 2014].
But while the most recent LSTM-based approaches achieve
above 70% accuracy on difficult datasets [Yuan et al., 2016;
Raganato er al., 2017], several limits still have to be over-
come, which I will discuss in the remainder of this paper.

As we move on from words to sentences and move towards
enabling machine comprehension of text, it is important to fo-
cus on predicates and the expected roles that their arguments
can potentially fill. This task, called Semantic Role Label-
ing (SRL) [Gildea and Jurafsky, 2002], consists of automat-
ically detecting the semantic arguments of a given predicate,
typically the focus verb of a sentence, and classifying such
arguments into their specific roles. First, although frameset
repositories such as PropBank and FrameNet paved the way
for the task, a number of issues inherently affect them, among
which we cite: partial coverage of the lexicon, low coverage
of languages, paucity of large-scale training data. These is-
sues are even more important for the more general task of
semantic parsing, whose objective is to map sentences to for-
mal representations of their meaning. On the positive side,
semantic parsing goes deeper in understanding language, and
is therefore the task that, more than any other, would seem to
hold the potential to achieve the ambitious objective of ma-
chine reading.

3 Modes of Use
3.1 The Revolution of Deep Learning

The last few years have seen a revolution in the way NLP is
implemented and innovated thanks to the (re)introduction of
neural networks and deep learning. The key improvements
over pre-neural approaches are undoubtedly the considerable
reduction of data sparsity and the compactness of the lexical
representations. These come, however, at the cost of flatten-
ing information and, at least initially, conflating the mean-
ings of ambiguous words into a single vector representation.
More importantly, the biggest challenge of neural approaches
is their accountability in the future, i.e., the ability to explain
their outputs in a way that makes it possible to apply reme-
dies. While this is an obvious issue for driverless cars, it is
also important that an intelligent system should be able to ex-
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plain the process followed for understanding text, especially
if a decision has to be taken (e.g., in booking a restaurant or
fixing an appointment by interacting with a vocal assistant).

3.2 Explicit vs. Implicit

This brings us to the question of whether meaning represen-
tations should be implicit or explicit, or maybe both.

The implicit approach. Much of the work in lexical se-
mantics is currently centered around learning and exploit-
ing embeddings of words, contexts and sentences, something
which comes naturally from the training process of neural
networks, from the simplest feed-forward networks to Long-
Short Term Memory (LSTM) architectures. In this scenario,
we have the conflation of senses of the same word into a sin-
gle latent word representation. However, this conflation is
somewhat compensated for by training on large numbers of
word sequences, for instance by using context [Melamud et
al., 2016] or sentence vectors [Yuan et al., 2016] to perform
the NLU task.

The explicit approach. A different strand of work in se-
mantic vector representation stems from the use of lexical-
semantic knowledge resources to link vectors with explicit
concept entries, such as the word senses and synsets avail-
able in the WordNet computational lexicon [Miller et al.,
1990]. The big advantage of this approach lies in its ca-
pability of discriminating between the senses of the various
words and, more importantly, to give adequate coverage to in-
frequent meanings which, nevertheless, might play a crucial
role within a given domain (e.g., the predominant meaning of
bus is clearly the vehicle, but in a computer science text the
dominant usage would surely shift towards the hardware bus
meaning), a point which I cover in more detail in Section 3.6.
A second big advantage of the explicit approach is that scal-
ing to multiple languages is made easy (this point is discussed
in more detail in Section 3.8).

Explicit and implicit together. Recent developments have
shown that the implicit and explicit approaches can live to-
gether: vector representations for senses and synsets can be
embedded in the same vector space as word representations.
Among these, we cite the SensEmbed sense representations
that are obtained by inputting sense-annotated text to learn
word and sense embeddings in the same space [Iacobacci
et al., 2015]; AutoExtend, a lemma-sense-synset constraint-
based approach [Rothe and Schiitze, 2015]; the NASARI em-
bedded representations of synsets [Camacho-Collados et al.,
2016], where a synset embedding is given by the weighted av-
erage of the embeddings of the most relevant words which are
used in a subcorpus to describe the concept; DeConf [Pilehvar
and Collier, 2016], where sense vectors are created with the
constraints that the representations of senses of the same word
should be close to their word representation while also being
close to sense-specific biasing words; SW2V [Mancini et al.,
2017], where the CBOW word2vec architecture is extended
to include input and output senses obtained automatically via
a knowledge-based approach (cf. Section 3.7).
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3.3 Word Senses: Which Representation?

Interestingly, the choice between an implicit or an explicit
representation mostly concerns the lexical level. As we focus
on any of the key lexical semantic tasks, from WSD to SRL
and semantic parsing, we see that — independently of the in-
put, internal and output representations a neural network ar-
chitecture processes — systems have to assign explicit labels
from an existing inventory, unless we resort to an unsuper-
vised approach (word sense induction [Navigli, 2009] or un-
supervised SRL, cf. Section 3.7). We therefore now provide
a review of the main inventory options for word sense repre-
sentation.

WordNet [Miller et al., 1990]. The oldest wide-coverage
computational lexicon of English, a project started in 1985,
is still very actively used, thanks to its organization of lex-
ical knowledge in synsets (synonym sets) based on psy-
cholinguistic principles. Much has been written on the lim-
its of the fine granularity of WordNet and several, non-
conclusive proposals have been put forward which make
sense distinctions coarser [Navigli, 2006; Snow et al., 2007;
Hovy et al., 2006]. Today, with the possibility to mix im-
plicit and explicit approaches, the issue is partially mitigated
because fine-grained senses of a word will be close in the se-
mantic vector space. However, gold-standard datasets from
the Senseval and SemEval competitions are still annotated
with WordNet senses, which forces WSD systems to work
with that level of granularity. The only exceptions are the two
coarse-grained datasets created at SemEval-2007: the current
state of the art is in the range of 72-74% for fine-grained WSD
[Raganato er al., 2017; Yuan et al., 2016] and 84% for coarse-
grained WSD [Moro et al., 2014].

Oxford Dictionary of English and proprietary resources.
The Oxford Dictionary of English (ODE) and other propri-
etary resources like the New Oxford American Dictionary
(NOAD) have been used in some work to tackle some of the
limits of WordNet [Navigli, 2006; Yuan et al., 2016]. ODE
and NOAD, in fact, group senses into homonyms, core senses
and subsenses, which makes it easy to select the most suitable
granularity based on the task at hand. However, this comes
at the cost of preventing the research community from using
this data widely and, because of this, lacking training data.
Indeed, the biggest merit of WordNet, which has led to its
widespread adoption, is its free availability. An endeavour in
the direction of making such precious resources contribute
to the research in NLU is offered by the ELEXIS project,
which aims to create a European Lexicographic Infrastruc-
ture thanks to which open and proprietary resources will live
in a common, interoperable space.

BabelNet [Navigli and Ponzetto, 2012]. The most recent
large-scale work aimed at providing an inventory of mean-
ings, BabelNet! brings together the lexical-semantic knowl-
edge available in WordNet, as well as wordnets in other lan-
guages [Bond and Foster, 2013, Open Multilingual Wordnet]

"http:/babelnet.org
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and the most widespread crowdsourced resources such as
Wikipedia, Wiktionary and, more recently, Wikidata. Babel-
Net scales the WordNet synset model to include lexicaliza-
tions in multiple languages: a multilingual synset is a collec-
tion of senses coming from the various resources interlinked
in BabelNet. As a result, WSD in arbitrary languages is en-
abled [Moro er al., 2014] and training and test data can be
annotated with BabelNet synsets which implicitly provide an-
notations to the various resources from which each synset is
made up.

3.4 Semantic Roles: Which Representation?

We now move from word senses to semantic roles, which ex-
press the abstract roles taken by the predicate arguments in a
given event and define the possible classes used for SRL.

FrameNet. Based on a theory of meaning called Frame Se-
mantics [Fillmore, 1982], FrameNet [Baker ef al., 1998] is a
lexical database of English at the core of which are seman-
tic frames, i.e., manually-curated conceptual structures that
describe events, relations or entities, and the participants that
are involved in them. In contrast to the other mainstream re-
sources for SRL, frames encode an abstract notion of event
which can be expressed with different verbs and nouns. The
dataset comes with thousands of sentences annotated with
frames. Coverage of the English FrameNet is limited to
13640 lexical units, among which 5200 verbal units, around
half of which are marked as finished.

VerbNet. A different approach is taken by VerbNet [Kipper
et al., 2000], which provides a large lexicon of English verbs,
organized hierarchically with mappings to other resources
like WordNet and FrameNet. Verbs are arranged into Levin’s
verb classes [Levin, 1993], so as to preserve syntactic and se-
mantic coherence within each class. Because it provides addi-
tional information, such as thematic roles and hierarchically-
organized selectional restrictions for each class, VerbNet is
the most complex of the SRL resources. However, it is not
widely adopted for the SRL task.

PropBank. A more recent resource is PropBank [Palmer et
al., 2005], a text collection manually annotated with verbal
propositions and their arguments. In contrast to FrameNet,
PropBank is centered around the linguistic notion of verb,
rather than the more abstract notion of frames. Interestingly,
PropBank was originally designed with the idea of SRL in
mind, and this is one reason why it remains closer to the
syntactic level. All of the English CoNLL datasets for SRL
are annotated with PropBank framesets.

There are two main limitations affecting semantic roles.
First, although frameset repositories paved the way for the
SRL task, two key issues inherently affect them. First, their
coverage of English verbs is limited to some thousand items,
typically below 30% of the overall set of verb meanings
(e.g., compared to WordNet). Therefore SRL systems have to
face the additional difficulty of not knowing whether a low-
probability labeling is due, or not, to poor coverage of that
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verb and its roles in the reference resource. A second, cru-
cial issue, related to the above, is that these resources cannot
easily scale to a multitude of languages, nor are they intercon-
nected across languages. Only sporadic research has focused
on providing similar resources in other languages, with even
lower coverage than English, unfortunately.

3.5 Semantic Parses: Which Representation?

As we move from SRL to semantic parsing, things get more
complex. Determining which representation should be used
to describe a sentence’s semantics involves choosing among
the many existing representations, ranging from the Dis-
course Representation Theory used in the Groningen Mean-
ing Bank [Basile et al., 2012] to the Universal Conceptual
Cognitive Annotation [Abend and Rappoport, 2013, UCCAI,
and the Abstract Meaning Representation (AMR) formalism
[Banarescu et al., 2013]. This last representation, which
adopts PropBank for its predicates, is gaining increasing at-
tention from the NLP community, with several recent ap-
proaches to semantic parsing producing AMR representations
[Foland and Martin, 2017; Damonte et al., 2017] and a rela-
tively large corpus, the AMR Bank?, containing some tens of
thousands of sentences annotated with AMR graphs.

3.6 Word Sense and Semantic Role Skewness

We have known that words follow a Zipfian distribution, i.e.,
that the word types that occur within a text are distributed
according to a power law [Zipf, 1935], for more than a cen-
tury. More recent studies also tell us that word senses are dis-
tributed according to some power law, too [Kilgarriff, 2004].
This implies that the most frequent sense of an ambiguous
word will occur on average two thirds of the time: this results,
first, in a hard-to-beat baseline calculated by counting senses
from training data, and, second, in making it hard for a WSD
system to discriminate between more than two, sometimes
three, most frequent senses of a word, which would already
account for 94% of the occurrences (in SemCor). This opens
up the question as to whether it even makes sense to aim for
disambiguating very infrequent senses, something that might
be done better with knowledge-based approaches to WSD.
As regards SRL, this phenomenon is even more ampli-
fied, as the two predominant proto-roles, i.e., proto-agent and
proto-patient (respectively, ARG0O and ARG1 in PropBank)
have the widest prevalence, so the doubt is whether current
supervised SRL systems are really grasping the semantics of
sentences, or are just classifying the two predominant classes
correctly, while neglecting the other infrequent roles.

3.7 To Supervise or Not to Supervise

Supervised vs. Unsupervised. The supervised paradigm,
where we train a machine learning system with linguistic
items tagged with the most suitable classes, works well in the
presence of an adequate amount of annotated data. Unfortu-
nately, however, while we could come up with 17 universal
part-of-speech classes for each of which it is easy to provide
tens of thousands of example occurrences, an equivalent ef-
fort in computational lexical semantics is rendered more com-

*https://amr.isi.edu/

plex by the lack of agreement as to which inventories and for-
malisms to use (cf. Section 3.3-3.5) and the problems asso-
ciated with each of them. A way out is to avoid predefined
classes, which makes the problem unsupervised and paves
the way to using huge amounts of raw text. In all the three
tasks (WSD, SRL and semantic parsing) we have seen un-
supervised approaches: graph-based, probabilistic and neural
Word Sense Induction, unsupervised SRL, and semantic pars-
ing without training data. However, the unsupervised task
performs poorly and is recommended only for low-resourced
languages. The task, indeed, would be hard, if not impossible,
to perform even for humans if they were to have no knowl-
edge of the language and of the real world (which reminds us
again of the Chinese room argument).

Supervision vs. Knowledge. A more engaging challenge
is whether to use supervision, in the sense of traditional train-
ing data for a machine learning model, or knowledge, which
is a paradigm that is fairly specific to computational lexical
semantics and NLU. The knowledge-based paradigm differs
from the supervised paradigm in the way the classifier is in-
formed: it exploits knowledge from external resources, typ-
ically provided in structured form, like WordNet, BabelNet
or another lexical-semantic resource (cf. Section 3.3), to per-
form the task. Importantly, the resource is not task-specific,
and therefore provides general information that can be uti-
lized in other tasks, too. Examples of current knowledge-
based approaches in WSD are those based on Personalized
PageRank to perform the task [Agirre ef al., 2014], as well as
densest graph approximation algorithms to choose from the
sense candidates in a knowledge graph of the context [Moro
etal.,2014].

Compared to supervised approaches, knowledge-based
ones have the big advantage of coming with wide coverage,
but without having to draw on large, expensive annotation
jobs. Adopting resources like BabelNet enables multilingual-
ity at virtually no additional effort (except for the ability to
preprocess text, which includes tokenization, part-of-speech
tagging and, sometimes, lemmatization). This claim is sub-
stantiated by the fact that the current state-of-the-art perfor-
mance in WSD on non-English languages has been achieved
by knowledge-based systems, whereas on English the perfor-
mance of knowledge-based systems is competitive [Moro et
al., 2014], unless massive amounts of training data are pro-
vided for each word [Yuan et al., 2016]. In SRL, where se-
mantic roles can potentially be learned independently of the
verb, sparsity is less of an issue, therefore the state of the art
is supervised. Finally, due to its complexity and training data
scarcity, semantic parsing is also sometimes performed in a
knowledge-, graph-based fashion with good performance.

3.8 Scalability and Multilinguality

In order to work on open text, NLU systems need to scale
in a number of respects. First, can the system work on the
entire lexicon? Given the current trend of word embeddings,
scaling to the whole lexicon is realistic thanks to the reduc-
tion of data sparsity. Second, can the system work in multiple
languages? This is again made possible by the most recent
developments on bilingual and multilingual embeddings in a
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shared vector space [Conneau et al., 2017]. In this case, how-
ever, even if training in one language and testing in another
language is a challenging option, e.g., leading to competitive
results in WSD [Raganato et al., 2017], getting a level play-
ing field across languages is still an open issue (see Section
3.10 below for recent options). Furthermore, while scalability
seems at hand for words, it is not obvious that what is learned
by a supervised system for certain words at the level of either
word senses or semantic roles can easily scale to other senses
or roles in the same language. The problem is mitigated
if we embrace the knowledge-based paradigm, as structured
knowledge and the wide coverage of the resources adopted
make large-scale processing possible, also across languages
if such a resource is multilingual by design.

3.9 Universality and Language Independence

The universal POS and syntactic dependency tagsets® are a
clear example of how work done independently in multiple
languages (and apparently without clear connections) can be
brought together in a unified framework. Semantics, however,
is more difficult: while a verb is a verb (even though I expect
some linguists to disagree on this), establishing the senses of
a given verb is far from trivial (and there is no obvious rea-
son for choosing among two reasonable sets of senses if not
for granularity issues, cf. Section 3.3), not to mention agree-
ing on the set of predicates and semantic roles to use in SRL
and semantic parsing. Also, 17 universal classes were iden-
tified for POS tagging, while more than a hundred thousand
meanings make up a WordNet-like computational lexicon (or
millions, in the case of an encyclopedic dictionary like Babel-
Net). However, the die is cast: it is unavoidable that future re-
search in this direction will progress towards universal senses
and roles, so as to enable not only the scalability of systems,
but also — and maybe more importantly — the independence
both of their language and of the representations they output.

3.10 The Knowledge Acquisition Bottleneck

The scarcity of semantically-annotated data is called the
knowledge acquisition bottleneck. As mentioned above, as
we move to hundreds of thousands of classes, expecting
an adequate amount of manually tagged data is unrealis-
tic. This issue has affected the field of WSD for decades,
with the largest manually-curated dataset dating back to
25 years ago [Miller er al, 1993]. While important ef-
forts have been undertaken to produce more data, including
the Manually-Annotated Sub-Corpus, OntoNotes, and some
CoNLL datasets, we are still in search of bigger datasets,
above all for non-English languages. A current direction is
to produce such annotated data semi-automatically, e.g., by
exploiting bilingual translations [Taghipour and Ng, 2015] or
by applying knowledge-based systems which can perform the
task on millions of sentences with very high precision and low
recall, so as to select those items which can be reliably used
later for training a supervised system. For instance, Train-
O-Matic* [Pasini and Navigli, 2017] has demonstrated high
WSD performance (sometimes even better than the state of

3http://universaldependencies.org/
*http://trainomatic.org
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the art) without any manual annotation of text. As we move
to SRL, the challenge might not be harder if the annotation
is predicate-independent — e.g., if we disregard the predicate
specificity of PropBank arguments. As regards semantic pars-
ing, the challenge is, instead, more difficult, as we need a
considerably higher number of sentences annotated with their
semantic structures to perform the task on open text.

4 Conclusion

NLP is not just an application of machine learning [Manning,
2015], and having discussed the many peculiarities and chal-
lenges of NLU here, this appears particularly obvious. As a
result of their interactions, words create meanings and such
meanings cannot easily be grasped with crisp classes, unless
these classes are structured in a way that enables inference.
A fundamental question is whether we need explicit lexical
semantics at all in order to perform NLU: cannot we just un-
derstand text by comparing and transforming its latent repre-
sentations to those of other texts, without making the effort
of identifying and associating explicit semantics? Potentially
yes, but would it be better? Posterity will judge.
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