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Abstract

The semantic annotation of texts with senses from a computational lexicon is a complex and

often subjective task. As a matter of fact, the fine granularity of the WordNet sense inventory

[Fellbaum, Christiane (ed.). 1998. WordNet: An Electronic Lexical Database MIT Press], a de

facto standard within the research community, is one of the main causes of a low inter-tagger

agreement ranging between 70% and 80% and the disappointing performance of automated

fine-grained disambiguation systems (around 65% state of the art in the Senseval-3 English

all-words task). In order to improve the performance of both manual and automated sense

taggers, either we change the sense inventory (e.g. adopting a new dictionary or clustering

WordNet senses) or we aim at resolving the disagreements between annotators by dealing

with the fineness of sense distinctions. The former approach is not viable in the short term,

as wide-coverage resources are not publicly available and no large-scale reliable clustering

of WordNet senses has been released to date. The latter approach requires the ability to

distinguish between subtle or misleading sense distinctions. In this paper, we propose the use

of structural semantic interconnections – a specific kind of lexical chains – for the adjudication

of disagreed sense assignments to words in context. The approach relies on the exploitation of

the lexicon structure as a support to smooth possible divergencies between sense annotators

and foster coherent choices. We perform a twofold experimental evaluation of the approach

applied to manual annotations from the SemCor corpus, and automatic annotations from

the Senseval-3 English all-words competition. Both sets of experiments and results are

entirely novel: structural adjudication allows to improve the state-of-the-art performance in

all-words disambiguation by 3.3 points (achieving a 68.5% F1-score) and attains figures

around 80% precision and 60% recall in the adjudication of disagreements from human

annotators.

1 Introduction

Sense annotation is the task of making explicit the intended meaning of words

in context. For each content word of interest, an annotator – either manual or

automatic – selects an appropriate sense from a computational lexicon. This is a

task where both machines and humans find it difficult to reach an agreement.

Divergent choices can be made by human annotators based on their different

background, way of thinking, inherent subjectivity of the task, and especially due
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to the possibly fine granularity of sense discretization. When it comes to automatic

annotation, i.e. word sense disambiguation (WSD), the problem seems to get even

worse: the disagreement between systems can concern completely unrelated senses,

and it is more likely that gross mistakes are made.

In recent studies it has been reported that the inter-annotator agreement, i.e. the

percentage of sense assignments on which the annotators agree, is between 70% and

80% (Fellbaum, Grabowski, and Landes 1998; Edmonds and Kilgarriff 2002;

Snyder and Palmer 2004) on unrestricted texts when the WordNet dictionary

(Fellbaum 1998) is adopted. The lack of agreement is even amplified when sense

tags are collected through acquisition interfaces, due to the unknown source

of the contributions of possibly unskilled volunteers (Chklovski and Mihalcea 2003).

The fine-grained nature of the WordNet sense inventory is certainly one of the

major obstacles to agreed sense annotation. Unfortunately, most of the research in

the Natural Language Processing community is conducted on this resource, as no

other large-scale computational lexicon is freely available.

Especially when there is no clear preference toward a certain word sense, the final

choice made by a judge can be subjective, if not arbitrary. This is a case where

analyzing the intrinsic structure of the reference lexicon is essential for producing

a consistent decision. A judge is indeed expected to review a number of related

dictionary entries in order to adjudicate a sense coherently. This work can be

tedious, time-consuming, and often incomplete, due to the complex structure of the

resource, resulting in possibly inconsistent choices.

In this paper, we present and evaluate a method for the automatic adjudication

of disagreed word senses. The approach relies on the employment of the lexicon

structure as an aid to make coherent judgments. Firstly, we formalize the adju-

dication task (Section 2), and we introduce lexical chains and structural semantic

interconnections (Section 3). Then, we illustrate our method for the adjudication

of disagreed word senses (Section 4), and we evaluate the approach applied to

both manual and automatic annotations (Section 5). Related work is discussed in

Section 6. In Section 7 we conclude with some final remarks.

2 The adjudication task

2.1 Definition and motivation

The adjudication task can be defined as follows: let A = {a1, a2, . . . , an} be a set

of annotators and let σ be a sentence that each annotator in A tagged with a

sense from a reference inventory (e.g. WordNet). Given a word w ∈ σ, we define

the set of annotations provided for w by the annotators as SA = {s1, s2, . . . , sm} ⊆
Senses(w), where Senses(w) is the set of senses of w in the reference inventory

and m ≤ n.

If |SA| > 1, i.e. if at least one annotator disagreed on which sense to associate

with w, an adjudication step is required. The final judgment is typically made by an

adjudicator who selects for word w a sense s ∈ Senses(w) over the others. Notice

that s is a word sense for w in the sense inventory, but is not necessarily in SA,
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Table 1. The WordNet sense inventory of the noun smell

Sense Hypernym Definition

#1 sensation#1 The sensation that results when olfactory receptors

in the nose are stimulated by particular chemicals

in gaseous form

#2 property#3 Any property detected by the olfactory system

#3 atmosphere#1 The general atmosphere of a place or situation and

the effect that it has on people

#4 sensory system#1 The faculty of smell

#5 sensing#2 The act of perceiving the odor of something

although it is likely to be. Also note that the annotators in A can be either human

or automatic, depending upon the purpose of the exercise:

• Manual annotation is usually performed in the creation of experimental data

sets (e.g. SemCor, the Senseval data sets, etc.): the possible divergencies

of opinion between human annotators need to be smoothed away so as

to produce high-quality data sets and guarantee that the experiments will

provide meaningful results;

• Automatic annotation is gaining more and more interest with the advent of

the so-called Semantic Web (Berners-Lee 1999), as users are not willing to

sense tag and semantically index their web pages. However, compared to

human annotators, automated systems tend to diverge in their choices more

often and at a coarser level of granularity. As a result, adjudicating these

disagreements is a laborious and time-consuming task.

As an example, suppose that human annotators manually tagged the following

sentence (we subscript the sense annotations beside each word):1

(a) She loves#1 the smell#1,2 of basil#1 leaves#1

The uncertainty on the appropriate choice for the noun smell is reflected by the

ambiguity of its WordNet sense inventory, reported in Table 1. This is a case where

even a good judge might not be able to choose between the first two senses of the

word, even knowing the hypernyms of both (as reported in the table). However,

a closer look at the lexicon structure would reveal that the appropriate sense of

smell is #1, as shown in Figure 1. In fact, the second sense of smell expresses one

of the abstract properties typical of human beings (vision, audition, touch, taste,

smell). This information (the taxonomical structure, but also other important textual,

lexical, and semantic information) is not immediately available to the annotator. As

a result, inconsistent choices can be made.

1 In the following we denote a WordNet sense with the convention w#p#i where w is a
word, p a part of speech, and i is a sense number. For the sake of clarity, we omit the part
of speech where it can be deduced from the context.
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Fig. 1. An excerpt of the WordNet taxonomy including smell#1 and smell#2.

2.2 Automatizing the adjudication task

Adjudication is usually performed by a human judge. In this paper, we propose the

automatization of the adjudication task. A way to look at automatic adjudication

is as a special case of WSD. Given a sentence σ, we apply a WSD algorithm to σ

by taking advantage of the following two conditions:

(1) The set of agreed word senses can be used as a fixed semantic context to help

the disambiguation of senses with disagreement;

(2) For each disagreed word w ∈ σ, the appropriate meaning of w is selected from

the subset of senses chosen by the annotators.

This setting seems more favorable compared to the general disambiguation task,

in which we discard senses that are likely to provide noisy information (condition

(1)), and senses that were not chosen by any of the annotators (condition (2)).

However, notice that WSD per se is a very difficult task and that the adjudication

task often concerns hard cases like extremely subtle sense distinctions and multiple

interpretations, rather than simple cases of homonymy (we further discuss this

phenomenon in Section 5.1.2).

For example, the automatic adjudication of the disagreed word smell in sentence

(a) can be performed by fixing the word senses love#v#1, basil#n#1, and leaf #n#1

(as of condition (1)), and by applying a WSD algorithm to the disagreed noun smell

on the restricted sense inventory {smell#n#1, smell#n#2}.
Most WSD algorithms cannot take full advantage of the above-mentioned

disambiguation setting. Supervised approaches rely on an adequate amount of

training data (a heavy assumption indeed, because of the scarce availability of

annotated data, especially in case of automatic annotation, and the intrinsic
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impossibility of guaranteeing the quality of the training data with the very same

approach). Moreover, these approaches are usually trained on lexico-syntactic

features and find it difficult to exploit explicit semantic hints (condition (1)) to

improve their disambiguation quality. This is not only due to the frequent lack of

contextual semantic clues in training data sets, but also to the difficulty of taking

into account a variable number of clues.

Ensembles are probably the class of algorithms which best approximates our

conditions for adjudication. However, these algorithms again do not benefit from

the fixed semantic context provided by agreed senses and often need to be trained.

We provide further discussion on these approaches in Section 6.

These remarks lead us to focus on knowledge-based WSD algorithms, which can

satisfy both conditions (1) and (2). A further desideratum is to select an algorithm

which is able to make choices which are coherent with the lexicon structure, as

the adjudication must be justifiable and, if possible, further analyzed by human

judges. We present hereafter a structural approach to the automatic adjudication of

disagreed sense choices that fits the above-mentioned requirements.

3 Lexical chains and semantic interconnections

Lexical chains (Morris and Hirst 1991) are sequences of words w1, . . . , wn in a text

that represent the same topic, i.e. such that wi is related to wi+1 by a lexico-semantic

relation (e.g. hypernymy, meronymy, etc.).

Lexical chains have been applied to the analysis of discourse cohesion (Morris

and Hirst 1991), text summarization (Barzilay and Elhadad 1997), the correction of

malapropisms (Hirst and St-Onge 1998), WSD (Galley and McKeown 2003), etc.

This idea was developed in further approaches to WSD based on lexico-semantic

heuristics (Rigau, Atserias, and Agirre 1997; Harabagiu, Miller, and Moldovan 1999)

and link analysis (Mihalcea, Tarau, and Figa 2004; Véronis 2004; Agirre, Martı́nez,

de Lacalle, and Soroa 2006).

Recently, a knowledge-intensive, untrained algorithm for WSD, called Structural

Semantic Interconnections2 (SSI) (Navigli and Velardi 2005), has been shown to

provide interesting insights into the choice of word senses by producing structural

justifications in terms of semantic graphs.

SSI exploits an extensive lexical knowledge base, built upon the WordNet lexicon

and enriched with collocation information representing semantic relatedness between

sense pairs. Collocations are acquired from existing resources [like the Oxford

Collocations (Lea 2002), the Longman Language Activator (Longman 2003), and

collocation web sites]. Each collocation is mapped to the WordNet sense inventory

in a semiautomatic manner and transformed into a relatedness edge [for further

details, the interested reader can refer to Navigli (2005)]. Notice that, at present,

2 SSI is available online from http://lcl.uniroma1.it/ssi.
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Table 2. The full context-free grammar for the recognition of semantic

interconnections

Pattern rules

S → S1|S2 (start rule)

S1 → PHRHRHP (relatedness, hypernymy, meronymy)

S2 → NSASN (additional relations)

Basic non terminals

H → ekind−ofH |ε (hypernymy)

H → epart−ofH |ehas−partH (meronymy)

R → erelated−to|ε (relatedness)

Additional relations

P → E|N|S |A (additional relations, inter-part-of-speech, etc.)

E → eentails|ecause|ε (entailment, cause)

N → epertains−to|eattribute|ε (pertainymy, attribute)

S → esimilar−to|esee−also|ε (similarity, see-also)

A → eantonym|ε (antonymy)

the lexical knowledge base does not include any information from the SemCor

semantically annotated corpus (Miller, Leacock, Tengi and Bunker 1993).3

Given a word context W = {w1, . . . , wk}, SSI builds a graph G = (V , E) such that

V =
⋃k

i=1 Senses(wi) (i.e. V includes a vertex for each sense of a word in W ) and

(s, s′) ∈ E if there is at least one semantic interconnection between senses s and s′ in

the lexical knowledge base. A semantic interconnection pattern is a relevant sequence

of edges selected according to a manually created context-free grammar, i.e. a path

connecting a pair of word senses, possibly including a number of intermediate

concepts. The grammar consists of a small number of rules, inspired by the notion

of lexical chains. The full context-free grammar encoding semantic interconnection

patterns for the WordNet lexicon is reported in Table 2. For further details, the

reader can refer to (Navigli and Velardi 2005).

The rules in the table are divided into three groups: pattern rules, basic nonter-

minals (identifying basic sequences of hypernymy, meronymy, and relatedness),

and additional relations (most of which connect different parts of speech, like

nominalization, pertainymy, etc.). The grammar is general enough to be applied to

any sufficiently structured computational lexicon, where only the last group should

be replaced by the set of lexicon-specific nonterminals.

The purpose of the grammar is twofold: first, to prune out a large number of

unwanted lexical chains (e.g. universe#1 kind−of
−−−−−→ natural object#1 kind−of

−−−−−→ object#1
has−kind
−−−−−→ commodity#1 has−kind

−−−−−→ merchandise#1 ); second, to ensure that the chains

contain a maximum number of edges of a certain kind (e.g. the grammar does

not allow any sequence of three relatedness edges, like in job#1 related−to
−−−−−−−→ money#1

related−to
−−−−−−−→ coin#1 related−to

−−−−−−−→ metal#1 ). Both aspects aim at avoiding undesired shifts

of meaning.

3 As a result, experiments performed on SemCor in later sections are not biased by the use
of information from the corpus itself.



A structural approach to the automatic adjudication of disagreements 553

Table 3. Good and bad examples of semantic interconnections

Semantic interconnection Good?

eat#v#1 cause

−−−−−→ feed#v#2 related

−−−−−→ food#n#2 �
drive#v#1 related

−−−−−→ vehicle#n#1 related

−−−−−→ fender#n#1 part−of
−−−−−→ car#n#1 �

cup#n#2 related

−−−−−→ milk#n#1 related

−−−−−→ beverage#n#1 has−kind
−−−−−→ coffee#n#1 �

shivery#a#1 similar−to
−−−−−→ cold#a#1 attribute

−−−−−→ temperature#n#1 �
computer#1 related

−−−−−→ user#1 kind−of
−−−−−→ consumer#1 has−kind

−−−−−→ drinker#2 ×

Even though the grammar produces an infinite number of edge sequences, we

limit the recognition to strings4 of length ≤ 5. While it is true that this reduces the

expressivity of the grammar to a finite state automaton (or, equivalently, a regular

grammar), yet we want to maintain a general, clear, and compact formalism to

express edge sequences.

We report good and bad examples of semantic interconnections in Table 3. In the

second column, we mark each interconnection in the table with a check mark (�) if

the interconnection connects two concepts which are really semantically related (we

mark it with ×, otherwise).

SSI performs disambiguation in an iterative fashion, by maintaining a set C of

senses as a semantic context. Initially, C = V (the entire set of senses of words

in the word context W ). At each step, for each word w ∈ W , and for each sense

s ∈ Senses(w), the algorithm calculates a score of the degree of connectivity between

sense s of w and the other senses in C \ Senses(w ):

ScoreSSI(s,C) =

∑

s ′∈C\Senses(w )

∑

i∈IC(s,s′)

1
length(i )

∑

s ′∈C\Senses(w )

|IC (s , s ′)|

where IC(s, s′) is the set of interconnections between senses s and s′. The contribution

of a single interconnection i is given by the reciprocal of its length (1/length(i)),

calculated as the number of edges connecting its ends. The overall degree of

connectivity is then normalized by the number of contributing interconnections.

The highest ranking sense ŝw is chosen, the other senses of w are removed from the

semantic context C (i.e. C ← C \ Senses(w ) ∪ {ŝw}), and the word w, disambiguated

as a result of the current iteration, is removed from W . During the next iteration,

ŝw will be used as an additional semantic context for the remaining words in W , i.e.

for the words yet to be disambiguated. The algorithm terminates when either C= ∅
or there is no sense such that its score exceeds a fixed threshold. The threshold was

experimentally set to 0.2.

4 This is done for two reasons: a computational aspect, and the idea that longer sequences are
more likely to lead to an undesired semantic shift. Experiments for tuning this parameter,
as well as the termination threshold introduced below, were performed based on the
performance of SSI on an in-house manually annotated data set.
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Fig. 2. (a) Some semantic interconnections supporting the choice of sense #1 of smell in

sentence (a). (b) The choice of smell#2 is not supported by any semantic interconnection.

4 Adjudication with structural semantic interconnections

In this section, we illustrate the use of structural semantic interconnections for the

automatic adjudication of the most appropriate word sense in case of disagreement.

Given a sentence σ and a set of words with disagreement W ⊆ σ, according to

Section 2.2, we apply SSI to W by taking into account for disambiguation only the

senses selected by the annotators, and using as a fixed context the agreed senses

chosen by the annotators for the words in σ \W .

Recall the annotated sentence from section 2.1:

(a) She loves#1 the smell#1,2 of basil#1 leaves#1

This sentence is a real case from an annotation experiment we conducted in a

previous work. We initialize the word context W = {smell#n} and the semantic

context C = {love#v#1, basil#n#1, leaf#n#1} ∪ {smell#n#1, smell#n#2} (the first

set is the fixed semantic context of agreed senses, while the second set contains the

disagreed word senses). Only the first two senses of smell (i.e. the disagreed senses)

are taken into account for the calculation of the ScoreSSI, leading to:

ScoreSSI(smell#n#1 ,C) = 0 .80

ScoreSSI(smell#n#2 ,C) = 0

The choice of the first sense of smell as a solution to this disagreement is

structurally supported by a number of semantic interconnections according to the

grammar in Table 2. Figure 2(a) shows some interconnections identified by the

algorithm. In contrast, sense 2 is not related to other senses in C through any

semantic interconnection, as illustrated in Figure 2(b).

As a second example, consider the WordNet definition of motorcycle:

(b) Motorcycle: a motor vehicle with two wheels and a strong frame

In the Senseval-3 Gloss WSD task (Litkowski 2004), the human annotators

assigned the first sense to the word frame (a structure supporting or containing

something), unintentionally neglecting that the dictionary encodes a specific sense of

frame concerning the structure of objects (e.g. vehicles, buildings). In fact, according
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Fig. 3. (a) Some semantic interconnections supporting the choice of sense #6 of frame in

sentence (b). (b) The choice of frame#1 has a weaker structural support within the SSI lexical

knowledge base.

to WordNet, a chassis#3 is a kind of frame#6 (the internal supporting structure

that gives an artifact its shape), and is also part of a motor vehicle#1. Figures 3(a)

and (b) illustrate the graphs resulting from the sense choices of frame #6 and #1,

respectively.

Semantic interconnections reflect the fine granularity of the inventory, as they are

expressions of the lexical knowledge base from which they are extracted. In fact, the

choice of frame#1 still produces relevant semantic interconnections, as illustrated in

Figure 3(b), but the overall ranking of this sense selection, i.e. the degree of overall

connectivity of the resulting graph, is smaller than that obtained for frame#6:

ScoreSSI(frame#n#6,C) = 0 .65

ScoreSSI(frame#n#1,C) = 0 .53

These two real-world cases make it evident that semantic interconnections can

point at inconsistent, though acceptable, choices made by human annotators due,

among others, to the fine granularity of the sense inventory and to regular polysemy,

i.e. the recurring and predictable sense alternations certain classes of words are

subject to.

We recognize that subtle distinctions, like those encoded in WordNet, are rarely

useful in any NLP application, but as a matter of fact WordNet is at the moment

the de facto standard within the research community, as no other computational

lexicon of that size and complexity is freely available.

5 Evaluation

In this section, we present an evaluation of the effectiveness of semantic interconnec-

tions applied to the adjudication of disagreed word senses. We assessed the method

for both manual (Section 5.1) and automatic annotations (Section 5.2).
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5.1 Evaluating the adjudication of manual annotations

As mentioned above, the adjudication of disagreements resulting from manual

annotations is a critical task when we want to guarantee the high quality of a data set.

To assess the quality of the adjudications made by SSI on manual sense annotations,

we performed two different experiments on SemCor (Miller et al. 1993), a corpus of

more than 200,000 content words manually tagged with WordNet word senses:

• A large-scale simulation of disagreements between two annotators (Sec-

tion 5.1.1);

• An experiment on a smaller scale concerning the adjudication of real disagree-

ments between annotators of a portion of the SemCor corpus (Section 5.1.2).

5.1.1 Adjudicating simulated disagreements

As a first experiment, we simulated in vitro a disagreement between two annotators in

which an annotator provides an appropriate sense and the other selects a different

sense at various semantic levels. To this end, we needed a way to distinguish

meanings at different levels of granularity. For each word of interest, we used

the Oxford Dictionary of English (ODE) (Soanes and Stevenson 2003) to manually

produce a hierarchical version of the WordNet sense inventory of that word.

The ODE5 provides a multilevel structure of senses, distinguishing between

homonymy (i.e. completely distinct senses, like race as a competition and race

as a taxonomic group) and polysemy (e.g. race as a channel and as a current).

Each polysemous sense is further divided into microdistinctions (e.g. a division of

humankind versus a group of people with a common ancestor). Table 4 shows the

lexical entries of the noun race (we represent an ODE sense of a word w as w#p#h.i,

where p is its part of speech and i denotes the i-th polysemous entry of the h-th

homonym of w).

For each word of interest, the manual mapping of WordNet senses to ODE

polysemous entries induces a hierarchical structure on the former. For example,

consider the sense inventories provided by the two dictionaries for the noun race

(Tables 4 and 5). As a result of the mapping, a semantic correlation between the

WordNet senses is identified at different levels of granularity, as shown in Figure 4.

We randomly selected a set W of 207 polysemous words from WordNet (64 nouns,

82 verbs, 61 adjectives) resulting in 1,488 different senses overall (7.18 senses per

word on average) that we manually mapped to the appropriate ODE senses.6 Notice

that mapping fine-grained to coarse-grained word senses is much easier than any

semantic annotation or one-to-one mapping task. This intuition is also substantiated

by a quantitative assessment: 548 WordNet senses of 60 words were mapped to ODE

entries by two annotators, with a pairwise agreement of 92.7% (κ agreement: 0.854).

5 The ODE was kindly made available by Ken Litkowski (CL Research) in the context of a
license agreement.

6 In the experiments, we neglected adverbs as very few interconnections can be found for
them.
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Table 4. The sense inventory of race#n in the ODE∗

Race#n ODE

#1.1 Core: SPORT A competition between runners, horses, vehicles, etc.

• RACING A series of such competitions for horses or dogs • A situation in

which individuals or groups compete (→ contest) • ASTRONOMY The course

of the sun or moon through the heavens (→ trajectory).

#1.2 Core: NAUTICAL A strong or rapid current (→ flow).

#1.3 Core: A groove, channel, or passage.

• MECHANICS A water channel • Smooth groove or guide for balls

(→ indentation, conduit) • FARMING Fenced passageway in a stockyard

(→ route) • TEXTILES The channel along which the shuttle moves.

#2.1 Core: ANTHROPOLOGY Division of humankind (→ ethnic group).

• The condition of belonging to a racial division or group • A group of

people sharing the same culture, history, language • BIOLOGY A group of

people descended from a common ancestor.

#3.1 Core: BOTANY, FOOD A ginger root (→ plant part).

∗definitions are abridged, bullets (•) indicate a subsense in the ODE, arrows (→) indicate

hypernymy.

Table 5. The sense inventory of race#n in WordNet∗

Race#n (WordNet)

#1 Any competition (→ contest).

#2 People who are believed to belong to the same genetic stock (→ group).

#3 A contest of speed (→ contest).

#4 The flow of air that is driven backwards by an aircraft propeller (→ flow).

#5 A taxonomic group that is a division of a species; usually arises as a

consequence of geographical isolation within a species (→ taxonomic

group).

#6 A canal for a current of water (→ canal).

∗arrows (→) indicate hypernymy.

This mapping technique was also successfully used in the organization of the

Semeval-2007 coarse-grained English all-words WSD task (Navigli, Litkowski, and

Hargraves 2007). An expert lexicographer estimated that an amount of time between

20 and 30 s is enough for mapping a fine-grained sense (e.g. from WordNet) to a

coarser sense (e.g. in ODE) with the aid of an appropriate interface. Accordingly,

the creation of our mapping took an overall amount of 11 man-hours.

Next, we selected all those sentences in SemCor which included at least one

occurrence of words from W (overall, 183 of the 207 words in W occur at least

once and are sense-tagged in SemCor). Formally, we considered all the sentences

σ = w1w2 . . . wn annotated in SemCor with the senses sw1
sw2

. . . swn
(swj
∈ Senses(wj),
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Fig. 4. A hierarchical version of the WordNet sense inventory for noun race.

Table 6. Size and composition of the four disagreement test sets

Granularity Nouns Verbs Adjectives Total # Sentences

Microdistinctions 1,885 2,829 726 5,440 4,542

Polysemy 1,453 2,701 532 4,686 3,996

Homonymy 437 183 49 669 633

Random disagreements 1,933 2,860 774 5,567 4,633

j ∈ {1, 2, . . . , n}), such that σ contains at least one word wi ∈ W . Then, for each

sentence we simulated a disagreement on the word wi by randomly selecting a

different sense swi
for the word wi at three different levels:

(1) microdistinctions: swi
is in the same lexical entry as swi

(e.g. race#n#1 and

race#n#3, both mapped to the ODE entry race#n#1.1) – we expect that most

of the human disagreements fall into this category (as also confirmed by the

experiments in Section 5.1.2);

(2) polysemy: swi
is in a different polysemous entry from that of swi

(e.g. race#n#1

and race#n#4, mapped respectively to the ODE polysemous entries race#n#1.1

and race#n#1.2);

(3) homonymy: swi
is a homonym of swi

(e.g. race#n#1 and race#n#2, mapped

respectively to the ODE homonyms race#n#1.1 and race#n#2.1).

We further experimented on a random choice of the disagreed sense:

(4) random disagreements: we built a fourth data set in which sense swi
of word

wi is chosen randomly from Senses(wi)\{swi
}.

In Table 6 we report the size of the four test sets, i.e. the number of disagreements

by part of speech (and overall) and the total number of sentences involved, ranging

from 4,633 sentences for random disagreements (i.e. the full set of sentences which

contain at least one word from our initial set W of 207 words) to 633 for homonymy

(i.e. the set of sentences which include at least a homonym). This difference is due

to the low number of homonyms compared to polysemous entries. Notice that the
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Table 7. Performance of automatic adjudication at different levels of disagreement

(sentences from SemCor)

Granularity Precision Recall F1-score # Instances

Microdistinctions 76.46 57.63 65.72 5,440

Polysemy 82.94 60.71 70.11 4,686

Homonymy 86.10 75.93 80.70 669

Random disagreements 80.78 60.54 69.21 5,567

number of disagreements per sentence is a function of the initial set of words W

whose senses were clustered according to ODE. As a consequence, the resulting

ratio (ranging from 1.05 to 1.2 disagreements per sentence depending upon the

class of granularity) can differ significantly from that of a real data set of human

disagreements. This aspect is further discussed in Section 5.1.2. Finally, the average

number of context (i.e. agreed) words per sentence ranges between ten and twelve

words depending on the data set.

We applied SSI to the annotated sentences (as discussed in Sections 2.2 and

4) and evaluated the performance of the approach in suggesting the appropriate

choice for the words with disagreement. We assessed precision (the number of correct

suggestions over the overall number of suggestions from SSI) and recall (the number

of correct suggestions over the total number of words to be adjudicated), and we

calculated the F1-score, a harmonic mean of the two measures ( 2·p·r
p+r

). The results

are reported in Table 7.

As expected, the accuracy of automatic adjudication increases as the “semantic

distance” of the disagreed senses grows. In fact, while we get an F1-score of 65.72%

in the adjudication of microdistinctions, this figure rises to 80.7% when we deal

with homonyms. This confirms the intuitive idea that closer senses are inherently

difficult to disambiguate.

Moreover, it is interesting to note that there is a 6.5% increase in precision from

microdistinctions to polysemy and a 3.1% increase from polysemy to homonymy.

As expected, we observe the largest increase in recall from polysemy to homonymy

(+15.22%). Completely distinct senses of the same word convey indeed very different

semantics and it is less likely to find semantic interconnections supporting the wrong

sense.

We observe that the performance on randomly selected disagreements is close

to that obtained for polysemous sense distinctions (indeed, the difference is not

statistically significant according to a χ2 test). We will see in Section 5.2 that random

disagreements apparently simulate the average level of difficulty encountered by an

automatic system.

We preferred to calculate precision and recall distinctly, rather than accuracy, as

the latter does not provide any hint about the quality of the structural suggestions

produced by SSI: a good, justifiable adjudication is better than a couple of mediocre

answers.
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Table 8. Performance by part of speech of automatic adjudication of subtle

disagreements (sentences from SemCor)

Part of speech Precision Recall F1-score # Instances

Nouns 76.84 72.52 74.62 1,885

Verbs 75.84 53.27 62.58 2,829

Adjectives 78.14 35.95 49.24 726

Overall 76.46 57.63 65.72 5,440

Fig. 5. The SSI performance on the microdistinction test set by degree of connectivity. Each

interval includes a minimum of 300 word instances from the test set.

We studied the performance by part of speech for the most difficult case, i.e.

disagreements on microdistinctions (similar trends were observed for the other

classes of granularity). We report the figures in Table 8. The most interesting result

can be observed on noun performance: here SSI proves to be really effective, by

correctly adjudicating almost three-fourth of the disagreements. The drop in recall

for verbs and, even more, for adjectives is mostly due to the lack of structural

information. However, precision keeps high in both cases, which allows for high-

quality adjudication and leaves the remaining uncertain cases to a more careful,

manual inspection.

We also calculated the accuracy of the most frequent sense (MFS) heuristic for the

four levels of granularity: 89.54% (microdistinctions), 93.85% (polysemy), 98.95%

(homonymy), and 92.17% (random). The MFS baseline selects the disagreed sense

which is most frequent in the SemCor annotated corpus. Consequently, it cannot be

considered as a baseline, as it employs the test corpus to determine its sense choices.

However, it can be used to establish an upper bound for this adjudication task.

Finally, we studied how the degree of connectivity of each word instance affects

the performance of SSI on the adjudication task. Specifically, we extrapolated the

trend on the microdistinction test set, that we report in Figure 5 (a similar trend was

observed for the other levels of granularity). On the x-axis we have the out-degree

of the correct sense of each word instance in the test set. The out-degree counts the
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number of WordNet relation edges and relatedness edges (cf. Section 3) outgoing

from the word sense at hand. Each interval in the figure includes a minimum of

300 word instances from the test set, with approximately two-thirds of the word

instances distributed in the range 0–13.

The graph shows that the higher the degree of connectivity in the computational

lexicon, the better is the overall performance of structural semantic interconnections

(both in terms of precision and recall). When we have more than eight to thirteen

relation edges that enable the connectivity from a specific sense to other senses

in the lexicon, the performance grows noticeably. The trend shown in the graph

corroborates the apparently trivial observation that the availability of large know-

ledge bases (even (semi)automatically acquired) tends to improve the disambiguation

performance (Cuadros and Rigau 2006). Moreover, it shows that the improvement

can be really significant, with an increase of several tenths of points in terms of

both precision and recall.

5.1.2 Adjudicating real disagreements

Performing experiments on a data set of simulated disagreements has the advantage

of providing results on a large scale. However, experimenting on a data set of real,

human disagreements would make the results more meaningful. Moreover, it would

allow us to understand the level of disagreement attained by sense taggers according

to the different classes of granularity that we introduced in the previous section.

Unfortunately, only few data sets of human disagreements are available to the

research community. Among these, we cite the outcome of the Open Mind Word

Expert (OMWE) project (Chklovski and Mihalcea 2002). However, this annotation

effort does not fit our problem, as it was created on a lexical sample basis, whereas

we expect annotators to tag all words in a text. Another interesting data set of

disagreements is an outcome of the MultiSemCor project (Pianta, Bentivogli, and

Girardi 2002; Bentivogli, Forner, and Pianta 2004), aiming at the creation of a

parallel English/Italian version of the SemCor corpus. This data set includes about

a hundred disagreements; as a result, its sample size does not allow to perform a

statistically significant evaluation.

Given the lack of all-words disagreement data sets, we asked two annotators

to manually sense-tag a portion of the SemCor corpus with WordNet senses (we

adopted version 2.0). The data set included an overall number of 2,927 words (285

sentences, 2,274 polysemous words) from three randomly chosen documents on

different topics, specifically, football (document code: br-a13), biography (br-e22),

and mathematics (br-j19).

We measured a pairwise interannotator agreement of 81.1% (i.e. the annotators –

expert lexicographers – disagreed on 553 words). This figure is only slightly higher

than the inter-tagger agreement ratio reported by Fellbaum et al. (1998) on a

subset of SemCor (ranging between 72.8% and 79.9% under different conditions),

corroborating the difficulty of annotating with fine-grained word senses. However, in

their experiments several factors lowered the agreement: the use of several annotators

(with a comparison of the agreement among nonexperts and between experts and
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Table 9. Some of the inexact sense tags in the SemCor corpus

SemCor sentence Correct sense SemCor sense tag

. . . his Credo of words –

torrents of powerful music.

3. an overwhelming num-

ber or amount

1. a heavy rain

. . . never a slave to its

academic dialectics.

3. someone entirely dom-

inated by some influence

or person

1. a person who is owned

by someone

. . . to cultivate his musical

talent . . .

3. train to be discriminative

in taste or judgment

1. foster the growth of

a young giant dwindled in

stature and fruitfulness.

2. the intellectual fruit-

fulness of a creative

imagination

1. the quality of something

that causes or assists

healthy growth

. . . he stretches the limits of

instrumentation with good

judgement . . .

3. the instruments called

for in a musical score or

arrangement for a band

or orchestra

2. the act of providing

or using the instru-

ments needed for some

implementation

Prokofieff was guided in a

consistent direction by life

of . . .

3. be a guiding force, as

with directions or advice

2. take somebody some-

where

nonexperts), an older sense inventory (several sense entries in WordNet now report

SemCor sentences as examples, which make it easier for an annotator to select the

appropriate meaning), etc. We do not provide here a figure of κ agreement (Cohen

1960) as for most words we have a very low number of occurrences. As a result,

the κ agreement is below 0.60 (i.e. between moderate and poor agreement) for over

90% of the words.

After an adjudication step, performed by a human arbiter, we discovered that

the 553 disagreements included 38 incorrect sense choices due to inattention (i.e.

unvoluntary choices) of either of the two annotators, and 22 words tagged with a

different part of speech than that assigned in SemCor. Moreover, the arbiter found

out that 92 of the remaining disagreements had to be resolved in contrast with the

corresponding senses chosen in the SemCor data set. We can say that most of these

cases are due to imprecise choices in SemCor (we report some in Table 9).

Our aim is not to criticize SemCor, which is an invaluable resource for WSD and

related fields. Most of these imprecisions indeed may be due to several factors, such

as the mappings between different versions of WordNet, typos, and agreements by

chance of the original annotators.

In order to study the distribution of the disagreements according to the three

classes of sense granularity introduced in Section 5.1.1, and similarly to what we did

in that section, we mapped all disagreed senses (770 distinct senses overall) to the

corresponding ODE senses.

The application of SSI to solve the 553 disagreements in our data set led to

the figures in Table 10. We report the overall performance of SSI together with its

performance on the three classes of sense granularity. We registered only one case
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Table 10. Performance of automatic adjudication on real human disagreements at

different levels of disagreement

Granularity Precision Recall F1-score # Instances

Microdistinctions 78.32 59.73 67.77 375

Polysemy 80.15 63.37 70.78 172

Homonymy − − − 1

Not mappable − − − 5

Overall 78.60 61.12 68.77 553

MFS baseline 69.98 69.98 69.98 553

Table 11. Performance of automatic adjudication on real human disagreements by

part of speech

Part of speech Precision Recall F1-score # instances

Nouns 78.73 67.41 72.63 313

Verbs 78.74 59.88 68.03 167

Adjectives 77.14 38.57 51.43 70

Overall 78.60 61.12 68.77 553

of homonymous disagreement, due to a tagging mistake (a low figure was expected

indeed). We were not able to determine the granularity of five disagreements because

of missing entries in ODE.

First, we note that the overall performance (68.77% F1) gets very close to the

MFS baseline (69.98% F1). As in the previous experiment, we remark that the

MFS baseline employs sense frequencies from the SemCor annotated texts of which

our test set is a part. Secondly, the overall performance is comprised between the

results of microdistinctions and the polysemous case of our simulated experiment

(cf. Table 7). This result was expected, as the disagreements concerned these two

classes of granularity.

Regarding the performance on distinct parts of speech, reported in Table 11,

we observe an increase in recall for verbs and adjectives compared to the figures

from our simulated experiment on microdistinctions (cf. Table 8). However, all the

differences in precision from Tables 8 and 11 calculated distinctly for each part of

speech are not statistically significant according to χ2 tests.7

We remark here that the results of this experiment on real human disagreements

are not entirely comparable with those from our previous experiment on simulated

disagreements. Firstly, here we are forcibly working on a smaller number of disagreed

senses. Unfortunately, as we mentioned above, no medium-scale data set of disagree-

ments from all-words annotation efforts is available, so we believe our data set

7 For information on how to perform χ2 tests on difference sample sizes, see, e.g., Miller and
Miller (2003).
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Table 12. Distribution of real human disagreements over a subset of SemCor

(285 sentences)

Disagreements

per sentence # Sentences # Instances

0 53 0

1 69 69

2 81 162

3 41 123

4 25 100

> 4 16 99

Total 285 553

constitutes an interesting effort in this direction. Secondly, the simulated experiment

was easier than this experiment on human disagreements, as it presupposed a

disagreement per sentence ranging from 1.05 to 1.2 (depending upon the class of

granularity). In contrast, as shown in Table 12, we can find between one and six

disagreements per sentence in our data set of real annotations, with an average of

1.94 disagreements per sentence, thus making automatic adjudication a harder task,

as its difficulty depends on the quality and number of agreed senses. We did not

determine the performance by number of disagreements per sentence because of the

small size of each sample.

5.2 Evaluating the adjudication of automatic annotations

For assessing semantic interconnections applied to the adjudication of disagreements

between automatic systems, we chose the Senseval-3 corpus for the English all-words

task (Snyder and Palmer 2004). The task required WSD systems to provide a sense

choice for a total of 2,041 content words in a set of 301 sentences from the fiction,

news story, and editorial domains.

For our experiments, we focused on the outcome of the three best-ranking systems:

GAMBL (Decadt, Hoste, Daelemans, and van den Bosch 2004), SenseLearner

(Mihalcea and Faruque 2004), and Koc University (Yuret 2004). The application of

SSI to the disagreement set led to the figures in Table 13, where we compare our

results with:

• the chance baseline, calculated as the sum of the uniform probabilities

of correctly solving each disagreement divided by the total number of

disagreements;

• the most frequent sense baseline, i.e. the choice of the most frequent or

predominant sense in SemCor, selected among those output by the three

systems;

• a majority voting combination strategy, i.e. the sense output by a majority of

the three systems is chosen – in case of full disagreement, a random choice is

made;

• the best-performing Senseval-3 system, i.e. GAMBL;
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Table 13. Results on the Senseval-3 all words task

Precision Recall F1

SSI 68.7 68.3 68.5

Chance baseline 63.8 63.8 63.8

MFS baseline 61.9 61.9 61.9

Majority voting 65.2 65.2 65.2

GAMBL (best system) 65.2 65.2 65.2

Oracle (upper bound) 76.9 76.9 76.9

Table 14. The oracle performance by kind of agreement between the three

best-ranking systems at Senseval-3

Correct Total Accuracy

Three-way agreement 1, 082 1, 386 78.1

Two-way agreement 422 557 75.8

No agreement 66 98 67.3

Total 1, 570 2, 041 76.9

• the oracle performance: if we had an oracle adjudicating the appropriate

answer for each word instance, its accuracy would be 76.9% (this percentage

represents the number of words for which at least one correct answer was

provided by any of the three systems). This figure constitutes an upper

bound for our task, as it would be impossible for any automatic adjudication

algorithm to assign a greater number of correct answers.

In Table 14 we report the oracle accuracy based on the kind of agreement (three-

way agreement, two-way agreement, or total disagreement). This is given by the

percentage of word occurrences for which at least a correct answer is given by any

of the three systems. Clearly, the oracle is more accurate when the three systems

agree (78.1%), while its accuracy decreases to 67.3% when they fully disagree,

indicating an inherent condition of difficulty.

Notice that the chance and MFS heuristic, as well as the majority voting strategy,

have been applied to the adjudication of disagreed senses, while the performance

of the best-performing system is from the original Senseval-3 task. It could be

argued that, in the majority voting strategy, in case of tie the sense of the best

system (namely, GAMBL) could be selected. We tested this option and obtained a

result which is comparable (65.1%) with the random backoff strategy. This result

can be probably attributed to the lack of information in GAMBL for assigning the

appropriate sense to these challenging instances. We also experimented with a higher

number of systems, and found out that the improvement in accuracy was negligible

(+0.5% with five best-ranking systems), compared to the costly requirement of a

higher number of state-of-the-art systems to combine.



566 R. Navigli

Table 15. Results on the Senseval-3 all words task by part of speech

Part of speech Precision/recall

Nouns 74.5

Adjectives 71.4

Verbs 59.5

We could not apply other kinds of untrained combination strategies, such as

rank-based or probability mixture, as the confidence of state-of-the-art systems on

each word sense was not available. However, experimentally, we do not expect a

big increase in performance (see, e.g. Brody, Navigli, and Lapata (2006), where the

performance increase is lower than 1% with a rank-based ensemble compared to

majority voting, both applied to disagreed nouns from the entire SemCor).

SSI applied to automatic adjudication performs better than the best-performing

Senseval system, with a difference in precision and recall of 3.5% and 3.1%,

respectively. Both differences are statistically significant (χ2 test, p < 0.05).

An interesting remark is that the F1 performance of SSI is not dissimilar from

that obtained in the previous section with the random selection of disagreed senses.

This result is plausible given that automated systems can make very good choices

as well as provide inexplicable answers (especially when they disagree).

Finally, Table 15 reports the precision of SSI on nouns, adjectives, and verbs.

The good performance on nouns is not surprising, as SSI relies on the lexicon

structure, which is more interconnected for nouns. In contrast, verbs suffer from the

lower degree of connectivity with other parts of speech, especially because of short

sentences in the test set such as “that’s what the man said”, “I’m just numb”, etc.

The good performance on adjectives is given by their low degree of polysemy.

6 Related work

It is a matter of fact that achieving a high quality for sense annotations is a very

hard task (see, e.g., Hanks (2000) and Véronis (2001)) studies on the interannotator

agreement report figures between 70% and 80% when WordNet is adopted as a

sense inventory (Fellbaum et al. 1998; Edmonds and Kilgarriff, 2002; Snyder and

Polmer 2004). An even worse figure of 67% is reported when sense choices are

made by unknown contributors on the Web (Chklovski and Mihalcea 2003). Sense

distinctions are rarely incontestable, and this is one of the reasons why we think it

is important to refer to the lexicon structure as a justification for sense choices, as

our method does.

A big dispute is even whether word senses exist at all (Hanks 2000; Kilgarriff 1997).

Discretizing sense distinctions is difficult and can lead to different equally adequate

choices. In contrast to the widespread enumerative approach, a generative approach

has been proposed (Pustejovsky 1995) which consists of generating word senses based

on the combination of a set of features called qualia roles. The latter approach

overcomes the granularity problem by adopting a continuous representation of
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senses, but presents other issues: it is unclear how to compare different system

outputs in an objective manner when applied to a gold standard data set or how to

consistently provide an unequivocal semantic annotation of text.

If we believe in word senses, the use of coarse-grained sense distinctions (or,

alternatively, different levels of granularity) seems to be a promising approach to

overcome the problem of low interannotator agreement. Ng, Lım and Foo (1999)

show that, when a coarse-grained sense inventory is adopted, a consistent increase

of the interannotator agreement is observed. Numerous manual and automated

approaches to sense clustering have been proposed, ranging from syntactic and

semantic criteria for grouping senses (Palmer 2000; Palmer, Dang, and Fellbaum

2007) to the use of heuristics (Peters, Peters, and Vossen 1998), dictionary mappings

(Dolan 1994; Navigli 2006c), and confusion matrices (Chklovski and Mihalcea 2003;

Agirre and de Lacalle 2003).

Recently, Hovy, Marcus, Palmer, Ramshaw, and Weischedel (2006) presented the

OntoNotes project. The proposed approach aims at creating sense groupings: senses

are iteratively partitioned until an interannotator agreement of 90% is reached in a

sense annotation task. As a result the method does not need a further evaluation of

its outcome, as it achieves its main objective, i.e. guaranteeing a high interannotator

agreement. However, this approach – although faster than a classic manual sense

creation procedure – still requires a great amount of work to produce a coarse

set of senses on a large scale. Finally, an approach for clustering word senses

based on lexico-syntactic features has been proposed which achieves state-of-the-art

performance in WSD (Kohomban and Lee 2007).

Unfortunately, none of these approaches led to the release of an acknowledged de

facto standard. As a result, until the WordNet sense inventory is not fully revised or

a new sense inventory is widely adopted, enumerative approaches to coarse-grained

WSD will remain unfeasible on a large scale. Until then, the most reasonable solution

is to support annotators and, at a later stage, adjudicators in the difficult task of

making the most appropriate choice from a discrete list of senses.

An important step in the direction of supporting sense annotations is the OMWE,

a project for the acquisition of annotations with the aid of a web interface that

presents the sense inventory of a word to be disambiguated in context (Chklovski

and Mihalcea 2002). The main limitation of such an interface is that it is very difficult

to provide an annotator, especially an unskilled one, with enough information to

choose between subtle sense distinctions. In contrast, the method presented in this

paper, even though applied to adjudication rather than sense annotation, has the

advantage of supporting sense choices which are or seem coherent with respect

to the adopted lexicon. A further difference is given by the fact that the OMWE

expects a large number of contributions for the same item to be annotated reliably,

whereas our approach can be applied to items annotated by any number of humans

or systems. In our experiments we focused on two- or three-way disagreements;

however, the very same approach can be employed when more annotators are

involved at virtually no additional cost.

Other structural approaches, either based on semantic distances (e.g., Jiang and

Conrath, 1997; Leacock, Chodorow, and Miller 1998) or graphs (e.g., Mihalcea
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et al., 2004), could be employed to support the adjudication task. Unfortunately,

knowledge-based methods are likely to perform poorly if they do not rely on rich

lexical knowledge bases. This assertion is also supported by the findings discussed

in the last part of Section 5.1.1. Also, most of these approaches cannot produce

justifications for their choices in terms of semantic graphs as SSI does.

We stress that the adjudication task presented in this paper is only apparently

easy: while it is true that the task works on a restricted number of senses for

disagreed words, these are usually the hardest cases (i.e. those which make WSD

an “AI-hard” task), simply due to the fact that humans or state-of-the-art systems

disagreed on them.

As remarked in Section 2.2, ensemble approaches, i.e. combinations of WSD

methods, are mostly related to the adjudication task. However, they differ in

many aspects. Firstly, they do not exploit the agreed senses as an aid for solving

disagreements. Secondly, they are applied to the outcome of automatic systems

(often requiring a confidence degree to be output for each sense choice), in

contrast to our approach which was applied to disagreements resulting from both

manual and automatic annotation efforts. Thirdly, some ensemble approaches are

supervised and require a training phase either for the disambiguation algorithms

(first-order classifiers) or for the combination scheme (second-order classifier). This

third aspect makes ensembles involving supervision unsuitable for the adjudication

of disagreements resulting from the annotation of both unrestricted and domain-

oriented texts.

Florian, Cucerzan, Schafer, and Yarowsky (2002) propose several kinds of com-

bination approaches, based on voting, probability mixture, etc. Experiments are

performed on the Senseval-2 lexical sample task: this kind of task is different from

the one proposed in the present paper (an all-words task indeed), as it targets a single

word per sentence (and neither requires nor exploits the annotation of the other

words with senses). Klein, Toutanova, Ilhan, Kamvar, and Manning (2002) present

ensemble approaches based on majority voting, weighted voting, and maximum

entropy. The latter performs best (obtaining an improvement of 1% over the best

single classifier), but requires a training phase on the second-order maximum entropy

classifier. Experiments are again performed on a lexical sample basis, which makes

a comparison with our approach not feasible.

Among the unsupervised approaches, purely relying on first- and second-order

unsupervised classifiers, Stevenson and Wilks (2001) present a method for combining

different disambiguation techniques, such as selectional preferences, subject codes,

simulated annealing, etc. However, their evaluation is performed on a portion of

the SemCor corpus, where each original sense tag has been mapped to an entry of

the LDOCE dictionary. As a result, the authors obtain a performance around 90%

and beyond 94% for fine- and coarse-grained disambiguation, respectively, which is

difficult to compare to other systems, including ours.

Finally, we cite a study by Brody, Navigli and Lapata (2006), which concerns

ensembles of unsupervised disambiguation algorithms. One of the combination

approaches involves the use of SSI, the algorithm adopted in the present paper, as

an arbiter of disagreed senses. Notice however that in that work the authors focus on
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the adjudication of disagreed nouns. As a result, verbs, adjectives, and adverbs are left

ambiguous and do not provide a strong contribution to the structural disambiguation

of disagreed nominal senses. The other ensembles presented in the paper (majority

voting, probability mixture, rank-based) would not benefit from agreed senses of

other parts of speech, and this is the reason for the lower performance of SSI

in that specific setting. In that work, SSI on the adjudication of disagreed nouns

in SemCor obtains 56.3% versus 58.1% accuracy obtained by the best ensemble

method, namely the rank-based approach (−1.8%). In contrast, in this paper we

exploit the full power of sense-tagging agreements, thus obtaining results which

overcome the state of the art in all-words WSD by around 3.3% (cf. Section 5.2).

In previous works (Navigli 2006a, b), we presented preliminary experiments on

the manual and automatic adjudication of sense annotations. However, those

experiments were inconclusive: on the manual side, we simulated disagreements

on a much smaller scale without even distinguishing among classes of granularity

as we did in this paper; on the automatic side, we performed experiments only on

a part of the Senseval-3 test set, whereas in this paper we applied SSI to the full set

of disagreements. All the experiments in the present paper are novel and provide

interesting insights into the contribution of structural information to the resolution

of disagreements.

7 Conclusions

In this paper we discussed the use of a specific kind of lexical chains, namely,

structural semantic interconnections, to automatize the task of adjudicating manual

and automatic disagreed sense assignments. The use of semantic interconnection

patterns to support adjudication allows it to smooth possible divergences between

the annotators and to corroborate choices consistent with the adopted lexicon. This

novel aspect has been thoroughly assessed in simulated and real experiments, all

based on standard data sets. The approach proves to be effective in the adjudication

of human disagreements and exceeds by more than three points in accuracy to that

of state-of-the-art all-words disambiguation systems with no additional training. The

method is independent of the lexicon (i.e. WordNet), in that valid patterns can be

derived from any sufficiently rich ontological resource, and can be applied to texts

of any nature, in contrast to most combination methods.

The experiments illustrated in Section 5 show that semantic interconnections are a

good means for providing coherent suggestions with a satisfactory balance between

precision and recall (around 80% and 60%, respectively, on human disagreements).

We remark the structural nature of the suggestions provided by SSI: a human judge

can indeed visually analyze the correctness of an adjudication in terms of its semantic

interconnections with respect to the other word senses chosen in context. The method

has been implemented as a visual tool available online, called Valido8 (Navigli 2006a).

The tool takes as input a corpus of documents whose sentences are tagged by one

or more annotators with word senses from the WordNet inventory. The user can

8 Valido is available online at: http://lcl.uniroma1.it/valido.



570 R. Navigli

browse the sentences, and adjudicate a choice over the others in case of disagreement

among the annotators. In a future work, we plan to perform experiments on the

usefulness of the visual suggestions provided by the tool in manually validating

disagreed sense annotations, compared to a typical adjudication task performed in

a nonvisual manner. We also aim at showing that semantic interconnections could

be used during the annotation phase by taggers looking for suggestions based on

the lexicon structure, with the objective of improving the coherence and awareness

in the decisions to be taken. Finally, we would like to experiment on the use

of WordNet domains (Magnini and Cavaglià 2000) to determine whether there

is room for further improvement of our method in the automated resolution of

disagreements.
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