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Abstract. In this paper we firstly present a progress report of the OntoWordNet project, a research 
program aimed at achieving a formal specification of WordNet. Within this program, we developed a 
hybrid bottom-up top-down methodology to automatically extract association relations from WordNet, 
and interpret these associations in terms of a set of conceptual relations, formally defined in the DOLCE 
foundational ontology. Preliminary results provide us with the conviction that a research program aiming 
to obtain a consistent, modularized, and axiomatized ontology from WordNet can be completed in 
acceptable time with the support of semi-automatic techniques.  

1. Introduction 

The number of applications where WordNet (WN) is being used as an ontology rather than as a mere lexical resource 
seems to be ever growing. Indeed, WordNet contains a good coverage of both the lexical and conceptual palettes of the 
English language. However, WordNet is serviceable as an ontology (in the sense of a theory expressed in some logical 
language) if some of its lexical links are interpreted according to a formal semantics that tells us something about the 
way we use a lexical item in some context for some purpose. In other words, we need a formal specification of the 
conceptualizations that are expressed by means of WordNet’s synsets1. A formal specification requires a clear semantics 
for the primitives used to export WordNet information into an ontology, and a methodology that explains how WordNet 
information can be bootstrapped, mapped, refined, and modularized during the export procedure. 

The formal specification of WordNet is the objective of the so-called OntoWordNet research program, started two 
years ago at the ISTC-CNR, and now being extended with other partners, since collaborations have been established 
with the universities of Princeton, Berlin and Roma. The program is detailed in section 2, where we outline the main 
objectives and current achievements.  
In this paper we describe a joint ongoing work of ISTC-CNR and the University of Roma that has produced a 
methodology and some preliminary results for adding axioms (DAML+OIL “restrictions”) to the concepts derived from 
WordNet synsets. The methodology is hybrid because it employs both top-down techniques and tools from formal 
ontology, and bottom-up techniques from computational linguistics and machine learning. Section 3 presents a detailed 
description of the methodology. 
The preliminary results, presented in section 4, seem very encouraging, and provide us with the convincement that a 
research program aiming to obtain a consistent, modularized, and axiomatized ontology from WordNet can be 
completed in acceptable time with the support of semi-automatic techniques. 

 
1 Concept names in WordNet are called synsets, since the naming policy for a concept is a set of synonym words, e.g. for sense 1 of 

car: { car, auto, automobile, machine, motorcar }. In what follows, WN  concepts are also referred to as synsets. 



2. The OntoWordNet research program: objectives, assumptions, and first 
achievements 

The OntoWordNet project aims at producing a formal specification of WordNet as an axiomatic theory (an ontology). 
To this end, WordNet is reorganized and enriched in order to adhere to the following commitments: 
 

• Logical commitment. WordNet synsets are transformed into logical types, with a formal semantics for 
lexical relations. The WordNet lexicon is also separated from the logical namespace. 

• Ontological commitment. WordNet is transformed into a general-purpose ontology library, with explicit 
categorial criteria, based on formal ontological distinctions (Gangemi et al. 2001). For example, the 
distinctions enable a clear separation between concept-synsets, instance-synsets, relation-synsets, and meta-
property-synsets. Moreover, such formal ontological principles facilitate the axiomatic enrichment of the 
ontology library. 

• Contextual commitment. WordNet is modularized according to knowledge-oriented domains of interest. The 
modules constitute a partial order. 

• Semiotic commitment. WordNet lexicon is linked to text-oriented (or speech act-oriented) domains of 
interest, with lexical items ordered by preference, frequency, combinatorial relevance, etc. 

 
The logical commitment has been already introduced in WordNet through methodological assumptions that are 
described in (Gangemi et al. 2002). The hyperonymy relation in WN is basically interpreted as formal subsumption,
although hyperonymy for concepts referring to individuals (geographical names, characters, some techniques, etc.) is 
interpreted as instantiation. This will be referred as assumption A1 (“hyperonymy as synset subsumption”). For 
example, the concept retrospective#1 has the hyperonym art_exhibition#1, which is logically represented as:  
 

∀x. Retrospective(x) → Art_Exhibition(x),  
 
while the hyperonymy link between the gemini#1 and constellation#1 is represented as an instantiation:

Constellation(Gemini)

The ontological commitment is rather more demanding, but many results are already available. For example, an 
incremental methodology has been adopted, reusing the DOLCE foundational ontology (Gangemi et al. 2002), in order 
to revise or to reorganize WordNet synset taxonomies and relations (see also paragraph 3.2.1). Substantial work has 
been done on the refinement of the hyponym/hyperonym relation, which has being investigated since several years. 
WordNet synonymy is a relation between words, not concepts, therefore we should assume that the synonymy relation 
(synsets in WordNet) is an equivalence class of words (or phrases), sharing the same meaning within an ontology. 
Consequently, two words are synonyms when their intended meaning in WordNet is the same. This will be referred to 
as assumption A2 (“synset as meaning equivalence class”). 
However, we have no formal definition of words in WordNet that allows us to create equivalence classes (synsets) 
analytically (i.e., to state semantic equivalences). Instead, we have pre-formal synsets that have been validated by 
lexicographers with an intuition that could be formalized as semantic equivalence. Part of this intuition is conveyed by 
textual definitions (called glosses). No claim of completeness is made though. This will be referred as assumption A3 
(“glosses as axiomatizations”). In this paper we are trying to formalize such intuition. 
A related assumption that we make is that words in glosses are used in a way consistent to the WordNet synsets. This 
will be referred as assumption A4 (“glosses are synset-consistent”). A4 lets us assume also that the informal theory 
underlying synsets, hyperonymy relations, and glosses, can be formalized against a finite signature (the set of WN 
synsets), and a set of axioms derived from the associations (A-links) between any synset S and the synsets that can be 
associated to the words used in the gloss of S. This is dependent on A3 and A4, and may be referred as assumption A5 
(“A-links as conceptual relations”). 
The revision of WordNet synset taxonomies is still ongoing, but it is already usable to carry out novel experiments. For 
example, the WEBKB-22 project is using the preliminary results of our work. 
 
Contextual and semiotic commitments are still poorly implemented, although some resources and the methodologies to 
exploit them are available. For example, contextual information could be extracted using the so-called domain labels 
defined in (Miller et al. 1993) and (Magnini and Cavaglia, 2000). Domain labels have been associated to WordNet 1.6 
synset, and we are currently analyzing and refining this information.  

 
2 http://meganesia.int.gu.edu.au/~phmartin/WebKB/doc/wn 



Core (order of 500 concepts) 

Foundational (order of 100) 

Domain Ontology 
(order of 103)

For example, domain labels are being exploited in order to create a partial order of ontological modules that is 
consistent with the actual use of the lexicon within real world corpora. To this purpose, we are using both foundational 
ontologies (top-down reorganization), and Web catalogues (bottom-up reorganization). 
 
Figure 1 shows the “layers” in which the OntoWordNet ontology library is being organized. The foundational layer 
contains modules including domain-independent concepts, relations, and meta-properties. The core layer contains 
modules including generic concept and relations for a given domain of interest. The domain layer contains modules 
including domain-oriented instances, concepts, and relations. This layer can be automatically populated by an ontology 
extension technique, implemented in the OntoLearn system (Navigli et al. 2003).  
 

Figure 1. The three levels of generality of a Domain Ontology. 

3. Axiomatization of WordNet: Extraction and refinement of association sets 
from glosses  

The task of axiomatizing WordNet, starting from assumptions A1-A5 outlined in the previous section, requires that the 
informal definition in a synset gloss be transformed in a logical form. To this end, first, words in a gloss must be 
disambiguated, i.e. replaced by their appropriate synsets. This first step provides us with pairs of generic semantic 
associations (A-links) between a synset and the synsets of its gloss. Secondly, A-links must be interpreted in terms of 
more precise, formally defined semantic relations. The inventory of semantic relations is selected or specialized from 
the foundational ontology DOLCE, as detailed later, since in WordNet only a limited set of relations are used, that are 
partly ontological, partly lexical in nature. For example, part_of (meronymy in WordNet) and kind_of (hyponymy in 
WordNet) are typical semantic relations, while antonymy (e.g. liberal and conservative) and pertonymy (e.g slow and 
slowly) are lexical relations. Furthermore, WordNet relations are not axiomatized, nor are they used in a fully consistent 
way. 
To summarize, the objective of the method described in this section is to: 

• automatically extract a number of semantic relations implicitly encoded in WordNet, i.e. the relations holding 
between a synset and the synsets in its gloss. 

• (semi)-automatically interpret and axiomatize these relations.  
 
For example, sense 1 of driver has the following gloss “the operator of a motor vehicle”. The appropriate sense of 
operator is #2: operator, manipulator (“an agent that operates some apparatus or machine”), while motor vehicle is 
monosemous: motor vehicle, automotive vehicle (“a self-propelled wheeled vehicle that does not run on rails”). 
After automatic sense disambiguation, we (hopefully) learn that there exists an A-link between driver#1 and operator#2, 
and between driver#1 and motor vehicle#1. Subsequently, given a set of axiomatized semantic relations in DOLCE, we 
must select the relation that best fits the semantic restrictions on the relation universes (domain and co-domain, or 
range). For example, given an A-link between driver#1 and motor vehicle#1, the best fitting relation is agentive-co-
participation (Figure 2), whose definition is: 
 
(and co-participation 

 (domain Agentive_Physical_Object) 
 (range Non_Agentive_Functional_Object)))3.

3 In FOL: AG_CO_PCP(x,y) =df CO_PCP(x,y) ∧ Agentive_Physical_Object(x) ∧ Non_Agentive_Functional_Object(y)



driver#1 motor vehicle#1

AG_CO_PCP

"the operator of a
motor vehicle"

is-a

operator#1

is-a

vehicle#1

Figure 2. An example of semantic relation. 

Domain and range in a conceptual relation definition are established in terms of the DOLCE ontology. Consequently, 
another necessary step of our method is to re-link at least some of the higher level nodes in WordNet with the DOLCE 
upper ontology. 
In the following sub-sections we detail the procedures for gloss disambiguation, WordNet re-linking, and selection of 
conceptual relations. 

3.1 Bottom-up learning of association links. 

The first step is a bottom-up procedure that analyses the NL definitions (glosses) in WordNet and creates the A-links. 
For each gloss (i.e., linguistic concept definition), we perform the following automatic tasks: 
a) POS-tagging of glosses (using the ARIOSTO NL processor) and extraction of relevant words; 
b) Disambiguation of glosses by the algorithm described hereafter; 
c) Creation of explicit "association" links (A-links) from synsets found in glosses to synsets to which glosses belong. 

3.1.1 Description of the gloss disambiguation algorithm 

We developed a greedy algorithm for gloss disambiguation that relies on a set of heuristic rules and is based on 
multiple, incremental iterations. A simplified formal description of the algorithm is in Figure 3. 

The algorithm takes as input the synset S whose gloss G we want to disambiguate.  
Two sets are used, P and D. D is a set of disambiguated synsets, initially including only the synset S. P is a set of 

terms to be disambiguated, initially containing all the terms from gloss G and from the glosses {G’} of the direct 
hyperonyms of S. As clarified later, adding {G’} provides a richer context for semantic disambiguation. The term list is 
obtained using our NL processor to lemmatize words, and then removing irrelevant words. We use standard information 
retrieval techniques (e.g stop words) to identify irrelevant terms. 

When, at each iteration of the algorithm, we disambiguate some of the terms in P, we remove them from P and 
add their interpretation (i.e. synsets) to the set D. Thus, at each step, we can distinguish between pending and 
disambiguated terms (respectively the sets P and D). Notice again that P is a set of terms, while D contains synsets. 

 
a) Find monosemous terms

The first step of the algorithm is to remove monosemous terms from P (those with a unique synset) and include 
their unique interpretation in the set D.

b) Disambiguate polysemous terms
Then, the core iterative section of the algorithm starts. The objective is to detect semantic relations between some 

of the synsets in D and some of the synsets associated to the terms in P. Let S’ be a synset in D (an already chosen 
interpretation of term t’) and S” one of the synsets of a polysemous term t” ∈ P (i.e., t” is still ambiguous). If a 
semantic relation is found between S’ and S”, then S” is added to D and t” is removed from P.

To detect semantic relations between S’ and S”, we apply a set of heuristics grouped in two classes, Path and 
Context, described in what follows. Some of these heuristics have been suggested in (Milhalcea, 2001), 

Path heuritics
The heuristics in class Path seek for semantic patterns between the node S’ and the node S” in the WordNet 

semantic network. A pattern is a chain of nodes (synsets) and arcs (directed semantic relations), where S’ and S” are at 
the extremes.  
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,,,, →→→→→ respectively represent the following semantic relations coded in WordNet 1.6: 
hyperonimy (kind_of), hyponymy (has kind) meronymy (part_of), holonymy (has_part), and similarity. Similarity is a 

generic relation including near synonyms, adjectival clusters and antonyms. Finally, the gloss relation TS
gloss
→ indicates 

that the gloss of S includes a term t, and T is one of the synsets of t.
We use the following heuristics to identify semantic paths (S’∈ D, S” ∈ Synsets(t”), t” ∈ P):  

1 Hyperonymy path: if S’
@

n→ S” choose S” as the right sense of t” (e.g., canoe#1 
@

2→ boat#1, i.e. a canoe is a kind 
of boat); 

2 Hyperonymy/Meronymy path: if S’
#@,
n→ S” choose S” as the right sense of t” (e.g., archipelago#1 

#
→ island#1); 

3 Hyponymy/Holonymy path: if S’
,%~

n→ S” choose S” as the right sense of t” (e.g., window#7 
%
→ computer 

screen#1); 
4 Adjectival Similarity: if S” is in the same adjectival cluster than S’, choose S” as the right sense of t”.

5 Parallelism: if exists a synset T such that S’
@
→ T

@

← S”, choose S” as the right sense of t” (for example, 

background#1 
@

→ scene#3 
@

← foreground#2); 
 

Context heuristics
The Context heuristics use several available resources to detect co-occurrence patterns in sentences and contextual clues 
to determine a semantic proximity between S’ and S”. The following heuristics are defined: 
 
1 Semantic co-occurrences: word pairs may help in the disambiguation task if they always co-occur with the same 

senses within a tagged corpus. We use three resources in order to look for co-occurrences, namely: 
� the SemCor corpus, a corpus where each word in a sentence is assigned a sense selected from the 

WordNet sense inventory for that word; an excerpt of a SemCor document follows: 
 

Color#1 was delayed#1 until 1935, the widescreen#1 until the early#1 fifties#1. 
Movement#7 itself was#7 the chief#1 and often#1 the only# attraction#4 of the primitive#1 movies#1 
of the nineties#1. 

 
� the LDC corpus, a corpus where each document is a collection of sentences having a certain word in 

common. The corpus provides a sense tag for each occurrence of the word within the document. 
Unfortunately, the number of documents (and therefore the number of different tagged words) is 
limited to about 200. An example taken from the document focused on the noun house follows: 

 
Ten years ago, he had come to the house#2 to be interviewed. 
Halfway across the house#1, he could have smelled her morning perfume. 
 

� gloss examples: in WordNet, besides glosses, examples are sometimes provided containing synsets 
rather than words. From these examples, as for the LDC Corpus, a co-occurrence information can be 
extracted. With respect to the LDC corpus, WordNet provides examples for thousands of synsets, but 
just a few for the same word. Some examples follow: 

 
“Overnight accommodations#4 are available.” 
“Is there intelligent#1 life in the universe?” 
“An intelligent#1 question.” 

 
As we said above, only the SemCor corpus provides a sense for each word in a pair of adjacent words occurring in 
the corpus, while LDC and gloss examples provide the right sense only for one of the terms.  
In either case, we can use this information to choose the synset S” as the interpretation of t” if the pair t’ t” occurs 
in the gloss and there is an agreement among (at least two of) the three resources about the disambiguation of the 
pair t’ t”. For example: 
[…] Multnomah County may be short of general assistance money in its budget to handle an unusually high 
summer#1 month#1's need […]. 



Later#1, Eckenfelder increased#2 the efficiency#1 of treatment#1 to between 75 and 85 percent#1 in the 
summer#1 months#1.
are sentences respectively from the LDC Corpus and SemCor. Since there is a full agreement between the 
resources, one can easily disambiguate summer and months in the gloss of summer_camp#1: “a site where care 
and activities are provided for children during the summer months”. 

 
2 Common domain labels: Domain labels are the result of a semiautomatic methodology described in (Magnini and 

Cavaglia, 2000) for assigning domain labels (e.g. tourism, zoology, sport..) to WordNet synsets4. This information 
can be exploited to disambiguate those terms with the same domain labels of the start synset S. Notice that a synset 
can be marked with many domain labels, therefore the algorithm selects the interpretation S” of t” if the following 
conditions hold together (the factotum label is excluded because it is a sort of topmost domain): 

 
� DomainLabels(S”) \ { factotum }⊆ DomainLabels (S) \ { factotum }; 
� There is no other interpretation S”’ of t” such that DomainLabels (S”’) \ { factotum } ⊆

DomainLabels (S) \ { factotum }. 
 

For example, boat#1 is defined as “a small vessel for travel on water”, both boat#1 and travel#1 belong to the 
tourism domain and no other sense of travel satisfies the conditions, so the first sense of travel can be chosen; 
similarly, cable car#1 is defined as “a conveyance for passengers or freight on a cable railway”, both cable car#1 
and conveyance#1 belong to the transport domain and no other sense of conveyance satisfies the conditions, so the 
first sense of conveyance is selected. 

 
c) Update D and P

During each iteration, the algorithm applies all the available heuristics in the attempt of disambiguating some of the 
terms in P, using all the available synsets in D. While this is not explicit in the simplified specification of Figure 3, the 
heuristics are applied in a fixed order reflecting their importance, that has been experimentally determined. For 
example, Context heuristics are applied after Path heuristics 1-5. At the end of each iterative step, new synsets are 
added to D, and the correspondent terms are deleted from P. The next iteration makes use of these new synsets in order 
to possibly disambiguate other terms in P. Eventually, either P becomes empty, or no new semantic relations can be 
found. 
 

When the algorithm terminates, D \ { S } can be considered a first approximation of a semantic definition of S. For 
mere gloss disambiguation purposes, the tagged terms in the hyperonyms’ gloss are discarded, so that the resulting set 
(GlossSynsets) now contains only interpretations of terms extracted from the gloss of S. At this stage, we can only say 
that there is a semantic relation (A-link) between S and each of the synsets in GlossSynsets . 

A second, more precise approximation of a sound ontological definition for S is obtained by determining the 
nature of the A-links connecting S with each concept in D \ { S }. This is an ongoing task and is discussed in Section 4. 

3.1.2 A running example 

In the following, we present a sample execution of the algorithm on sense 1 of retrospective. Its gloss defines the 
concept as “an exhibition of a representative selection of an artist’s life work”, while its hyperonym, art exhibition#1, is 
defined as “an exhibition of art objects (paintings or statues)”. Initially we have: 

 
D = { retrospective#1 } 
P = { work, object, exhibition, life, statue, artist, selection, representative, painting, art } 
 
The application of the monosemy step gives the following result: 
 
D = { retrospective#1, statue#1, artist#1 } 
P = { work, object, exhibition, life, selection, representative, painting, art } 
 
because statue and artist are monosemous terms in WordNet. During the first iteration, the algorithm finds three 
matching paths:  

retrospective#1
@

2→ exhibition#2, statue#1 
@

3→ art#1 and statue#1 
@

6→ object#1 
 
this leads to: 

 
4 Domain labels have been kindly made available by the IRST to our institution for research purposes. 



D = { retrospective#1, statue#1, artist#1, exhibition#2, object#1, art#1 } 
P = { work, life, selection, representative, painting } 

 

DisambiguateGloss(S) 
 
{G already disambiguated? } 
if (GlossSynset(S) ≠ Ø) return 

{ S is the starting point } 
D := { S } 
{ disambiguation is applied the terms within the gloss of S 
 and the glosses of its direct hyperonyms } 
P := Gloss(S) ∪ Gloss(Hyper(S)) 

 
{look for synsets associated to monosemous terms in P } 
M := SynsetsFromMonosemousTerms(P) 
D := D ∪ M
{ ‘Terms’ returns the terms contained in the gloss of M } 
P := P \ Terms(M) 
 
LastIteration:=D 
 

{ until there is some heuristic to apply } 
while(LastIteration ≠ Ø) 
 NS := Ø { new chosen synsets for disambiguating 
 terms in the gloss of S } 
 

{ for each just disambiguated synset S’} 
 foreach (S’ ∈ LastIteration) 
 { look for connections between S’ 
 and the synsets to disambiguate } 
 NS := NS ∪ Path-heuristics(S’, P) 
 

NS := NS ∪ Context-heuristics(S’, P) 
 

{ D now contains all the new chosen synsets from 
 the last iteration } 
 D := D ∪ NS 
 { remove the terms contained in the gloss of NS } 
 P := P \ Terms(NS) 
 { these results will be used 
 in the next iteration } 
 LastIteration := NS 
 
{ stores the synsets chosen for some terms 
 in the gloss of S } 
foreach S’ ∈ D

if (Terms(S’) ∩ Gloss(S) ≠ Ø) 
 GlossSynsets(S) := GlossSynsets(S) ∪ { S’ } 
 
return GlossSynsets(S) 
 

Figure 3. The disambiguation algorithm. 

During the second iteration, an hyponymy/holonymy path is found:  

art#1 
~

2→ painting#1 (painting is a kind of art) 
 
D = { retrospective#1, statue#1, artist#1, exhibition#2, object#1, art#1, painting#1 } 
P = { work, life, selection, representative } 

 
Since no new paths are found, the third iteration makes use of the LDC Corpus to find the co-occurrence “artist 

life”, with sense 12 of life (biography, life history): 
 

D = { retrospective#1, statue#1, artist#1, exhibition#2, object#1, art#1, painting#1, life#12 } 
P = { work, selection, representative } 

 
Notice that, during an iteration, the context heuristics are used only if the path heuristics fail. 
The algorithm stops because there are no additional matches. The chosen senses concerning terms contained in the 

hyperonym’s gloss were of help during disambiguation, but are now discarded. Thus we have: 
 
GlossSynsets(retrospective#1) = { artist#1, exhibition#2, life#12 }



retrospective#1

exhibition#2

artist#1life#12

object#1

statue#1

art#1

painting#1

Figure 4. A first approximation of a semantic definition of retrospective#1.

Figure 4 shows in dark gray the A-links between retrospective#1 and the synset of its glosses, while in the light gray 
area are shown the synsets of the hyperonyms. 

3.2 Top-down learning: formal ontologies and WordNet “sweetening”  

In the top-down phase, the A-links extracted in the bottom-up phase are refined. A-links are similar to RT (Related 
Term) relations in thesauri, which provide just a clue of relatedness between pairs of thesaurus descriptors5. In fact, 
associations are conceptually ambiguous, since we can only assume that there is some relatedness between a synset and 
another synset extracted from the gloss analysis, but this relatedness must be explicit, in order to understand if it is a 
hyperonymy relation, or some other conceptual relation (e.g. part, participation, location, etc.). 
 
First of all, we need a shared set of conceptual relations to be considered as candidates for A-links explicitation, 
otherwise the result is not easily reusable. Secondly, these relations must be formally defined. In fact, as already pointed 
out at the beginning of section 3, not only are A-links vague, but they also lack of a formal semantics: for example, if 
we decide (which seems reasonable) to represent associations as binary relations –like DAML+OIL “properties”– is an 
association symmetric? Does it hold for every instance, or only for some of the instances of the classes derived from the 
associated synsets? Is it just a constraint on the applicability of a relation to that pair of classes? Is the relation set a flat 
list, or there is a taxonomic ordering? 
To answer such questions, the shared set of relations should be defined in a logical language using a formal semantics. 
Since WordNet is a general-purpose resource, the formal shared set of relations should also be general enough, based on 
domain-independent principles, but still flexible, in order to be easily maintained and negotiated. 

3.2.1 The DOLCE descriptive ontology and conceptual relation library 

A proposal in this direction is provided by the WonderWeb6 project Foundational Ontology Library (WFOL), which 
will contain a library including both compatible and alternative modules with domain-independent concepts and 
relations. A recently defined module that accomplishes the abovementioned requirements is DOLCE (Descriptive 
Ontology for Linguistic and Cognitive Engineering).  
DOLCE is expressed in an S5 modal logic (Masolo et al. 2002), and has counterparts in computational logics, such as 
KIF, LOOM, RACER, DAML+OIL, and OWL. The non-KIF counterparts implement a less rich version, called 
DOLCE-Lite. DOLCE-Lite has been extended with some generic plugins for representing information, communication, 
plans, ordinary places, and with some domain plugins for representing e.g. legal, tourism, biomedical notions. The 
combination of DOLCE-Lite and the existing plugins is called DOLCE-Lite+. The current version 3.6 of, DOLCE-
Lite+ without domain plugins contains more than 300 concepts and about 150 relations (see table 1 and 2 in Appendix 
1). 
DOLCE assumes that its categories (top classes) constitute an extensionally closed set on any possible particular entity, 
i.e., entities that cannot be further instantiated within the assumptions of the theory (cf. Masolo et al. 2002, Gangemi et 
al. 2001). Of course, DOLCE does not assume an intensionally closed set, thus allowing for alternative ontologies to co-
exist. Such assumptions will be referred to as A6_D (“extensional total coverage of DOLCE”). Consequently, we also 
 
5 A-links have an advantage over RT relations, because A-links are directed, while RT are symmetric relations. A-links are directed 

because we assume that the links can hold only from a source synset to a synset extracted from its gloss. 
6 http://wonderweb.semanticweb.org



assume that WN globally can be tentatively considered a (extensional) subset of DOLCE, after its formalization. Since 
we cannot practically obtain a complete formalization of WN, we will be content with incrementally approximating it.  
A trivial formalization of WN might consist in declaring formal subsumptions for all unique beginners under DOLCE 
categories, but this proved to be impossible, since the intension of unique beginners, once they are formalized as 
classes, is not consistent with the intension of DOLCE categories. Then we started (Gangemi et al. 2002) deepening our 
analysis of WN synsets, in order to find synsets that could be subsumed by a DOLCE category (or one of their 
subclasses) without being inconsistent. 
In our previous OntoWordNet work, WordNet 1.6 has been analyzed, and 809 synsets have been relinked to DOLCE-
Lite+ in order to harmonize (“sweeten”) WN taxonomies with DOLCE-Lite+. A working hypothesis (A7_D) has been 
that the taxonomy branches of the relinked synsets are ontologically consistent with the DOLCE-Lite+ concepts, to 
which the relinking is targeted. This hypothesis resulted inadequate in the initial attempts to get a complete DOLCE 
coverage of WordNet, since the intended meanings of hyponym synsets are usually not consistent through the entire 
branching (cf. Gangemi et al. 2002 for examples) After some additional work, the current linking of 809 synsets seems 
acceptable, but it still needs refinements, in order to keep DOLCE-Lite+ intended meanings consistent through the 
overall WordNet branchings. 
This task is still ongoing: some subsumptions are debatable, and it must be considered that some extensions of DOLCE-
Lite+ are still unstable. Nonetheless, such an approximate and partly debatable coverage could be enough to start 
experimenting with a more explicit axiomatization of synsets. We will show in what follows that this experiment can 
also provide feedback to refine some of the subsumptions. 

3.2.2 Disambiguation of association links 

Assumptions A4 and A5 (section 2), together with A6_D (in previous sub-section), make it possible to exploit the 
axiomatized relations in DOLCE-Lite+. Such relations are formally characterized by means of ground axioms (e.g. 
symmetry, transitivity, etc.), argument restrictions (qualification of their universe), existential axioms, links to other 
primitives, theorems, etc. (refer to (Masolo et al. 2002), and the web site of the LOA7). 
 
By looking at the A-links, a human expert can easily decide which relation from DOLCE-Lite+ is applicable in order to 
disambiguate the A-link, for example, from:  
 

1. A-link(car#1, engine#1)

we may be able to infer that cars have engines as components: 
 

∀x. Car(x) → ∃y. Engine(y) ∧ Component(x,y)

or that from 
 

2. A-link(art_exhibition#1, painting#1)

we can infer that exhibitions as collections have paintings as members: 
 

∀x. Art_exhibition(x) → ∃y. Painting(y) ∧ Member(x,y)

But this is an intellectual technique that requires a lot of effort. We are instead interested, at least for the sake of 
bootstrapping a preliminary axiomatization of synsets, in a (semi) automatic classification technique.
From this viewpoint, the only available structure is represented by the concepts (synsets) to which the A-links apply. 
Such synsets can be assumed as the argument restrictions of a conceptual relation implicit in the association. For 
example, from (A-link(S1, S2)), we can infer that Rass(x,y) → S1(x) ∧ S2(y). Then, from A5 and its depend-on 
assumptions, we have a good heuristics for concluding that S1(x) → ∃y. Rass(x,y) ∧ S2(y). But this leaves us with the 
question of what is the intension of Rass(x,y), beyond its argument restrictions.  
In fact, assuming A6_D, this task is equivalent to asserting that Rdolce(x,y) subsumes Rass(x,y). This assertion is also 
easily derivable, since a description-logic classifier (e.g. LOOM, MacGregor, 1993, or RACER, Moeller, 2001) can be 
used to compute the applicable relations from DOLCE-Lite+ to the training set of A-links, by using an “ABox” query 
like the following: 
 
ABox-1
(retrieve (?x ?R ?y)  (and (get-role-types ?x ?R ?y) (min-cardinality ?x ?R 1) (A-link ?x ?y))) 

 
7 http://ontology.ip.rm.cnr.it 



i.e., provided that A-links have been defined on DOLCE-Lite+ classes (i.e. that WN synsets ?x ?y are relinkable to 
DOLCE-Lite+ classes), the relation “get-role-types” will find all the relations in DOLCE-Lite+ that are applicable to 
those classes, with a cardinality≥18. For example, given the previous example (2) of A-link, the classifier uses some of 
the DOLCE-Lite+ axioms to suggest the right conceptual relation. In fact, the WordNet synset art_exhibition#1 is a 
(indirect) sub-class of the DOLCE class “unitary collection”, a category for which the following axiom holds: 
 

∀x. Unitary_Collection(x) → ∃y. Physical_Object(y) ∧ Member(x,y)

Furthermore, since painting#1 is a (indirect) sub-class of “physical object”, and the axiom holds with a cardinality≥1, 
the classifier can propose the correct axiom. 
 
In other cases, ABox-1 retrieves relations that are questionable. For example, given: 
 

3. A-link(boat#1,travel#1)

we have no axiom like the following in DOLCE-Lite+: 
 

* ∀x. Physical_Object(x) → ∃y. Situation(y) ∧ Setting(x,y) 
 
then the A-link between boat and travel cannot be automatically classified and proposed as a “setting” one. In other 
words, in general it is not true that “for any physical object (boat#1 is classified in the “object” branching) there is at 
least a situation (travel#1 is classified within situations) as its possible “setting” (the relation holding between situations 
and other entities in DOLCE-Lite+): we can figure out objects in general, without setting them anywhere, at least within 
the scope of a computational ontology. 
In other cases, there exist an appropriate relation, but it is applied in an incorrect way. For example, given: 
 

4. A-link(motor hotel#1,parking area#1) 
 
DOLCE-Lite finds the relation “p-spatial-location”, defined as (by using a KRSS-like syntax for description logics): 
 
(defrelation P-SPATIAL-LOCATION 
 :annotations ((DOCUMENTATION "Analytical indirect location holding between events (perdurants) and space 
regions.")) 
 :is (:and EXACT-LOCATION 
 (:composition PARTICIPANT 
 SPATIAL-LOCATION)) 
 :domain PERDURANT 
 :range SPACE-REGION) 
 
According to this intuitive and quite general definition, DOLCE-Lite+ suggests that motor hotel (a perdurant) is located 
in a parking area (space region), but here we have the opposite: the parking area is located in (belongs to) the motor 
hotel. 
The above examples show that axioms representing generally acceptable intuitions in a foundational ontology may 
result inadequate in a given application domain, in which certain axiomatizations need an ad-hoc refinement.  
The solution presented here exploits argument restrictions for the gloss axiomatization task. For this solution, we need a 
partition ∏ of relation universes, according to the 25 valid pairs of argument restrictions that can be generated out of the 
five top categories of DOLCE-Lite+ (Object, Event, Quality, Region, and Situation), which on their turn constitute a 
partition on the domain of entities for DOLCE-Lite+. This enables us to assign one of the 25 relations to the A-link 
whose members are subsumed by the domain and range of that relation. For example, from:  
 

Boat(x) → Object(x), and  
Travel(y) → Situation(y),  
 

we can infer that some R<Object,Situation> holds for the pair {x,y}. 
However, in DOLCE-Lite+, existing relations are based on primitives adapted from the literature, covering some basic 
intuitions and axiomatized accordingly. Therefore, the current DOLCE-Lite+ partition ∏δ is not isomorphic with ∏,
while the same extensional coverage is supported. For example, the DOLCE-Lite+ relation “part” corresponds to a 
subset of the union of all the argument pairs in ∏ that include only the same category (e.g., <Event, Event>). ∏δ is 
 
8 cardinality refers to the existential quantifier in S1(x) → ∃y. Rass(x,y) ∧ S2(y)



inadequate to perform an automatic learning of conceptual relations, because we cannot distinguish between “part” and 
other relations with the same universe (e.g. "connection"). Similarly, we cannot distinguish between different pairs of 
argument restrictions within the “part” universe (e.g. <Event, Event> vs. <Object, Object>). 
The choice of axioms in DOLCE-Lite+ is motivated by the necessity of grounding the primitive relations in human 
intuition, for example in so-called cognitive schemata that are established during the first steps of an organism’s life by 
interacting with its environment and using its specific abilities to react to the stimuli, constraints, and affordances 
provided by the context (Johnson 1987). In fact, without that grounding, the meaning of relations cannot be figured out 
at all (even though they are correct from a logical viewpoint). 
There is also another reason for the inadequacy of ∏δ. A conceptual relation can be “mediated”, e.g. manipulated 
through a composition (called also chaining, or joining in the database domain). For example, two events can be related 
not only because one is part of the other, but also because there can be someone participating in both events. 
In brief: we cannot use ∏δ, since it does not discriminate at the necessary level of detail, and because it is not a partition 
at all, if we take into account mediated relations. On the other hand, we cannot use ∏ , because it is cognitively 
inadequate. 
Consequently, we had to evolve a special partition ∏δ+ that keeps both worlds: a real partition, and cognitive adequacy. 
∏δ+ denotes a partition with a precise mapping to ∏δ. In appendix 2, the current state of ∏δ+ is shown. 
For example, by using ∏δ+, the proposed relation for the car/engine example is (physical-)mereotopological-
association, defined as the union of some DOLCE-Lite+ primitive relations: part, connection, localization, 
constituency, etc., holding only within the physical object category. In fact, many possible relational paths can be 
walked from an instance of physical object to another. 
Formally (in KRSS-like full syntax): 
 
(defrelation PHYSICAL-MEREOTOPOLOGICAL-ASSOCIATION 
 :is (:and Conceptual-Relation 
 (:satisfies (?x ?y) 
 (:or (Part ?x ?y) 
 (Overlaps ?x ?y) 
 (Strong-Connection ?x ?y) 
 (Weak-Connection ?x ?y) 
 (Successor ?x ?y) 
 (Constituent ?x ?y)))) 
 :domain Physical_Object 
 :range Physical_Object 
 :characteristics :symmetric) 
 
Starting from ∏δ+, other relations have been defined for subsets of the domains and ranges of the relations in ∏δ+. 
By means of ∏δ+, the query function can be adjusted as follows: 

ABox-2
(retrieve (?x ?r ?y) 
 (and 
 (A-Link ?x ?y) 
 (Superrelations ?x Physical_Object) 
 (Superrelations ?y Physical_Object) 
 (fail  
 (and (Superrelations?x Unitary_Collection) 
 (Superrelations?y Physical_Object))) 
 (fail  
 (and (Superrelations?x Amount_of_Matter) 
 (Superrelations?y Physical_Body))) 
 (fail (subject ?x dolce)) 
 (fail (subject ?y dolce)) 
 (fail (Superrelations ?x ?y)) 
 (fail (Superrelations ?y ?x)) 
 (min-cardinality ?x ?r 1))) 
 
The query approximately reads “if two synsets subsumed by physical object (provided that the first is not an amount of 
matter or a collection, and that they are not related by hyperonymy), are linked by an A-link, tell me what relations in 
DOLCE+WordNet are applicable between those synsets with a cardinality of at least 1”. 

 
In this way, we are able to learn all the relations that are applicable to the classes ?x and ?y involved in the A-Link 
tuples. The intention here is, for example, to limit the universe of “Mereotopological_association”, in order to give 



room to more specific relations, such as "member" or "constituent", with specialized universes. For example, applied to 
the synset car#1 that has an A-link to the synset engine#1, the query returns: 
 

R MEREOTOPOLOGICAL_ASSOCIATION(car#1,engine#1)

which, on the basis of DOLCE-Lite+, is interpreted as an axiom on car#1, stating that cars have a “physical 
mereotopological association” with an engine, because a DOLCE-Lite+ ancestor of both car#1 and engine#1 (“physical 
object”) defines the universe of the relation mereotopological association with a cardinality of at least 1 on the range. 
This heuristics is equivalent to the logical axiom: 
 

∀x. Car(x) → ∃y. Engine(y) ∧ Mereotopological-Association(x,y)

Notice that at this level of generality, the classifier cannot infer the “component” relation that we intellectually guessed 
at the beginning of section 3.2. A more specific relation can be approximated, if we define more specialised relations 
and axioms. For example, a “functional co-participation” can be defined with a universe of only “functional objects”, 
which are lower in the DOLCE-Lite+ hierarchy, but still higher than the pair of synsets associated by our automatic 
methodology of Section 3.1. Functional co-participation (“FCP”) is defined by composing two participation relations 
with a common event (in the example, a common event could be “car running”): 
 

FCP(x,y) =df ∃z. Participant_in(x,z) ∧ Participant(y,z) ∧ Event(z)

FCP is closer to the “component” intuition. The last can be precisely inferred if we feed the classifier with core domain 
relations. For example, we may accept a domain rule that states that for all vehicles related to functional objects that 
play the role of system components for vehicles, the “component” relation holds: 
 

vehicles^Component(x,y) =df  FCP(x,y) ∧ Vehicle(x) ∧ Functional_Object(y) ∧ ∃z. Plays(y,z) ∧
Vehicle_system_component(z)

In other words, by increasing the specificity of the domain (tourism in the examples discussed so far), we assume that 
relations should be specified accordingly. As discussed in this section, this process is triggered by the observation of 
some A-link, and proceeds semi-automatically until a reasonable coverage is reached.  
Anyway, when the domain cannot be specified, even a generic association like “mereotopological” provides a better 
intuition than a bare A-link. 
The conceptual relation partition is being incrementally verified, and the results of the experiment presented here can 
also be used as a test bed for creating a pruned set of domain-oriented relations. Notice that the pruned set of relations 
∏δ+ is always consistent with the original DOLCE-Lite+ conceptual relations, with which the pruned relations form a 
larger intensional set (the extensional coverage is maintained). 

4. Experimental results and discussion 

The gloss disambiguation algorithm and the A-link interpretation methods have been evaluated on two sets of glosses: a 
first set of 100 general-purpose glosses9 and a second set of 305 glosses from a tourism domain. This allows us to 
evaluate the method both on a restricted domain and a non-specialized task. 
For each term in a gloss, the appropriate WordNet sense has been manually assigned by two annotators, for over 1000 
words. 
To assess the performance of the gloss disambiguation algorithm we used two common evaluation measures: recall and 
precision. Recall provides the percentage of right senses with respect to the overall number of terms contained in the 
examined glosses. In fact, when the disambiguation algorithm terminates, the list P may still include terms for which no 
relation with the synsets in D could be found. Precision measures the percentage of right senses with respect to the 
retrieved gloss senses. A baseline precision is also computed, using the “first sense choice” heuristic. In WordNet, 
synsets are ordered by probability of use, i.e. the first synset is the most likely sense. For a fair comparison, the baseline 
is computed only on the words for which the algorithm could retrieve a synset. 
Table 1 gives an overview of the results. Table 1a provides an overall evaluation of the algorithm, while table 1b 
computes precision and recall grouped by morphological category. The precision is quite high (well over 90% for both 
general and domain glosses) but the recall is around 40%. Remarkably, the achieved improvement in precision with 
respect to the baseline is much higher for general glosses than for domain glosses. This is motivated by the fact that 

 
9 The 100 general glosses have been randomly selected among the 705 glosses used to re-link WordNet to the DOLCE-lite upper 

ontology. 



general glosses include words that are more ambiguous than those in domain glosses. Therefore the general gloss 
baseline is quite low. This means also that the disambiguation task is far more complex in the case of general glosses, 
where our algorithm shows particularly good performance. 
An analysis of performance by morphological category (Table 1b) shows that noun disambiguation has much higher 
recall and precision. This is motivated by the fact that, in WordNet, noun definitions are richer than for verbs and 
adjectives. The WordNet hierarchy for verbs is known as being more problematic with respect to nouns. In the future, 
we plan to integrate in our algorithm verb information from FRAMENET10, a lexico-semantic knowledge base 
providing rich information especially for verbs. 
 

Domains # glosses # words 
# disamb. 

words # of which ok Recall Precision 
Baseline 
Precision 

Tourism 305 1345 636 591 47,28% 92,92% 82,55% 
Generic 100 421 173 166 41,09% 95,95% 67,05% 

Domains 
noun 
recall 

noun 
precision adj recall

adj 
precision verb recall

verb 
precision

# tot 
nouns in 
glosses 

# tot adj in 
glosses 

# tot verbs 
in glosses

Tourism 64,52% 92,86% 28,72% 89,29% 9,18% 77,78% 868 195 294 
Generic 58,27% 95,95% 28,38% 95,24% 5,32% 80% 254 74 94 

Table 1a) performance of the gloss disambiguation algorithm b) performance by morphological category. 

In Table 2 we summarize the efficacy of the A-link semi-automatic axiomatization, after the partly manual creation of a 
domain view ∏δ+ as discussed in section 3.2. 
 

Domains Synsets A-links Noun-only Subsumptions Filtered A-links Axioms generated
Correct  
(best arrangement)

Tourism 305 725 644 209 435 569 511 
Generic 100 212 187 40 147 142 121 

Table 2. Axiomatizations for the A-links. 

 
As a preventive measure, we have excluded the A-links that include either an adjective or a verb, since these synsets 
have not been yet integrated with DOLCE-Lite+. Another measure excluded the A-links that imply a subsumption (sub-
class) link, since these are already formalized. This filter has been implemented as a simple ABox query that uses 
relations that range on classes: 
 
ABox-3
(retrieve (?x ?y) (and (A-Link ?x ?y) (Superrelations ?x ?y))) 
 
These measures reduced the amount of A-Links from the experimental set to 582 (435+147). We have used these tuples 
to run the revised query ABox-2.  
The revised query produced 711 (569+142) candidate axioms by using all the pruned relations defined for the 
experiment. Table 3 shows the resulting axioms ordered by generality of the relation universes (domain and range). 
 

Tourism Tourism correct Generic Generic correct 
Total amount of axioms 569 511 (89.80%) 142 121 (85.21%) 
Axioms with generic universes 540 490 (90.74%) 139 121 (87.05%) 
Axioms with some specific universes 545 507 (93.02%) 136 118 (86.76%) 
Axioms with only topmost universes 375 356 (94.93%) 110 98 (89.09%) 

Table 3. Axiomatizations ordered by generality. 

10 http://www.icsi.berkeley.edu/~framenet/ 



The most relevant results are: 
 

• One third of the A-Links from the tourism domain are actually subsumption links, while only 20% from the 
mixed generic set is a subsumption. This could be explained by the fact that glosses for generic synsets are 
less informative, or because generic words are not defined, in WN, in terms of more generic ones. 

• The correct subset of axioms learnt for the tourism domain is about 4 to 6% larger than for the generic one 
with reference to the whole sets.  

• We have tried to use some relations that are in principle “less precise”. For example, a universe composed 
of physical objects and amounts of matter has a basic intuition of “constituency”, and the relation 
has_n_constituent has been defined to such purpose. This relation has proved very inefficient though: in the 
generic set, only 50% of learnt axioms are correct, while in the tourism domain, only 16% are correct. We 
could expect that domains like earth science and physics can be more appropriate for constituency relations. 
For this reason, we have included a relation with a functional flavor in the experimental set of relations 
(including ∏δ+ and its specializations), called “provides”, and defined on functional objects and functional 
matters (this universe is a meaningful subset of the previous one). This relation proved quite efficient in the 
tourism domain, just as expected, with about 78% of correct axioms, while it is useless in the generic set, 
with 0%. An example of “provides” axioms is the following: ∀x. Brasserie(x) → Beer(y) ∧ Provides(x,y). 
This, and similar examples, confirm our expectations about the importance of developing dedicated sets of 
relations for different domains or tasks, while a “ground” level of relations is useful everywhere: in fact, the 
percentage of correct axioms increases if only the first level of the relation hierarchy is taken into account 
(95% in tourism, 89% in generic). 

• In 8 cases, the axioms were not definable with a cardinality≥1, although they could be used in more 
restricted domains or for subclasses of the universe. 

• Some indirect A-links can be investigated as well (though our first strategy has been to disregard indirect 
links, as explained in section 3.1). For example in the retrospective#1 example of Figure 2, two synsets 
(painting#1 and statue#1) are learnt as “indirect” synsets (they are learnt from the glosses relative to the 
hyperonyms of retrospective#1). But paintings and statues are not always found in exhibitions, then we are 
not allowed to infer an axiom with cardinality ≥1. In these cases, the algorithm could be refined to propose 
an axiom that includes a common parent to both painting#1 and statue#1, i.e. art#1, which incidentally is 
another “indirect” A-link to retrospective#1. In Figure 5 the refined A-links for retrospective#1 are shown: 
a retrospective in WordNet 1.6 has the intended meaning of a (unitary) collection in DOLCE-Lite+, which 
is a kind of non-agentive functional object. This lets the classifier infer: 

� a “functional association” to artist#1, because an artist is a functional role;  
� a more precise “plays” relation to life#12, since an artistic biography is a functional role as well, 

and a collection of art works plays just the role of an artistic biography;  
� a subsumption of retrospective#1 by exhibition#2;
� three “has_member” relations to the indirect A-links: art#1, painting#1, and statue#1. These are 

correct, since a collection can have functional objects (art works) as members. But while the first 
has a meaningful cardinality 1 to n, the others have a logically irrelevant cardinality of 0 to n. 

 

retrospective#1

exhibition#2

artist#1life#12

object#1

statue#1

art#1

painting#1

has_member{0,n}

functional_association {1,n}

has_member{0,n}

has_member{1,n}

plays{1,n}

 
Figure 5. Interpretation of A-links for retrospective#1.

Conclusions 

In this paper we presented preliminary results of OntoWordNet, a large scale project aiming at the “ontologization” of 
WordNet 1.6. We presented a two step methodology: during the first, automatic phase, natural language word sense 



glosses in WordNet are parsed, generating a first, approximate definition of WN concepts (called synsets). In this 
definition, generic associations (A-links) are established between a concept and the concepts that co-occur in its gloss. 
In a second phase, the foundational top ontology DOLCE (in the DOLCE-Lite+ version), including few hundreds 
formally defined concepts and conceptual relations, is used to interpret A-links in terms of axiomatised conceptual 
relations. This is a partly automatic technique that involves generating solutions on the basis of the available axioms, 
and then creating a specialized partition of the axioms (the set ∏δ+ and its specializations) in order to capture more 
domain-specific phenomena.  
Overall, the experiments that we conducted show that a high performance may be obtained through the use of automatic 
techniques, significantly reducing the manual effort that would be necessary to pursue the objective of the 
OntoWordNet project.  
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Appendix 1 

Dolce top ontology of concepts and relations 
 

ENTITY Anything conceivable 
: QUALITY-SPACE Any space of values (e.g. dimensional spaces) 
: : REGION Any value or sedt of values 
: : : ABSTRACT-REGION Any set of non-physical or temporal values (e.g. monetary) 
: : : PHYSICAL-REGION Any set of physical values (e.g. volume, color) 
: : : : SPACE-REGION Any set of spatial values (e.g. geographic coordinates) 
: : : TEMPORAL-REGION Any set of temporal values (e.g. gregorian date system) 
: QUALITY Any individual counterpart of a region (e.g. the color of a rose) 
: ENDURANT (≈Object) Any entity with a direct spatial value (localization), cf. Object 
: : NON-PHYSICAL-ENDURANT Any non-physical object, such as social or mental objects 
: : : S-DESCRIPTION Any reified conceptualization or theory (e.g. plans, norms) 
: : : COURSE Any (abstract) sequence of activities (cf. process model) 
: : : FUNCTIONAL-ROLE Any role played by an object (e.g. minister, student) 
: : : PARAMETER Any selection of value sets (e.g. speed limits) 
: : PHYSICAL-ENDURANT 
(≈Substance) 

Any physical entity with a direct localization, cf. Substance 

: : : AMOUNT-OF-MATTER Any amount of matter without a unity (e.g. sand, milk) 
: : : : FUNCTIONAL-MATTER Any amount of matter according to scope (e.g. food) 
: : : FEATURE Any relevant part or place within an object (e.g. edges, holes) 
: : : PHYSICAL-OBJECT Any substance with a unity criterion (e.g. stones, livers, roses) 
: : : : AGENTIVE-PHYSICAL-OBJECT Any physical object with intentionality (e.g. organisms, robots) 
: : : : : AGENTIVE-FUNCTIONAL-
OBJECT 

Any agentive object according to some scope (e.g. robots) 

: : : : NON-AGENTIVE-PHYSICAL-
OBJECT 

Any physical object without intentionality (e.g. stones, livers) 

: : : : : NON-AGENTIVE-
FUNCTIONAL-OBJECT 

Any physical object according to some scope but with no intentionality (e.g. 
hammers, walls) 

: PERDURANT (≈Event) Any entity with a direct temporal value (temporal presence) 
: : EVENT Any temporal entity with heterogeneous parts (e.g. activities, phenomena) 
: : STATE Any temporal entity with homogeneous parts 
: SITUATION Any localized counterpart of a S-description (e.g. conditions, environments, 

states of affaris, observed facts) 

CONCEPTUAL-RELATION Entity(x), Entity(y). The top-level relation between entities whatsoever. 
: IMMEDIATE-RELATION Any relation holding directly, without any other intermediate relation chaining 
: : CONSTITUENT A relation of constituency between e.g. matter and objects, e.g. skin made up of 

epithelial tissue 
: : : HAS-MEMBER A constituency between collections and their members, e.g. a society and its 

members 
: : : SETTING-FOR A constituency between situations and their entities, e.g. a flu and its observed 



symptoms 
: : HOST Feature(x), Physical-Endurant(y). The relation between features and objects, e.g. 

a hole in the cheese 
: : INHERENT-IN Quality(x), Entity(y). The relation between qualities and entities, e.g. the red of a 

rose 
: : PART Any part relation (but not constituency), e.g. a chair and its legs 
: : : PROPER-PART Any antisymmetric part, e.g. a human body and its legs 
: : : : BOUNDARY A part relation between an entity and its boundary, e.g. Italy’s borders 
: : : : COMPONENT A functional part relation, e.g. a car and its parts 
: : PARTICIPANT Event(x), Object(y), the relation for taking part in something, e.g. love and lovers 
: : Q-LOCATION Quality(x), Quality-Space(y), the relation between qualities and their 

counterparts, e.g. the red of a rose and its representation in a color palette 
: : REFERENCES S-description(x), Situation(y), the relation between conceptualizations and 

situations, e.g. a plan and an activity executed according to that plan 
: : : PLAYED-BY Functional-role(x), Object(y), the relation for role-playing, e.g. student and a 

person who is enlisted in a university 
: : WEAK-CONNECTION A generic, unordered connection  
: : PREDECESSOR An ordered connection, e.g. the relation between two consecutive intervals 
: MEDIATED-RELATION Any relation holding indirectly, for which some other relation must hold 

preliminarily 
: : CO-PARTIPATION Object(x), Object(y), the relation holding between two objects that participate in 

th same event or state 
: : GENERIC-LOCATION Any relation between entities whatsoever 
: : : EXACT-LOCATION Any location between objects or events, and a region, e.g. Rome and its 

geographic coordinates 
: : : : PHYSICAL-LOCATION Any location between physical objects, and physical regions, e.g. a stone and its 

volume 
: : : : : SPATIAL-LOCATION Any location between physical objects, and spatial regions, e.g. a planet and its 

astral coordinates 
: : : : TEMPORAL-LOCATION Any location between events, and temporal regions, e.g. a football match and its 

scheduling, or its duration 
: : : APPROXIMATE-LOCATION Any location between entities other than regions, e.g. the pen is on the table 

Appendix 2 

The experimentally derived set of relations (including ∏δ+ and its specializations) 
 

Touris
m

Tourism 
correct 

Generi
c

Generic 
correct 

Conceptual_Relation (Entity, Entity)

: Descriptive_Association (Object, S-Description) 7 6 5 4
: : Descriptive_Constituent_Of (Functional-Role, S-Description)  1 0
: Functional_Association (Object, Functional-Role) 72 68 22 19 
: : Functional_Role_Co_Participation (F-Role,F-Role) 21 21 13 12 
: Has_Physical_Location (Physical-Object, Geographical-Entity) 6 3
: : Has_Functional_Location (Functional-Object, Geographical-Entity) 6 3
: Has_Quality_Region (Object, Region) 9 8 2 0
: Host_Of (Physical-Object, Feature) 7 2 3 2
: Inherent_In (Quality, Entity)  
: Mereotopological_Association (Physical-Object, Physical-Object) 140 140 29 29 
: : Agentive_CoParticipation (Agentive-Physical-Object, Agentive-Physical-
Object) 1 1 2 1
: : Biological_Part (Organism, Biological_Object)  
: : Functional_CParticipation (Functional-Object, Functional-Object) 98 94 1 1 
: : Has_Member (Collection, Object) 4 4



: : Material_CoParticipation Functional-Matter, Functional-Matter)  
: : Material_Constituent_Of (Amount-Of-Matter, Physical-Object)  
: : Provides (Functional-Object, Functional-Matter) 22 17 3 0 
: : Uses_CoParticipation (Agentive-Physical-Object, Functional-Object)  
: Participant (Event, Object) 14 14   
: : Agentive_Participant (Event, Agentive-Object) 3 3
: P_Has_Quality_Region (Event, Region) 1 1
: Setting_For (Situation, Entity) 18 17   
: : Referenced_By (Situation, S-Description) 1 0
: Temporal_ Mereotopological_Association (Event, Event) 6 5 2 1
Inv_Conceptual_Relation (Entity, Entity)  
: Host (Feature, Physical-Object) 1 1
: Inherence_Of (Entity, Quality) 2 0 4 4
: Inv_Descriptive_Association (S-Description, Object) 7 7 4 4
: : Has_Descriptive_Constituent (S-description, Functional-Role) 1 0
: Inv_Functional_Association (Object, Functional-Role) 45 45 21 19 
: Inv_Mereotopological_Association (Physical-Object, Physical-Object)  
: : Biological_Part_Of (Biological-Object, Organism)  4 4
: : Has_Material_Constituent (Physical-Object, Amount-Of-Matter) 24 4 6 3 
: : Used_By_Co_Pcp (Functional-Object, Agentive-Physical-Object) 7 4
: : Member_Of (Object, Collection) 1 0
: : Provided_By (Functional-Matter, Functional-Object)  
: Inv_Temporal_ Mereotopological_Association (Event, Event)  
: Participant_In (Object, Event) 14 13 6 6 
: : Agentive_Participant_In (Functional-Object, Event) 1 1
: Physical_Location_Of (Geographical-Entity, Physical-Object) 2 2 2 2
: : Functional_Location_Of (Geographical-Entity, Functional-Object) 1 1
: Quality_Region_Of (Region, Object) 3 3 2 1
: Quality_Region_Of_P (region, Event)  
: Setting (Entity, Situation) 21 21 8 7 
: : References (S-Description, Situation) 3 2 2 2


