
A Walk through Content Delivery Networks

Novella Bartolini1�, Emiliano Casalicchio2, and Salvatore Tucci2

1 Università di Roma ”La Sapienza”, Via Salaria 113 - 00198 Roma, Italy,
novella@dsi.uniroma1.it

2 Università di Roma ”Tor Vergata”, Via del Politecnico, 1 - 00133 Roma, Italy,
casalicchio@ing.uniroma2.it, tucci@uniroma2.it

Abstract. Content Delivery Networks (CDN) aim at overcoming the
inherent limitations of the Internet. The main concept at the basis of
this technology is the delivery at edge points of the network, in proximity
to the request areas, to improve the user’s perceived performance while
limiting the costs. This paper focuses on the main research areas in the
field of CDN, pointing out the motivations, and analyzing the existing
strategies for replica placement and management, server measurement,
best fit replica selection and request redirection.

1 Introduction

The commercial success of the Internet and e-services, together with the ex-
ploding use of complex media content online has paved the way for the birth
and growing interest in Content Delivery Networks (CDN). Internet traffic often
encounters performance difficulties characteristic of a non dedicated, best ef-
fort environment. The user’s urgent request for guarantees on quality of service
have brought about the need to study and develop new network architectures
and technologies to improve the user’s perceived performance while limiting the
costs paid by providers. Many solutions have been proposed to alleviate the
bottleneck problems and the most promising are based on the awareness of the
content that has to be delivered. The traditional ”content-blind” network infra-
structures are not sufficient to ensure quality of service to all users in a dynamic
and ever increasing traffic situation. New protocols and integrated solutions must
be in place both on the network and on the server side to distribute, locate and
download contents through the Internet.

The enhancement of computer networks by means of a content aware overlay
creates the new architectural paradigm of the CDN. Today’s CDN act upon the
traditional network protocol stack at various levels, relying on dynamic and pro-
active content caching and on automatic application deployment and migration
at the edge of the network, in proximity to the final users. Content replicas in a
CDN are geographically distributed, to enable fast and reliable delivery to any
end-user location: through CDN services, up-to-date content, can be retrieved
by end-users locally rather than remotely.
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CDNs were born to distribute heavily requested contents from popular web
servers, most of all image files. Nowadays, a CDN supports the delivery of any
type of dynamic content, including various forms of interactive media streaming.
CDN providers are companies devoted to hosting in their servers the content of
third-party content providers, to mirroring or replicating such contents on several
servers spread over the world, and to transparently redirecting the customers
requests to the ‘best replica’ (e.g. the closest replica, or the one from which
the customer would access content at the lowest latency). Designing a complete
solution for CDN therefore requires addressing a number of technical issues:
which kind of content should be hosted (if any) at a given CDN server (replica
placement), how the content must be kept updated, which is the ‘best replica’ for
a given customer, which mechanisms must be in place to transparently redirect
the user to such replica. A proper placement of replica servers shortens the path
from servers to clients thus lowering the risk of encountering bottlenecks in the
non-dedicated environment of the Internet. A request redirection mechanism
is provided at the access routers level to ensure that the best suited replica
is selected to answer any given request of possibly different types of services
with different quality of service agreements. The CDN architecture also relies
on a measurement activity that is performed by cooperative access routers to
evaluate the traffic conditions and the computational capacity and availability
of each replica capable of serving the given request. Successfully implemented,
a CDN can accelerate end user access to content, reduce network traffic, and
reduce content provider hardware requirements.

This paper explores architectures, technologies and research issues in con-
tent delivery networks [53]. In section 2 we describe the core features of a CDN,
discussing the motivations and how content delivery can alleviate internet perfor-
mance problems. In section 3 we examine types of content and services that can
beneficiate from content delivery techniques. Section 4 describes the architecture
and working principles of a CDN. A detailed discussion on replica placement and
management is provided in section 5. Section 6 introduces the problem of how
measures can be taken to select the replica that can better fulfil an incoming
request, while request redirection mechanisms are described and compared in
section 7. Section 8 concludes the paper.

Let us point out that this paper is related to other papers contained in this
volume. Issues related to QoS are discussed in several papers in this volume, in-
cluding [8] [31] [42], while content delivery is related to peer-to-peer networking
which is discussed in [39]. Content is often of multimedia nature, such as aug-
mented reality [30] which will have high bandwidth and significant QoS needs,
and the type of tools described in [32] can contribute simpler evaluation tools
which are applicable to the systems we discuss.

2 Motivations for Content Delivery

Internet users commonly get frustrated by low performances and may decide to
abandon a web site or to disconnect a multimedia session when experiencing
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performance difficulties, causing revenue to be lost. Though centralized models
are still in place in the Internet today, these architectures are poor in terms of
adaptivity and scalability.

If a provider establishes a content server in a single physical location from
which it disseminates data, services, and information to all its users, the single
server is likely to become overloaded and its links can easily be saturated. The
speed at which users can access the site could become unpredictably higher than
the maximum request rate the server and its links can tolerate. Since it is im-
possible, with this approach, to adapt to the exponential growth of the Internet
traffic, the centralized model of content serving is inherently unscalable, incapa-
ble of adaptivity and produces performance losses when traffic bursts occur.
Though this leads to the conclusion that a certain amount of servers must be
adopted, a cluster of servers (also known as server farm, that is a multi-server
localized architecture, is not necessarily a solution yet.

The server computational and link capacity is only the first source of per-
formance difficulties that may be encountered while downloading content over
the Internet. There are many other possible congestion causes that may lead to
unacceptable user perceived quality. The non dedicated, best effort nature of the
Internet is the inborn limit to the possibility of having any sort of performance
guarantee while delivering content over it.

The Internet is a network of heterogeneous networks composed of thousands
of different autonomous systems ranging from large backbone providers to small
local ISPs. The autonomous systems connect to each other creating the glo-
bal Internet. The communication between two networks is achieved through the
connection of border routers in a peering session. Two peer routers periodi-
cally exchange routing information and forward the received packets to carry
each packet to its correct destination. This structure of the Internet as an inter-
connection of individual networks is the key to its scalability but is not sufficient
to guarantee that a quickly growing number of users, services and traffic do
not create bottlenecks that, if left unaddressed, can slow down performance.
Bottlenecks may occur at many points in the core Internet and most of all in
correspondence to peering points and backbones.

The network capacity is determined by the capacity of its cables and routers
and although cable capacity is not an issue, the strongest limit to the backbone
capacity comes from the packet-forwarding hardware and software of the rou-
ters. Once a peering point has been installed, traffic may have grown beyond
expectations, resulting in a saturated link, typically because a network provider
purchases just enough capacity to handle current traffic levels, to maximize the
link utilization. The practice of running links at full capacity is one of the major
causes of traffic bottlenecks showing very high utilization but also high rates
of packet loss and high latency. Further the capacity of long backbones cannot
always be adapted to the sudden and fast increases of the Internet traffic.
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2.1 Move the Content to the Edges: An Approach to Improve the
Internet Performance

The current centralized or partially distributed model of Internet content distri-
bution requires that all user requests and responses travel several subnetworks
and, therefore, traverse many possibly congested links. The first solution adopted
to distribute the content trough the Internet consisted in mirroring. This techni-
que statically replicates the web content in many locations across the Internet.
Users manually select, from a list of servers, the best suited replica. The replica
selection mechanism was automated and became transparent to the end-users
with the introduction of the distributed web server systems [11][10].

With the introduction of proxy caching techniques to disseminate the con-
tent across the Internet, the bottlenecks at the server level and at the peering
points were considerably reduced, though not ensuring a complete controllabi-
lity of those systems by the content provider due to the absence of an intelligent
and automated layer to perform server measures and request redirection. Proxy
caching is only a semi-transparent mechanisms: the users, aware of the presence
of a proxy server in their network, can/must configure their browser to use it,
while the ISPs transparently manage their proxy caches. Large ISP proxy caches
may also transparently cooperate with each other in a semi hierarchical struc-
ture. Proxy caches may experiment performance losses becoming themselves a
bottleneck if there are frequent cache misses or cache inconsistencies. Besides
this, proxy caches serve all requests independently of the required content, and
do not prioritize users and QoS requirements.

In a CDN, by moving the content from multiple servers located at the edge
of the Internet, a much more scalable model of distributing information and
services to end-users is obtained, that is the so called edge delivery. In other
words, a user would be able to find all requested content on a server within
its home network. In this solution the requested content doesn’t cross all the
network before reaching its final destination, but only traverses the network
part between the edge and the end-user. Further, cooperative access routers can
be endowed with measure and server selection capabilities to perform a tradeoff
solution between load balancing among the available servers and choosing the
best suited replica to fulfil the agreements on quality of service.

2.2 The Features of a CDN

The design of a CDN requires, together with the distribution of replica servers
at the edge of the network, a set of supporting services and capabilities. In
order to be efficient for a significant number of users and for a considerably wide
area, the edge servers must be deployed in thousands of networks, at different
geographically spread locations. Optimal performance and reliability depend on
the granularity of the distribution of the edge servers. The establishment of a
CDN requires the design of some important features.

– Replica placement mechanisms are needed to decide the replica server
locations and to adaptively fill them with the proper content prior to the
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request arrival (pre-fetching). Thus servers are not filled upon request like in
traditional proxy caching, but are pro-actively updated, causing a one time
offloading overhead that is not repeated for every access to the origin server.
Adaptivity in replica placement is required to cope with changing traffic
condition and is not related to a pull behavior like in traditional caching.

– Content update mechanisms must be provided to automatically check
the host site for changes and retrieve updated content for delivery to the
edges of the network, thus ensuring content freshness. Standard mechanisms
adopted in proxy caching do not guarantee content freshness since content
stored on standard cache servers does not change as the source content chan-
ges.

– Active measurement mechanisms must be added to cooperative access
routers to have immediate access to a real-time picture of the Internet traffic,
in order to recognize the fastest route from the requesting users to the re-
plica servers in any type of traffic situations, especially in presence of ”flash
crowds”, that is sudden heavy demand, expected or not, for a single site. A
measurement activity is at the basis of the replica selection mechanism.

– Replica selection mechanisms must be added to cooperative access rou-
ters to accurately locate the closest and most available edge server from
which the end users can retrieve the required content. A robust service must
also keep its servers from getting overloaded by means of access control and
load balancing.

– Re-routing mechanisms must be able to quickly re-route content requests
in response to traffic bursts and congestion as revealed by the measurement
activity.

Also, the CDN infrastructure, must allow the service providers to access directly
the caches and control their consistency and to get the statistics information
about the accesses to the site, available from the cooperative access routers.

3 Types of Content and Services in a CDN

CDN providers host third party contents to fasten the delivery of any type of
digital content, e.g. audio/video streaming media, html pages, images, format-
ted documents or applications. The content sources could be media companies,
large enterprises, broadcasters, web/Internet service provider. Due to the he-
terogeneous nature of the content to be delivered, various architectures and
technologies can be adopted to design and develop a CDN. We now analyze
the characteristics of the content and of the applications that most likely take
advantages of a CDN architecture.

– Static web based services. Used to access static content (static html pa-
ges, images, document, software patches, audio and/or video files) or content
that change with low frequency or timely (volatile web pages, stock quote
exchange). All CDN provider (Akamai Inc., Speedera Inc., AT&T inc., Glo-
bix Inc. just to mention some) support this type of content delivery. This
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type of content can easily be cached and its freshness maintained at the edge
using traditional content caching technologies.

– Web storage services. Essentially, this application can be based on the
same techniques used for static content delivery. Additional features to ma-
nage logging and secure file transfer should be added. This type of application
can require processing at the origin site or at the edge.

– File transfer services. World wide software distribution (patch, virus defi-
nition, etc.), e-learning material from an enterprise to all their global employ-
ees, movies-on-demand from a large media company, highly detailed medical
images that are shared between doctors and hospitals, etc. All these content
types are essentially static and can be maintained using the same techniques
adopted for static web services.

– E-commerce services. The semantic of the query used in browsing a
product catalogue is not complex, so frequent query results can be succes-
sfully cached using traditional DB query caching techniques[29][33]. Shop-
ping charts can be stored and maintained at the replica server and also
orders and credit card transactions can be processed at the edge: this requi-
res trusted transaction-enabled replica servers. In [9] the authors propose a
framework for enabling dynamic content caching for e-commerce site.

– Web application. Web transactions, data processing, database access, ca-
lendars, work schedules, all these services are typically characterized by an
application logic that elaborates the client requests producing as results a
dynamic web page. A partial solution to the employment of a CDN infra-
structure in presence of dynamic pages is to fill the replica servers with the
content that most frequently composes the dynamically generated web pages,
and maintaining the application and its processing activity that produces the
dynamic pages at the origin server. Another approach is to replicate both
the application (or a portion of it) and the content at the edge server. In
this way all the content generation process (application logic and content
retrieval) are handled by the replica server thus offloading the origin server.

– Directory services. Used for access to database servers. For example, in
the case of a LDAP server, frequent query results or a subsets of directories
can be cached at the edge. Traditional DB query caching techniques [29]
may be adopted.

– Live or on-demand streaming. In this case the edge server must have
streaming capability. See section 3.1 for details.

Streaming media and application delivery are a challenge in CDN. A more de-
tailed description of the solutions adopted for media streaming and dynamic
contents can be found in the following subsections.

3.1 Streaming Media Content

Streaming media can be live and on-demand, thus a CDN needs to be able to
deliver media in both these two modes. Live means that the content is delivered
”instantly” from the encoder to the media server, and then onto the media client.
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This is typically used for live events such as concerts or broadcasts. The end-to-
end delay is at a minimum 20 seconds with today’s technologies, so ”live mode”
is effectively ”semi real-time”. In on-demand, the content is encoded and then
stored as streaming media files on media servers. The content is then available
for request by media clients. This is typically used for content such as video or
audio clips for later replay, e.g., video-on-demand, music clips, etc. A specialized
server, called a media server, usually serves the digitalized and encoded content.
The media server generally consists of media server software that runs on a
general-purpose server. When a media client wishes to request a certain content,
the media server responds to the query with the specific video or audio clip. The
current product implementations of streaming servers are generally proprietary
and demand that the encoder, server, and player all belong to the same vendor.
Streaming servers also use specialized protocols (such as RTSP, RTP and MMS)
for delivery of the content across the IP network. In [55] a typical streaming
media CDN architecture is described. In streaming media CDNs a replica server
must have, at least, the additional functionalities listed below.

– The ability to serve live content such as newscasts, concerts, or meetings etc.
either in Multicast or Unicast mode.

– Support for delivery of stored or on-demand content such as training, archi-
ved meetings, news clips, etc.

– Caching capability of streaming media. Caching a large media file is unpro-
ductive, so typically media files are split in segment. Neighbor replica must
be capable to share and exchange segment to minimize the network load and
cache occupancy.

– Peering capability to exchange and retrieve content from the neighbor stre-
aming cache in case of cache miss. Streaming cache node can be organized
in a hierarchy.

– Media transcoding functionality, to adapt media streams for different cli-
ent capabilities, e.g., low quality/bandwidth content to dial-up users, high
quality/bandwidth to xDSL users.

– Streaming session handoff capability. The typically long life of a streaming
session, in presence of user’s mobility, causes the need for midstream hando-
vers of streaming session between replica servers [5,49].

3.2 Web Application

Accessing dynamic content and other computer applications is one of the ma-
jor challenges in CDN. CDN supporting this kind of content and services are
also called Application Content Delivery Networks (ACDN). Some providers
like AppStream Inc. and PIVIA Inc., implement ACDN using the so called ”fat
client” solution: the application is partitioned in ”streamlets” or special applets
and sent to the client. The client receives enough code to start the application
and execute it, the other parts of the application are sent on demand. These
solution use patented and proprietary technologies. Another approach is to mi-
grate the application to the edge server using general utility such as Ajasent[1]
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and vMatrix[4]. However application replication may be expensive especially if
performed on demand. A completely different solution is to automatically deploy
the application at the replica server. In [47] the authors define an ACDN archi-
tecture relying on standard technologies such as HTTP protocol, web servers,
CGI/FastCGI scripts or servlets. Rabinovich et al. define the additional capa-
bilities of an ACDN in terms of: an application distribution framework capable
to dynamically deploy the application at the edge and to keep the replica con-
sistent, a content placement mechanism to decide where and when to deploy
the application, a request distribution mechanism aware of the location of the
involved applications.

4 Content Delivery Networks Architecture

The main goal of server replication in a CDN is to avoid large amounts of data
repeatedly traversing possibly congested links on the Internet. As Figure 1 shows,
there are a variety of ways and scale (local area or wide area networks) in which
content networks may be implemented. Local solutions are web clusters, that
typically hosts single site, and web farms, typically used to host multiple sites.
Wide area solutions include: distributed web server systems, used to host single
or multiple sites; cooperative proxy cache networks (a service infrastructure to
reduce latency in downloading web objects) and content delivery networks [53]
that are the focus of this paper.

A typical server farm is a group of servers, ranging from two to thousands,
that makes use of a so-called cooperative dispatcher, working at OSI layers 4
and/or 7, to hide the distributed nature of the system, thus appearing as a
single origin site. A layer 4 web switch dispatches the requests, among a group
of servers, on the basis of network layer information such as IP address and TCP
port. A content switch, working at the application layer, examines the content
of requests and dispatches them among a group of servers. The goals of a server
cluster/farm include: load-balancing of requests across all servers in the group;
automatic routing of requests away from servers that fail; routing all requests

Content  Networks

Local Area Wide Area

Web Cluster
(single site)

Web Farm
(multiple sites)

Content
Delivery

Networks

Distributed Web
server

(single/multiple
sites)

Cooperative
Proxy cache

networks

Fig. 1. Taxonomy of Content Networks



A Walk through Content Delivery Networks 9

for a particular user agent’s session to the same server, if necessary to preserve
session state.

A type of content network that has been in use for several years is a ca-
ching proxy deployment. Such a network might typically be employed by an ISP
for the benefit of narrow bandwidth users accessing the Internet. In order to
improve performance and reduce bandwidth utilization, caching proxies are de-
ployed close to the users. These users are encouraged to send their web requests
through the caches rather than directly to origin servers, by configuring their
browsers to do so. When this configuration is properly done, the user’s entire
browsing session goes through a specific caching proxy. This way the proxy cache
would contain the hot portion of content that is being viewed by all the users of
that caching proxy. A provider that deploys caches in many geographically loca-
tions may also deploy regional parent caches to further aggregate user requests
thus creating an architecture known as hierarchical caching. This may provide
additional performance improvements and bandwidth savings. Using rich pa-
renting protocols, redundant parents may be deployed such that a failure in a
primary parent is detected and a backup is used instead. Using similar paren-
ting protocols, requests may be partitioned such that requests for certain content
domains are sent to a specific primary parent. This can help to maximize the
efficient use of caching proxy resources. Clients may also be able to communicate
directly with multiple caching proxies.

Though certainly showing better scalability than a single origin server, both
hierarchical caching and server farms have their limits. In these architectures, the
replica servers are typically deployed in proximity to the origin server, therefore
they do not introduce a significant improvement to the performance difficulties
that are due to the network congestion. Caching proxies can improve perfor-
mance difficulties due to congestion (since they are located in proximity to the
final users) but they cache objects reactively to the client demand. Reactive ca-
ching based on client demand performs poorly if the requests for a given object,
while numerous in aggregate, are spread among many different caching proxies.

To address these limitations, CDNs employ a solution based on proactive
rather than on reactive caching, where the content is prefetched from the origin
server and not cached on demand. In a CDN, multiple replicas host the same
content. A request from a browser for a single content item is directed to the
replica that is considered the best suited at the moment of the request arrival,
and the item is served to the client in a shorter time than the one it would have
taken to fetch it from its origin server. Since static information about geographic
locations and network connectivity are not sufficient to choose the best replica, a
CDN typically incorporates dynamic information about network conditions and
load on the replicas, to redirect requests and balance the load among the servers.
Operating a CDN is therefore a complex and expensive activity. For this reason
a CDN is typically built and operated by a network/service provider that offers
a content distribution service to several content providers.
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Origin Server
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Distribution
Infrastructure

client

INTERNET

CDN

Accounting
Infrastructure

1
2

3

Log and accounting data
Content data
Routing information
Content request flow

Fig. 2. Infrastructure components of a Content Delivery Network

A content delivery architecture consists of a set of surrogate servers that
deliver copies of content to the users while combining different activities (see
figure 2).

– the request-routing infrastructure consists of mechanisms to redirect con-
tent requests from a client to a suitable surrogate.

– the distribution infrastructure consists of mechanisms to move contents
from the origin server to the surrogates.

– the accounting infrastructure tracks and collects data on request-routing,
distribution, and delivery functions within the CDN creating logs and reports
of distribution and delivery activities.

The origin server (hosting the content to be delivered) interacts with the CDN
in two ways (see figure 2):

– it pushes new content to the replica servers, (the replica themselves request
content updates from the origin server through the distribution infrastruc-
ture);

– it requests logs and other accounting data from the CDN or the CDN itself
provides this data to the origin server through the accounting infrastructure.

The clients interact with the CDN through the request routing infrastructure
and surrogate servers. Figure 2 shows one of the possible scenarios of interaction
between the clients, the access routers, the replica servers and the origin server.

The user agent sends (1) a content request to the routing infrastructure,
that redirects (2) the client request to a surrogate server, to which the client
subsequently asks (3) the desired content.
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5 Replica Placement and Management

5.1 Content Caching Techniques

The proactive caching infrastructure must be transparent to the end-users that
must see no difference with being served directly by the central server. Proactive
caching to the edges offers better delivery to the client because the content is lo-
cated in their proximity. Therefore the requesting users perceive a lower latency,
higher availability and lower load on the network links. Such architecture is also
inherently protected from sudden burst that can be distributed among many
servers so that no single device has to cope with a massive load. This close-
to-the-client deployment mode is commonly known as forward proxy caching.
Forward proxy implementations can reduce wide area network traffic by 30 to
50 percent (results vary based on the ”cacheability” of the requested content).
A Web cache monitors Internet traffic, intercepts requests for Web objects and
then fulfils those requests from the set of objects it stores (cache hit). If the
requested object is not in the cache (cache miss), the cache forwards the request
to the origin server, that sends a copy of the object back to the cache. The cache
store the object and sends it back to the requester. Caches in CDN cooperate
interacting through the Internet Cache Protocol (ICP). ICP is typically used
to build cache clusters or child-parent relationships in hierarchical caching[15]
[44]. A cache can react to a cache miss inquiring other cooperative caches, in
spite of the origin server, in order to retrieve the content from a closer location.
Caching also acts as a point of control and security. Today’s caches frequently
include support for content filtering, anti-virus, access control and bandwidth
management. Anti-virus and content filtering give users an extra level of secu-
rity across the network. The access control and bandwidth management further
assists in the reduction of the overall network utilization by making sure that
only approved users get access to bandwidth, and that the bandwidth is being
allocated in a way that ensures the best adherence to the signed agreements on
quality. Caching activity in a CDN may involve different types of contents and
therefore different functionalities.

Static Caching: to cache and replicate static content, such as html pages, ima-
ges, documents, audio/video file etc.

Dynamic Caching: to cache and replicate dynamically generated content.
This include application delivery and replication.

Streaming Media Caching: to store streaming media objects, as well as to
serve streaming media to clients. Essentially, the cache acts as a streaming
media server, storing media clips for later use.

Live Splitting: to cache replicated live streams, so that only one copy is pulled
down from the upstream server and is then distributed to the subscribing
clients.
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5.2 Replica Placement

An hot topics in content delivery design is the replica placement problem: where
and how the replica could be distributed across the Internet to minimize the user
latency, the number of replica, and the bandwidth used for replica management?

The majority of the schemes presented in the literature tackle the problem
of static replica placement that can be formulated as follows. Given a network
topology, a set of CDN servers and a given request traffic pattern, decide where
content has to be replicated so that some objective function is optimized while
meeting constraints on the system resources. The solutions so far proposed ty-
pically try to either maximize the user perceived quality given an existing infra-
structure, or to minimize the CDN infrastructure cost while meeting a specified
user perceived performance. Examples of constraints taken into account are li-
mits on the servers storage, on the servers sustainable load, on the maximum
delay tolerable by the users etc.

A thorough survey of the different objective functions and constraints consi-
dered in the literature can be found in [37]. For the static case, simple efficient
greedy solutions have been proposed in [46], [35] and [48]. In [46] Qiu et al. for-
mulate the static replica placement problem as a minimum K median problem,
in which K replicas have to be selected so that the sum of the distances between
the users and their ‘best replica’ is minimized. In [35] and [48] Jamin et al. and
Radoslavov et al. propose fan-out based heuristics in which replicas are placed
at the nodes with the highest fan-out irrespective of the actual cost function.
The rationale is that such nodes are likely to be in strategic places, closest (on
average) to all other nodes, and therefore suitable for replica location. In [48] a
performance evaluation based on real-world router-level topology shows that the
fan-out based heuristic has behavior close to the greedy heuristic in terms of the
average client latency. In both [18] and [41] the authors consider the problem
of placing replicas for one origin server on a tree topology. In [40] the authors
also consider very simple topology like rings and lines and tree topologies while
considering the placement of intercepting proxies inside the network to reduce
download time. In [36] the problem of optimally replicating objects in CDN
servers is analyzed. All these solutions lack in considering the dynamics of the
system (e.g. changes in the requests traffic pattern, network topology, replica
sites).

In [6] a different approach is proposed and a dynamic allocation strategy is
considered which explicitly takes into account the system dynamics as well as
the costs of modifying the replica placement. By assuming the users requests
dynamics to obey to a Markovian model a formulation of the dynamic replica
placement problem as a Markovian decision process is obtained. Albeit this mo-
del may not accurately capture the user dynamics and can be numerically solved
only for limited sized CDNs, it allows us to identify an optimal policy for dyna-
mic replica placement that can be used as a benchmark for heuristics evaluation
and provides insights on the formulation of a conservative placement heuristic.

The solution of replica placement for heavy contents, like video streaming,
makes it impossible storing the entire content of several long streams because
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it would exhaust the capacity of a conventional cache. In this case, not only
the content must be replicated and distributed to replicas, but also in a way
that avoids to overload servers. To address this problem, in [51,54] the authors
propose a prefix caching technique whereby a proxy stores the initial frames of
popular clips. Upon receiving request for the stream, the proxy initiates trans-
mission to the client and simultaneously requests the remaining frames from the
server. In addition to hiding the delay, throughput and loss effects of a weaker
service model between the server and the proxy, this caching technique aids the
proxies in performing work ahead smoothing into the client playback buffer, by
transmitting large frames in advance of each burst. The prefix caching techniques
reduces the peak and variability of the network resources requirements along the
path from the proxy to the client.

5.3 Cache Consistency and Content Flow

One of the important problems in CDNs is how to manage the consistency of
content at replicas with that at the origin server, especially for those documents
changing dynamically. Cached objects typically have associated expiration times
after which they are considered stale and must be validated with a remote server
(origin or another cache) before they can be sent to a client. Sometimes, a consi-
derable fraction of cache hits involve stale copies that turned out to be current.
These validations of current objects have small message size, but nonetheless,
they often induce latency comparable to cache misses. Thus the functionality
of caches as latency-reducing mechanism highly depends not only on content
availability but also on its freshness.

A technique to achieve cache consistency consists in pre-populating, or pus-
hing, content to the cache before requests arrive. When automatically pushing a
new, or updated, Web object to a cache, the content in the cache is guaranteed
to be always fresh and there is no reason for the cache to initiate a freshness
check with the side effect that this technique often generates a large amount of
traffic.

In [21] the authors propose policies for populating caches to proactively va-
lidate selected objects as they become stale, and thus allow for more client
requests to be processed locally. Pre-populating content takes on even more im-
portance with broadband content. The size of rich content files can be huge and
increasing every day. Compression technologies have been invented specifically
for these new and emerging types of media. The load limits for servers need to
be established by means of load testing of the specific environment. However,
with content pre-populating a high resolution file can be pushed across low speed
lines directly to the Web cache in the branch office and then serve that streaming
file at the top speed of your LAN. In the traditional propagation approach the
updated version of a document is delivered to all replicas whenever a change is
made to the document at the origin server. It may generate significant levels of
unnecessary traffic if documents are updated more frequently than accessed.

Another approach is invalidation, in which an invalidation message is sent
to all replicas when a document is changed at the origin server. This approach
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doesn’t make full use of the distribution networks for content delivery and each
replica needs to fetch an updated version individually at a later time. This can
also lead to inefficiency in managing consistency at replicas.

In [27] the author propose a hybrid approach that generates less traffic than
the propagation and the invalidation approach. The origin server makes the
decision of using either propagation or invalidation method for each document,
based on the statistics about the update frequency at the origin server and the
request rated collected by replicas. They develop a technique that can reduce
the burden of request rate collection at replicas and avoid the implosion problem
when replicas send the statistics to the origin server.

Another main focus in CDNs research activity is how content at the origin
servers have to be delivered to replicas. Two common approaches to this pro-
blem are to deliver data over N unicast channels, or over an application-level
(tunnelled) multicast tree that connects the replicas [16,17]. Basically they run
an auto-configuration protocol to establish a delivery structure of tunnelled to-
pology among participating members. These approaches consist in building a
mesh topology first and running the spanning tree algorithm to select a deli-
very tree. Intuitively, the unicast approach wastes network bandwidth and can
cause congestion at bottleneck links, while application-level multicast approach
is more efficient in delivery (although not as efficient as native IP multicast).

Another issue in cache management is the propagation of changes (adds and
deletes of content). When content is added to the source-tree, it must also become
available throughout the CDN. If there are delays involved in propagating the
content, through all the CDN replicas, the content providers must be aware
of that there may be periods in which contents may be inconsistent and even
unavailable. For example, if a film studio wishes to make a new movie available
to their global customer base, they need to know how long time it takes to make
it globally available. This way, they can make sure that they do not start selling
it until everyone can access it. Similarly, when the customer deletes content from
their file area, it should also be expired from the caches and devices within the
CDN.

6 Measurements Techniques for Request Routing

Request routing systems can use a variety of metrics in order to determine the
best surrogate that can serve a client’s request. The decentralized nature of
the Internet makes quantitative assessment of network performance very diffi-
cult. Collecting network statistics directly on network devices (router and server)
could be more expensive in terms of system performance. So typically, the acqui-
sition of network statistics relies on the use of a combination of active network
probing methods, passive traffic monitoring and feedback from surrogate servers.
For deeper details of how measures can be inferred and network tomography can
be done see also [7,20]. In CDN networks it is possible to combine multiple me-
trics using both proximity concept and surrogate feedback for best surrogate sel-
ection. Performance measurement is often a component of network management
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systems and offers the ability to monitor, understand, and project end-to-end
performance of the CDN. Moreover one would need to measure both the internal
performance, as well as the performance from the customer perspective. Typi-
cal parameters that would be useful to measure are: packet-loss and latency for
all type of content and in particular for streaming content average bandwidth,
startup time and frame rate. By deploying hardware-based or software probes,
strategically throughout the network, one could correlate the information collec-
ted by the probes with the cache and server logs to determine delivery and QoS
statistics. The most useful place to put the probes is at the edges of the net-
work, thus measuring the performance as perceived by the end-users throughout
the CDN. Network and geographical proximity measurements can be used by
the request routing system to direct users to the ”closest” surrogate. Further-
more, proximity measurements can be exchanged between surrogates and the
requesting entity. In many cases, proximity measurements are ”one-way” in that
they measure either the forward or reverse path of packets from the surrogate
to the requesting entity. This is important as many paths in the Internet are
asymmetric. In order to obtain a set of proximity measurements, a network may
employ active probing techniques and/or passive measurement techniques. The
request-routing system can use also feedback from surrogates in order to select a
”least-loaded” delivery node. Feedback can be delivered from each surrogate or
can be aggregated by site or by location. We now discuss in detail about passive
measurement, active probing and feedback information.

Passive Measurement. Passive measurements could be obtained when a cli-
ent performs data transfers to or from a surrogate. Once the client connects,
the actual performance of the transfer is measured. This data is then fed
back into the request routing system. An example of passive measurement is
to watch the packet loss from a client to a surrogate, or the user perceived
latency by observing TCP behavior. Basically, a good mechanism is needed
to ensure that not every surrogate is tested per client in order to obtain the
data. In [52] the authors proposed a system based on passive measurements
of the network performance to be used with adaptive applications.

Active Probing. Active probing is when past or possible requesting entities
are probed using one or more techniques to determine one or more metrics
from each surrogate or set of surrogates. An example of a probing technique
is an ICMP ECHO request that is periodically sent from each surrogate or
set of surrogates to a potential requesting entity. Active probing techniques
are limited for some reasons. Measurements can only be taken periodically
and should not have a perceivable load since it cannot influence the measu-
red traffic, firewalls and NATs disallow probes, and last, probes often cause
security alarms to be triggered on intrusion detection systems.

Feedback information. These information may be obtained by periodically
probing a surrogate by issuing application specific requests (e.g. HTTP) and
taking related measures. The problems with probing for surrogate informa-
tion is that it is difficult to obtain ”real-time” information and the non-
real-time information are sometimes inaccurate and obsolete. Consequently,
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feedback information can be obtained by agents that reside on surrogates
that can communicate a variety of metrics about their nodes. There are two
methods to obtain feedback information: static, in which the route that mi-
nimize the number of hops or to optimize other static parameters is selected
[25][50]; dynamic probing (Real Time probing) allow to compute round trip
time or other QoS parameters in ”real time” [25][22]. Hybrid methods are
also used to obtain other useful feedback information [25][26][43].

6.1 Metrics for Request Redirection

Replica server selection is performed with the goal to minimize some performance
parameters perceived by the end-users. In this section we give a classification
of the metrics that can be adopted to measure the network and systems perfor-
mance in a CDN to decide where to redirect client’s requests.

Geographical proximity is often used to redirect all users within a certain
region to the same POP.

A measure of the network proximity is typically derived through active pro-
bing of the BGP routing table.

The ability to select the POP that shows the lowest latency can be obtained
by enhancing the request redirection systems with active probing and passive
measurement mechanisms, to maintain knowledge of response time.

The server load state can be computed, using SNMP or feedback agents
on the server side, on the basis of the load state of server components (CPU,
disk, memory, network interfaces) or on the basis of some aggregate performance
measure, such as the server throughput or server response time.

All these measures may be relevant information to feed the server selection
mechanism, combined with the knowledge of the users identity, that is intended
to classify the user priority in accessing contents and services. As an example,
paying customer may get access to better service than non-paying. The identity
of paying users can be revealed by means of a cookie retrieved from the client
system, or through an authentication process.

Figure 3 summarizes the above performance metrics classification.

7 Request-Redirection Mechanisms

A key challenge in CDN design is to realize efficient request-redirection service
that tracks the servers where data objects are replicated and assigns each client
request to a server that can offer the ”best” service, this process is called ser-
ver selection. Server selection algorithms include criteria like network topology,
server availability and server load [13]. The ability to quickly locate replicas
and perform request distribution has critical implications for the user-perceived
response time. Figure 4 illustrates a high-level view of the request-redirection
process: 1) the client requests a given content, e.g. a streaming file, residing at
www.site.com; 2) since site.com doesn’t host the requested file, but uses cdn.com
as its CDN provider, the request is redirected to the cdn.com site. 3-3’) By using
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Metrics Goals Measurement Techniques

Latency Select replica with lowest delay Active Probing / Passive Measurement

Packet loss Select path with lowest error rate
(useful for streaming traffic)

Active Probing / Passive Measurement
(TCP header info)

Network proximity Select the shortest path

Active Probing
Avg. Bandwidth

Select the best path for streaming trafficSturtup Time

Frame Rate

Geographical proximity Redirect requests from a region to the same
POP IP header information, bind information

CPU load, net. interface load,
active connection, storage

I/O load

Select the server with the aggregated
least load feedback agents/active probing

Fig. 3. Metrics used in replica selection

some redirection algorithm, the media client gets redirected to the most appro-
priate replica. If the client has a CDN replica directly placed at its ISP network
that is capable of guaranteeing the fulfillment of the SLA, this replica is selected
(3) first (e.g. CDN cache-2), otherwise another one (e.g. CDN cache-1) is selected
(3’). 4-4’) The selected CDN replica serves the content to the client.

www.site.com

client

www.cdn.com

CDN cache-2

LocalISP

Internet

1

2

3

3'

4

4'

CDN cache-1

Fig. 4. The request-redirection process

Various schemes have been proposed in research literature to perform redi-
rection at the IP level through some address packet rewriting scheme [24,34], at
the DNS level through mapping of URL-name to IP-address of one of the servers
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in a cluster [19,3,56], or at the application level [2] using the redirection features
of the HTTP protocol. In [23] the authors propose a hybrid scheme based on
adaptive replication of the entries of the location directory that provides the
redirection service. Network level support enables client requests to be redirec-
ted to appropriate servers in a quick and efficient manner. In [12] the authors
focus on an alternative architecture that integrates DNS dispatching mechanism
with a HTTP redirection technique carried out by Web servers. In the following
sections we describe in details the main request-redirection mechanisms.

7.1 DNS Based Request Routing

Today commercial content distribution services rely on modified Domain Name
System servers to dynamically redirect clients to the appropriate content server.
This is the simplest form of redirection, according to which a domain name, e.g.
www.cdn.com has multiple IP records attached to it. When a client requests
the IP address of the domain, any one of the IP records from the pool will be
selected based on the DNS action.

The popularity of DNS based request-routing techniques is mainly due to
the ubiquity of DNS as a directory service. They mainly consist in inserting a
specialized DNS server in the name resolution process. This specialized server is
capable of returning a different set of A, NS or CNAME records based on user
defined policies, metrics, or a combination of both.

In the single reply approach, the DNS server returns the IP address of the
best surrogate in an A record to the requesting DNS server (client site DNS
server’s). The IP address of the surrogate could also be a virtual IP address of
the best set of surrogates for requesting DNS server. The best surrogate will be
selected, in a second step, by a server switching mechanism.

In the multiple replies approach, the request-routing DNS server returns
multiple replies such as several A records for various surrogates. Common im-
plementations of client site DNS servers cycle through the multiple replies in a
round robin fashion. The order in which the records are returned can be used to
direct multiple clients using a single client site DNS server.

A multiple-level resolution approach is also possible according to which
multiple request-routing DNS servers can be involved in a single DNS resolu-
tion, thus demanding complex decisions from a single server to multiple, more
specialized, request-routing DNS servers, disseminated in different points of the
Internet.

The most common mechanisms used to insert multiple request-routing DNS
servers in a single DNS resolution is the use of NS and CNAME records: NS
records allow the DNS server to redirect the authority of the next level domain
to another request-routing DNS server; CNAME records allow the DNS server
to redirect the resolution request to an entirely new domain.

There are three main drawbacks of using NS records. First the number of
request-routing DNS servers are limited by the number of parts in the DNS
name; second the last DNS server can determine the Time To Live (TTL) of the
entire resolution process. The client will cache the returned NS record and use



A Walk through Content Delivery Networks 19

it for further request resolutions until it expires. As a third drawback, a delay is
added in the resolution process due to the use of multiple DNS servers.

Request-routing based on CNAME record has the advantage to redirect the
resolution process to another domain, and the number of request-routing DNS
servers is independent of the format of the domain name. The main disadvantage
is the introduction of an additional overhead in resolving the new domain name.

The basic limitations of DNS based request-routing techniques can be sum-
marized as follows below:

– DNS allows resolution only at the domain level. However, an ideal request
resolution system should serve requests at object granularity (preserving
sessions if needed).

– A short TTL of DNS entry allows to react quickly to network outages. This
in return may increase the volume of requests to DNS servers. Therefore
many DNS implementations do not honor the DNS TTL field.

– DNS request-routing does not take into account the IP address of the clients.
Only the Internet location of the client DNS server is known: this limits the
ability of the request-routing system to determine a client’s proximity to the
surrogate.

– Users that share a single client site DNS server will be redirected to the same
set of IP addresses during the TTL interval. This might lead to overloading
the surrogate during a flash crowd.

7.2 Transport Layer Request Routing

At the transport-layer, finer levels of granularity can be achieved by means of
a closer inspection of client’s requests. This level provides information about
the client’s IP address, TCP port, and other layer 4 header information. These
data could be used in conjunction with other load state metrics to select the
surrogate that is better suited to serve a given request. In general, the forward-
flow traffic (client to newly selected surrogate) will flow through the request
routing server or through a first step surrogate originally chosen by the DNS.
The reverse-flow traffic (surrogate to client), which normally transfers much
more data than the forward-flow, would typically take the direct path from
the servant surrogate. The overhead associated with transport-layer request-
routing makes it better suited for long-lived sessions such as file transfer (FTP),
secure transactions (TLS, SSL), streaming (RTP, RTSP). However, transport-
layer request-routing could also be used to redirect clients away from overloaded
surrogates. A first course grain replica selection is operated by a DNS request
router. The selected server, may operate a more accurate refinement of replica
selection, based on local and server side information, using the transport-layer
request-routing mechanism.

7.3 Application-Layer Request Routing

With application layer request-routing a fine-grained control, at the level of indi-
vidual objects composing the multimedia content, can be achieved. The process
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could be performed, in real time, when the object request reaches the content
server or a switching element. In most cases the header of the client’s packet
contains enough information to perform request routing. Some application level
protocols such as HTTP, RTSP, and SSL provide necessary information in the
initial portion of the session about how the client request must be directed. Ap-
plication level protocols such as HTTP and RTSP may describe the requested
content by means of its URL, other redirection information come from other
parts of the MIME request header such as Cookies. In many cases the URL is
sufficient to disambiguate the content and suitably redirect the request.

Header Inspection. This approach is based on the inspection of the header of
client requests. In a first solution, also known as 302 redirection [28], the client’s
request is first resolved to a virtual surrogate that returns an application-specific
code, such as the 302 in the case of HTTP or RTSP, to redirect the client to the
delegate content delivery node. The application layer redirection is relatively sim-
ple to implement. Nevertheless, this approach introduces an additional latency
involved in sending the redirect message back to the client. Another approach,
known as the In-Path element considers a network element, in the forwarding
path of the client’s request, that provides transparent interception of the trans-
port connection. This In-Path network element, establishes a connection with the
client, examines the client’s content request and performs request-routing deci-
sions. Then, the client connection is joined to a connection with the appropriate
content delivery node. Drawbacks are the delay introduced for URL-parsing and
the possible bottleneck introduced by the In-Path element.

Content modification. This technique enables a content provider to take di-
rect control over request-routing decisions without the need for specific switching
devices or directory services in the path between the client and the origin server.
Basically, a content provider can directly communicate to the client the best
surrogate that can serve the request. Decisions about the best surrogate can be
made on a per-object basis or it can depend on a set of metrics. In general, the
method takes advantage of content objects that consist of basic structure that
includes references to additional, embedded objects. For example, most web pa-
ges, consist of an HTML document that contains plain text together with some
embedded objects (e.g. GIF, JPEG images or PDF documents) referenced using
embedded HTML directives. In general embedded objects are retrieved from the
origin server. A content provider can now modify references to embedded objects
such that they could be fetched from the best surrogate.

Pro-active URL Rewriting. According to this scheme, a content provider
formulates the embedded URLs of a main html page before the content is
loaded on the origin server. In this case, URL rewriting can be done either
manually or by using software tools that parse the content and replace em-
bedded URLs. Since these scheme consists in rewriting URLs in a proactive
way, it cannot take into consideration client specific information while per-
forming request routing. However, it can be used in combination with DNS
request routing to direct related DNS queries into the domain name space of



A Walk through Content Delivery Networks 21

the service provider. Dynamic request routing based on client specifics are
then done using the DNS approach.

Reactive URL Rewriting. This dynamic scheme consists in rewriting the
embedded URLs of a html page when the client request reaches the ori-
gin server. In spite of the previous scheme, this one has the possibility to
consider the identity of the client when rewriting the embedded URLs. In
particular, an automated process can determine, on-demand, which surro-
gate would serve the requesting client best. The embedded URLs can then
be rewritten to redirect the client to retrieve the objects from the surrogate
that can fulfill the client request better than the other, with a consideration
of the specific location and priority of the considered client.

A drawback of content modification based request-routing is that the first re-
quest, from a client to a specific site, must be served from the origin server.
Besides, content that has been modified to include references to nearby surro-
gates rather than to the origin server should be marked as non-cacheable. To
reduce this limitation, such pages can be marked to be cacheable only for a rela-
tively short period of time. However, rewritten URLs on cached pages can cause
problems, because they can get outdated and point to surrogates that are no
longer available or no longer the best choice.

7.4 Anycast

This solution aims at solving the request-routing problem at the IP packet rou-
ting level. The base principle is that a group of servers providing the same service
can be addressed using an anycast name and an anycast address[38,14]. A user
willing to access some service, e.g., a given content, from any of the (equivalent)
servers issues a request with the anycast name. This is mapped to the anycast
address and the request is sent into the network with the anycast address as
destination. The role of the anycast service, is to redirect these request to one of
the servers, thus selecting the server which will serve the user request. Since the
redirection system has the obvious goal of improving clients performance, redirec-
tion is based upon some performance criteria, e.g. minimize the user perceived
response time. The redirection is therefore performed by a cooperative access
router that is capable of selecting the best suited replica from the anycast table.
Anycasting is a more elaborate location mechanism that targets network-wide
replication of the servers over potentially heterogeneous platforms. A mechanism
for request redirection that is based on the anycasting concept must allow for the
maintenance of information about the servers state and performance. An any-
cast service can be implemented at different levels in the network protocol stack.
At the network layer, anycasting mechanisms consist in associating a common
IP anycast address with the group of replicated servers. The routing protocol
routes datagrams to the closest server, using the routing distance metric. Stan-
dard intra-domain unicast routing protocols can accomplish this, assuming each
server advertises the common IP address. In [45] the authors propose a solution
to the server selection problem by introducing the idea of anycasting at the net-
work layer. This work established the semantics of anycasting service within the
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Internet. At the network level the implementation of an anycast service entails
the following mechanisms:

– Anycast request interception, that maybe dealt at the network level by the
edge routers. Edge routers are set to filter packets with anycast destination
address.

– Anycast name to Anycast address translation mechanism.
– Server Selection that maybe dealt by an edge router module (or by an appli-

cation interacting with the router). This module interacts with the measu-
rement module and keeps and updates anycast server performance metrics.

– Anycast address to IP address translation that maybe dealt at the network
level by the edge routers. Upon receiving an anycast address, edge routers
perform redirection by translating them into a selected unicast address.

– Measurements collection to be used for the selection process itself.

Application layer anycast implementation is also proposed in [27,57]. The aut-
hors claim that at the application layer a better flexibility can be achieved if
compared to the network layer implementation. At the application level the re-
solution of the anycast address is performed by means of a hierarchy of anycast
resolvers that map the anycast domain name (AND) onto an IP address. To
perform the mapping the resolvers maintain two types of information: 1) the list
of IP addresses that form particular anycast groups, and 2) a metric database
information associated with each member of the anycast group, while authori-
tative resolvers maintain the definitive list of IP addresses for a group, whereas
local resolvers cache this information.

8 Conclusions

In this paper we have introduced the design principles at the basis of Content
Delivery Networks (CDN). CDNs rely on a proactive distribution of content re-
plicas to geographically distributed servers close to the edge of the network, in
proximity to the end users. The redirection of a request to the best suited replica
is performed by cooperative access routers that are capable of taking measures
regarding the performance of the available replica servers, and performing the
replica selection and the request redirection to the selected replica. CDNs are
therefore complex systems. Their understanding and design involves knowledge
in many research fields: internet traffic measurement, content caching, request
rerouting at various communication protocol levels, request admission control,
load balancing and more, depending on the type of content and application con-
sidered. We gave a high level description of all the mechanisms and technologies
used in CDN. We first introduced the main motivations for content delivery and
explored what types of content and services may beneficiate from the introduc-
tion of a CDN architecture. Then we focused on the main research problems
related to the CDN design, in particular, the problems of replica placement and
management, server selection and request redirection have been analyzed in more
details.
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