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Abstract The use of wireless mobile sensors is of great

relevance for a number of strategic applications devoted to

monitoring critical areas where sensors can not be deployed

manually. Mobile sensors can adapt their position on the

basis of a local evaluation of coverage, thus permitting an

autonomous deployment. Several algorithms have been

proposed to deploy mobile sensors over an area of interest.

The applicability of these approaches largely depends on a

proper formalization of rigorous rules to coordinate sensor

movements, solve local conflicts and manage possible fail-

ures of communications and devices. In this paper we

introduce P&P, a communication protocol that permits a

correct and efficient coordination of sensor movements in

agreement with the PUSH & PULL algorithm. We deeply

investigate and solve the problems that may occur when

coordinating asynchronous local decisions in the presence of

an unreliable transmission medium and possibly faulty

devices such as in the typical working scenario of mobile

sensor networks. Simulation results show the performance

of our protocol under a range of operative settings, including

conflict situations and irregularly shaped target areas. Fur-

thermore, a performance comparison between the P&P

protocol and one of the best solutions based on the virtual

force approach, shows the superiority of our proposal in

terms of deployment time, message exchanges and energy

consumption.
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1 Introduction

Recent advances in micro-electro-mechanical systems,

wireless communications and digital electronics have

enabled the realization of mobile sensors, namely devices

with sensing, communication, computation and locomotion

capabilities. Such devices are able to perform complex

tasks such as cooperatively monitoring environmental

conditions, processing local data, communicating with

other devices, and coordinating their movements over the

Area of Interest (AoI) to meet specific requirements.

The coordination and locomotion capabilities make

sensor networks particularly appealing in a wide range of

applications. Differently from static devices, mobile sensors

can be used to monitor inaccessible, unknown, hazardous or

even hostile environments. Applications of mobile sensor

networks include forest fire detection, pollutants dispersion

tracking, volcano monitoring, urban search and rescue

operations and target detection and localization.

The inaccessible and often hazardous scenarios typical

of mobile sensor network applications, impede manual

sensor positioning. Hence, typical initial sensor deploy-

ment methods include, depending on the operative setting,

air-dropping from an aircraft, delivering in an artillery

shell, throwing by a catapult or sending from a safe-loca-

tion. The network initial configuration is unlikely to meet

the application requirements, thus mobile sensors can

exploit the locomotion capabilities in order to achieve a

satisfactory deployment. Such a self-deployment phase of

the network brings up the need of distributed algorithms

and protocols for the coordination of sensor movements.
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The critical conditions in which mobile sensors operate

together with the sensor hardware characteristics, pose

several challenges and requirements to the design of

algorithms and protocols for mobile sensor deployment. On

the one hand, the sensor power availability is limited, and

the critical conditions in which mobile sensors operate do

not permit the replacement of power supplies. On the other

hand, for several applications, such as forest fire detection

and urban search and rescue missions, responsiveness is of

primary importance. As a result, the final deployment must

be achieved in a short time while minimizing the energy

consumption. Furthermore, mobile sensor networks are

generally composed by hundreds or even thousands of

devices. Deployment algorithms and protocols must show a

good scalability, being able to achieve good performance

even when a high number of sensor is deployed.

Finally, a challenge is also constituted by the commonly

high rate of device failures in sensor networks. Deployment

algorithms and protocols must show a high degree of fault

tolerance, achieving an acceptable performance even if

several nodes in the network cease to work. Notice that the

device mobility can be exploited to create networks with

self-healing capabilities, as sensors can coordinate them-

selves and move to replace faulty nodes, without resorting

to human intervention.

This paper introduces for the first time the specification

of a protocol, named P&P, that implements a deployment

algorithm PUSH & PULL previously proposed in [3]. P&P

defines the rules to deploy mobile sensors according to

PUSH & PULL, giving particular emphasis to the decision

problems that occur in the execution of distributed

deployment algorithms aiming at positioning sensors

according to a regular pattern.

Indeed, under the execution of the PUSH & PULL algo-

rithm, several types of conflicts may occur as several

sensors often compete to cover the same position. Sensors

should be capable to solve such conflicts by means of only

local interactions. Differently from the work proposed in

[3], we explicitly investigate and solve the problems that

may occur when coordinating asynchronous local decisions

in the presence of an unreliable transmission medium and

possibly faulty devices that characterizes the typical

working scenario of mobile sensor networks. Furthermore

we modified the pull activity proposed in [3] to make it

more efficient and equally solid in terms of algorithm ter-

mination and coverage capabilities.

The dynamic hierarchy of roles determined by the exe-

cution of the protocol P&P is a novel technique which sig-

nificantly differs from any previously proposed approach.

Previous approaches fall into one of two main categories, as

they are either inspired by molecular physics [5, 6, 8–10, 13,

14, 22] or by computational geometry [12, 15–18]. Unlike

those, the P&P protocol aims at spreading sensors according

to precise coordinated movements along the tiles of a regular

grid. The deployment of sensors over the AoI is performed

by either letting sensors position themselves over grid

points, also called snap positions, or making them act as

slave of sensors previously snapped, and moving them

towards uncovered areas.

Furthermore, differently from previous approaches

which are tipically round based, P&P works in a com-

pletely asynchronous manner. It is based on the autonomic

computing paradigm. It completely delegates to the single

sensors every decision regarding movements and action

coordination. This way self-organization emerges without

the need of external coordination or human intervention as

the sensors adapt their position on the basis of their local

view of the surrounding scenario.

Given the absence of a centralized coordination unit,

and the lack of synchronization, sensors have a primary

role in the realization of the algorithm actions. Therefore,

the design of the related coordination protocol, which is the

aspect we address in this paper, is particularly challenging.

Simulation results show the performance of our protocol

under a range of operative settings, including conflict sit-

uations, irregularly shaped target areas, and node failures.

Furthermore, we compare the P&P protocol with one of the

best solutions based on the virtual forces approach pro-

posed in [11]. The results show the superiority of the P&P

protocol in terms of deployment time, number of message

exchanges and energy consumption.

2 Related work

The problem of mobile sensor deployment has been largely

studied in the literature. Previously proposed approaches

can be roughly classified in algorithms based on the virtual

force model, algorithms inspired by computational geom-

etry models and algorithms that aim at creating pattern

based deployment.

Algorithms based on virtual forces [5, 7–9, 11, 14, 22]

are inspired by the molecular interaction of particles. As in

the case of particle interactions, each sensor exerts a virtual

force on the others, that can be either attractive or repulsive,

depending on the distance. By modeling the virtual force

that acts on each sensor and moving sensors accordingly,

the network is spread on the AoI so as to expand and

improve the initial deployment. Despite its simplicity, this

approach has several drawbacks. For example, most of the

proposals making use of virtual force models are not able to

achieve a final stable deployment, since the sensors do not

find a stable position in which all the forces are balanced.

Furthermore, the definition of the virtual forces requires the

manual tuning of several key parameters which strongly

affect the algorithm performance. Differently from the other
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solutions based on virtual forces, the algorithm proposed in

[11] has a guaranteed termination, even if it requires the

manual tuning of several key parameters. We use this

algorithm for performance comparisons with our protocol in

Sect. 9.

The approaches inspired to models of the computational

geometry typically resort to geometrical constructions,

such as the Voronoi diagrams and the Delaunay triangu-

lations, in order to guide sensor movements through the

AoI. In particular, Voronoi diagrams [17, 18] are used to

determine the coverage responsibility of each sensor, and

to locally determine possible coverage holes. Likewise,

Delaunay triangulations [12], are also used to guide the

device movements according to the position of their Dea-

lunay neighbors. Such approaches, although are able to

guide sensor movements according to coverage consider-

ations, they cannot be adopted in the presence of irregular

(non convex) AoIs and they do not give any guarantees of

coverage completeness and uniformity.

Pattern based approaches [15, 19–21] aim at deploying

sensors according to a predefined pattern. Sensors move

from their initial locations to some key positions in a pat-

tern. These approaches try to combine the advantages of

well known patterns, proposed for static sensor deploy-

ment, with the flexibility of mobile sensors networks.

Nevertheless, most of the pattern based algorithms pro-

posed in the literature, rely on the presence of a central unit

[15, 19] which is responsible for the calculation of the

pattern positions and, in some cases, even coordinates

sensor movements. Few works investigate the possibility of

realizing a pattern based deployment by means of a com-

pletely distributed algorithm [21], but they typically need

global sensor synchronization which results in long

deployment time. Finally, the solutions proposed in [2] and

[3] provide asynchronous density driven distributed algo-

rithms that uniformly deploy sensors according to a regular

grid pattern.

The design of asynchronous distributed deployment

algorithm for mobile sensor networks requires the proper

formalization of rigorous rules to coordinate sensor

movements, solve local conflicts and manage possible

failures of communications and devices. Differently from

previous proposals which only focus on the design of the

coordination algorithm without entering the details of the

communication scheme, in this paper we propose a com-

munication and movement coordination protocol for the

algorithm proposed in [3] called P&P. This protocol is

completely distributed, it does not require sensor syn-

chronization and it is able to achieve the desired sensor

deployment even in presence of faulty sensors. Moreover,

by fulfilling the requirements of the algorithm PUSH & PULL

it provides a guaranteed termination and a complete cov-

erage, if a sufficient number of sensors is available.

3 The Push & Pull algorithm

The purpose of PUSH & PULL is to let sensors form a hex-

agonal tiling that constitutes a complete coverage of the

AoI and a connected network deployment. Notice that the

hexagonal tiling corresponds to a triangular lattice

arrangement, that is the one that guarantees at the same

time network connectivity, optimal coverage extension and

density, as discussed in [4]. The design of PUSH & PULL is

based on the idea to make some sensors stick to the hex-

agonal grid points and let the others uniformly distribute

over the whole AoI. According to the PUSH & PULL algo-

rithm, sensors are involved in four basic activities executed

in an interleaved manner: (1) Snap, described in Sect. 5,

which makes the sensors move and stick to the grid points

of the hexagonal tiling, (2) Push, described in Sect. 6,

which allows the flow of non-snapped sensors towards low

density areas, (3) Pull, described in Sect. 7, which attracts

non-snapped sensors toward coverage holes, and (4)

Merge, described in Sect. 8, which makes several grid

portions merge into a unique regular hexagonal tiling. A

fifth activity, role exchange, described in Sect. 6.3, is

introduced to balance the energy consumption among the

available sensors. Note that the P&P protocol we propose

in this paper implements these activities without the need

of global synchronization among sensor, as it will be

explained in the next sections. More details on the activi-

ties at the basis of the PUSH & PULL algorithm can be found

in [3].

For the sake of clearness, in Fig. 1 we give an example

of the protocol execution over a rectangular AoI. In the

figure the values of the sensor IDs are shown. Different

kinds of arrows are associated to the different protocol

activities. We refer to this figure throughout the paper to

describe the main activities implemented by our protocol.

4 The P&P protocol

The implementation of the PUSH & PULL algorithm requires

the definition of a protocol for the local coordination of the

sensor activities.

The coordination protocol provides the rules to solve

contentions that may happen in several cases. For example,

two or more snapped sensors can decide to issue a snap

command to different sensors towards the same hexagon

tile or the same low density hexagon can be selected by

several snapped sensors as candidate for receiving redun-

dant sensors. These contentions are solved by properly

scheduling actions according to message time-stamps and

by advertising related decisions as soon as they are made.

The P&P protocol is designed to minimize energy con-

sumption entailing a small number of message exchanges,
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which is possible because the algorithm decisions are only

based on a small amount of local information. Furthermore,

we assume that P&P works over a communication protocol

stack which handles possible transmission errors and mes-

sage losses by means of timeout and retransmission mech-

anisms. Therefore the treatment of occasional message

losses at the underlying protocol level implies the occur-

rence of delays in the corresponding messages at the P&P

level that are dealt by P&P with proper timeout mechanisms.

Before we enter the details of the protocol P&P we

introduce some definitions. We consider a set of equal sen-

sors endowed with location determination, boolean sensing

and isotropic communication capabilities. Notice that

location awareness (usually obtained by means of GPS

devices) is only necessary in the case of sensor deployment

over a specific target area. If sensors are to be deployed in an

open environment, the assumption of location determination

capability can be removed, as in other works in the area [6].

The deployment consists in realizing a hexagonal grid

with side length lh less or equal to the sensing radius Rs.

This setting guarantees both coverage and connectivity

when the transmission radius Rtx is such that Rtx�
ffiffiffi

3
p

Rs.

A sensor which is deployed at the center of a hexagonal

tile is called snapped. Hex(p) is the hexagonal region whose

center is covered by the snapped sensor p. All the other

sensors lying in Hex(p) are called slaves of p and compose

the set S(p). All the sensors that are neither snapped nor

slaves are called free. The set composed by the free sensors

located in radio proximity to p and by its slaves is denoted

by L(p). The set VP(p) of vacant positions detected by

sensor p contains the centers of hexagons adjacent to

Hex(p) that are not yet occupied by any snapped sensor.

A summary of the message types used by protocol P&P

during the sensor deployment is presented in Table 1.

5 Snap activity

The purpose of the snap activity is to give start to the

creation of hexagonal grid portions and to extend the

boundary of existing ones. In order to describe the snap

activity, we need to distinguish three cases, according to

the role of the involved sensor. Indeed the actions under-

taken by the starter sensors, the already snapped sensors

and the sensors being snapped, are substantially different.

5.1 Starter sensor behavior

At the beginning, any sensor p may give start to the cre-

ation of a tile portion by snapping itself to its present

position in an instant of time tstart(p) randomly selected

over a time interval of length Rtx/v, where v is the sensor

movement speed. If at the instant tstart(p), sensor p has not

yet received any message, it elects its position as the center
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Fig. 1 Algorithm execution: an example
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of the first hexagon and establish the orientation of its tile

portion. At this point p executes the snap actions under the

role of snapped sensor, as described in the following

paragraph.

5.2 Snapped sensor behavior

5.2.1 Neighbor discovery

A snapped sensor p broadcasts an IAS (I Am Snapped)

message to perform a neighbor discovery. Such message

contains the ID of the sender snapped sensor, its geo-

graphic coordinates and the timestamp of the starter action.

All sensors located in radio proximity to p (with the

exception of those slaves located in different hexagons)

reply to its IAS, with a message containing role dependent

information: the snapped sensors reply with an Info-

Snapped message, while the slave and the free sensors

reply with an InfoSlave and an InfoFree message,

respectively. All three types of replies contain the ID and

geographic coordinates of the replying sensors. In addition,

the InfoSnapped message includes also the virtual

cardinality of the replying snapped sensors, that is the

number of slave sensors located inside the hexagon of the

sender as if all the movements related to its supervision or

to its hexagon were already concluded. The InfoSlave

message includes the energy level of the replying slave

sensor.

Thanks to the execution of the neighbor discovery

phase, a snapped sensor p is informed regarding the pres-

ence of vacant positions, i.e. it can determine the compo-

sition of VP(p), and is able to build the set L(p). Notice that

in order to determine the presence of an adjacent vacant

position a snapped sensor only needs to evaluate the

presence of snapped sensors in adjacent tiles.

5.2.2 Snap into position

A snapped sensor p selects the sensor in L(p) closest to

each vacant position and sends it a SIP (Snap Into Posi-

tion) message. This message contains the target position of

the correspondent snap action, and the ID of the selected

sensor. The sensor p then starts a timeout waiting for the

AckSIP message from the selected sensor.

When a sensor receives a SIP, and is available to fill the

vacant position, it replies with an AckSIP message. This

message contains the ID of the sensor that received the

SIP, necessary for p to discriminate among the several

sensors to which it sent SIP messages. If a sensor receives

a SIP when it is not available to fill the vacant position

(e.g it has already been contacted by another sensor), it

does not reply to the SIP message of p and lets the

AckSIP timeout expire. This way p will be capable to

select a new sensor to snap in such still vacant position.

After the transmission of the SIP messages and the

reception of the related AckSIP, p updates its local

information, i.e. the number of free sensors located within

its transmission range and its virtual cardinality. This way

it keeps into account the departure of some sensors from

either its transmission range or its hexagon.

In order to update the information related to the snapped

neighbors, p waits for the reception of the corresponding

IAS messages, to be sure that position conflicts are solved

(see 5.3.3).

Five cases may occur during the snap into position

phase. Let p be the sensor that is performing the snap

action and let q be the one to which p sent a SIP message

for the position x.

Table 1 Summary of the P&P messages

Message name Message fields

IAS ID, coordinates, starter timestamp

InfoSnapped ID, coordinates, cardinality

InfoSlave ID, coordinates, energy level

InfoFree ID, coordinates

SIP ID, receiver ID, target position

coordinates

AckSIP ID, receiver ID

ClaimPosition ID, coordinates, timestamp

PositionTaken ID, coordinates

InfoStopped ID, coordinates

IAYS ID, receiver ID

CardinalityInfo ID, cardinality

Offer ID, receiver ID, cardinality,

transaction ID

AckOffer ID, receiver ID

AckInfoArrived ID, receiver ID

MoveTo ID, receiver ID, dest. coord., dest.

snapped sensor ID, trans. ID

InfoArrived ID, receiver ID, transaction ID,

energy level

Invitation ID, hop counter, hole coordinates

InvitationAcceptance ID, coordinate, receiver ID

SlaveSelected ID, selected slave ID, hop counter

Subst ID, receiver ID, energy level,

destination coordinates

AckSubst ID, receiver ID

SubstArrival ID, receiver ID

ProfilePacket ID, receiver ID, neighborhood

information

MoveToSubst ID, receiver ID, neighborhood

information

Retirement ID, hole coordinates
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1. Sensor p receives both the AckSIP and the IAS

message from q. This means that the snap action

performed by p was successful, therefore p can update

the local information regarding the snapped neighbor

q and the hexagon Hex(q).

2. Sensor p receives the AckSIP from q acknowledging

its availability to fill position x, but a conflict occurs

solved in favor of another sensor r, which reaches

position x before sensor q. Hence p receives an

AckSIP from q and an IAS from r for the same

position x. Thus p can update the local information

regarding the snapped neighbor r.

3. Sensor p receives the AckSIP from q acknowledging

its availability to fill position x, but a failure occurred

and the IAS timeout expires. If p detects the

availability of another sensor in L(p) that can be

snapped to position x, it retries the snap action. If such

sensor is not available, p starts the pull activity.

4. Sensor p does not receive the AckSIP from q, but

receives an IAS message for position x from another

sensor r, before the expiration of the AckSIP timeout.

Sensor p can update the local information regarding

the snapped neighbor r.

5. Sensor p does not receive the AckSIP from q nor the

IAS from any other sensor within the AckSIP timeout.

If p detects the availability of another sensor in L(p) that

can be snapped to position x, it retries the snap action. If

such sensor is not available, p starts the pull activity.

At the end of the snap activity, a snapped sensor p sends

a CardinalityInfo message to its neighborhood. This

message contains the ID and the virtual cardinality of p.

5.3 Behavior of the sensors being snapped

5.3.1 Sensor localization

A free sensor q which receives an IAS message, coming

from a snapped sensor p, replies with either an InfoFree

or an InfoSlave message depending on its position with

respect to p. If q is located outside the hexagon of p, it

remains in the free state and replies to p with an Info-

Free message. If instead q is located inside the hexagon of

p, it switches its state to slave and replies to p with an

InfoSlave message. In both cases q becomes part of the

set L(p), that is the set of sensors that p can snap to its

adjacent vacant positions. Notice that if q is a slave, there is

only one snapped sensor p such that q 2 LðpÞ, thus slaves

belonging to already snapped sensors do not reply to the

IAS message of p. If instead q is a free sensor, it may

belong to several sets Lð�Þ, for different snapped sensors

located in radio proximity from q itself.

5.3.2 Snap into position

Sensor q, be it free or slave, at a certain time, may receive a

SIP message coming from a snapped sensor. Slaves reply

only to SIP messages coming from their related snapped

sensor, while free sensors may receive SIP messages from

any snapped sensor in radio proximity, but only reply to the

first SIP message they receive.

After sending the AckSIP reply, sensor q travels

towards the snapping destination until it reaches a distance

d from it. Distance d is set small enough to guarantee the

radio connectivity within the circular disk of radius d and

the inclusion of such disk into the hexagonal tile. Therefore

d�
ffiffiffi

3
p

lh=2.

At this point sensor q stops and broadcasts a Claim-

Position message containing a timestamp and waits for

the expiration of a timeout to evaluate if other sensors are

trying to snap in the same position and in case to resolve

the related contention. At the timeout expiration, if no

conflicts occurred or if a conflict was solved in its favor,

q switches its state to snapped, sends a PositionTaken

message and proceeds towards the destination. After being

successfully snapped, sensor q starts its own snap activity.

5.3.3 Resolution of snap position contention

Three events may occur when one or more sensors are

engaged in a conflict with sensor q due to the contention for

the same snap position:

1. The sensor q receives a ClaimPosition or a

PositionTaken before reaching distance d from

the destination,

2. The sensor q receives a ClaimPosition after the

arrival at distance d from the destination and before the

expiration of the related timeout,

3. The sensor q receives a PositionTaken as a

response to its ClaimPosition. This case may

happen if q started traveling toward the destination

when it was too far to perceive the previous Claim-

Position and PositionTaken messages.

In the first case, q stops moving and sends an Info-

Stopped message, to advertise its new position to the

neighborhood, and starts a timeout. Snapped sensor

receiving an InfoStopped message, verifies if the sen-

der is inside its hexagon and in this case replies with a

IAYS message (I Am Your Snapped), containing the

sender and the receiver ID. If the stopped sensor receives a

IAYS reply within the timeout, it sets its status to slave.

Otherwise, if the timeout expires, it sets its status to free,

not belonging to any hexagon.
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In the second case, sensor q compares its timestamp

with the one included in the ClaimPosition message.

The sensor with lower timestamp wins the competition for

the destination and proceeds its travel, sending a Posi-

tionTaken message, while the other sensor waits for the

arrival of the IAS message of the new snapped sensor to

switch its status to slave.

In the third case, sensor q sets its state to slave of the

newly snapped sensor. Notice that this timestamp based

conflict resolution is designed to avoid redundant replies to

ClaimPosition messages and does not require global

synchronization.

Figure 2 shows a typical conflict resolution scenario,

where two sensors r and q receive a SIP message for the

same position x from two different snapped sensors. Both

r and q start traveling towards the destination x. Sensor

q reaches distance d from the destination before sensor r,

and sends a ClaimPosition message, with its time-

stamp. Sensor r receives such message while traveling, and

consequently stops because the contention for position

x was won by sensor q. Sensor r sends an InfoStopped

message to alert its neighborhood of its new position and

starts a timeout. In the case depicted in Fig. 2, r stops

inside the hexagon centered in position x. For this reason,

no snapped sensor replies to the InfoStopped message,

thus after the timeout expiration, sensor r switches its status

to free. After the expiration of the contention timeout,

sensor q broadcasts a PositionTaken message and

switches to the snap status while definitely traveling to

position x. When q reaches position x, it starts a neighbor

discovery by sending an IAS message, in consequence of

which, r switches its status to slave.

In order to show an example of the snap activity execu-

tion, we refer to Fig. 1. Figure 1(a) and (b) show that, at the

beginning of our example of P&P execution, only one sensor

assumes the starter role. In Fig. 1(c), this sensor snaps three

of its slaves. In a second time, see Fig. 1(g), another node

acts as starter and initiates the formation of a second grid

portion by snapping three of its slaves as shown in Fig. 1(h).

6 Push activity

The push activity aims at moving slave sensors from high

density hexagons to low density hexagons. To describe the

push activity we distinguish the behavior of snapped and

slave sensors and illustrate the role exchange mechanism

introduced to uniform the energy consumption.

6.1 Behavior of snapped sensors

6.1.1 Push proposal

As soon as a snapped sensor p terminates the snap activity,

it sends a CardinalityInfo message to its neighbor-

hood. Such message contains its ID and its virtual cardi-

nality. Neighbor snapped sensors that receive this message

update their information regarding sensor p and evaluate

the opportunity to move slave sensors to its hexagon.

Even sensor p evaluates the opportunity to move some

of its slaves to adjacent hexagons to uniform the distribu-

tion of redundant sensors. To this end, it uses its infor-

mation regarding the neighbor snapped sensors, collected

in the neighbor discovery phase. In particular, the sensor p

verifies the following condition, called the Moving Con-

dition [3], for each adjacent snapped sensor q:

jSðpÞj[ jSðqÞj þ 1_
�

jSðpÞj ¼ jSðqÞj þ 1^ IDðpÞ[ IDðqÞ
�

Sensor p looks for neighbor snapped sensors whose hexa-

gons verify the Moving Condition and have minimal car-

dinality. Among these, it selects the closest, to which it

sends an Offer message containing its virtual cardinality,

defined in Sect. 5.2, and an identifier of the current trans-

action (transaction ID). If no sensor verifies the Moving

Condition with p, sensor p waits for further events.

6.1.2 Push agreement

The snapped sensor q that receives an Offer message

from p, verifies the validity of the Moving Condition as itFig. 2 A typical scenario of snap position conflict
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could have more updated information than p, in particular

it can have an updated value of its virtual cardinality. This

way the responsibility of the slave movement is held by the

receiver, thus ensuring that the move only happens when

the Moving Condition is actually valid. This is particularly

important to guarantee the algorithm termination.

Two cases may occur after the sensor p sends the

Offer message to q: q accepts the offer it received from p,

or q leaves the offer unreplied.

In the first case, q replies to p with an AckOffer

message, containing only the recipient and sender ID. The

sensor q updates its cardinality value, advertising the new

value to its snapped neighbors, with a Cardinal-

ityInfo message. This way q can participate in further

operations of distribution of redundant sensors with

updated information. It also precludes other snapped sen-

sors from sending unnecessary offers. When q accepts an

offer, it starts a timeout identified by the transaction ID

received in the Offer message. If q does not receive any

message regarding the arrival of the new slave, containing

the related transaction ID, within the timeout, it decreases

its cardinality and advertises this change with a new

CardinalityInfo message. If, otherwise, sensor

q receives an InfoArrived message related to the

current transaction, it replies with an AckInfoArrived,

containing its ID and the receiver ID. This way the pro-

tocol is robust to possible node failures during the push

activity.

The sensor p selects a slave r to be pushed and sends it a

MoveTo message containing the sender and receiver ID,

the position and the ID of the destination snapped node (the

sensor q), and the transaction ID. This selection is based on

an energy saving criterion. The sensor p selects the slave

sensor r that will remain with the highest energy after the

completion of the entire movement.

6.2 Behavior of a slave sensor

The slave sensor r selected by the sensor p receives a

MoveTo message and starts moving towards the hexagon

of the sensor q. As soon as the sensor r crosses the

boundary of the hexagon of q, it sends an InfoArrived

message, stops moving and waits for the related Ac-

kInfoArrived message. The InfoArrived message

contains the sender and receiver ID, the transaction ID, and

the energy level of the sender. If the AckInfoArrived

message is not received within a timeout, the sensor

r assumes that sensor q is not there anymore. As an

example, this case can happen if the sensor q has moved to

a different grid portion during the merge activity. Thus it

tries to snap in the snapping position of q, as if it would

have received a SIP message for that position.

6.3 Role exchange

The PUSH & PULL algorithm provides that slaves and snapped

sensors may exchange their roles in order to balance the

energy consumption over the set of available sensors. Any

time a slave r has to make a movement across a hexagon as a

consequence of a push action, it sends a role exchange pro-

posal consisting in a Subst message to the snapped sensor

p of the hexagon it is traversing, and starts a substitution

timeout. Subst messages contain the ID of sender and

receiver, the energy level of the sender and the destination

coordinates. The snapped sensor p uses the energy level

value of r to decide if a role exchange may be of benefit in

balancing the overall energy consumption between the two

sensors. In this case, p replies with an AckSubst message.

If sensor r receives an AckSubst message within the

substitution timeout, it travels toward the snap position

held by sensor p, while p waits for the arrival of sensor

r before starting to travel towards the destination initially

targeted by r. The sensor r advertises its arrival to sensor

p with a SubstArrival message containing the same

fields of the AckSubst message. The sensor p replies to

r with a ProfilePacket message containing the sender

and receiver ID, and the neighborhood information. This is

necessary to enable a complete role exchange and starts

traveling towards the destination.

If the sensor r does not receive an AckSubst message

within the substitution timeout, it continues its travel

towards the destination.

Slave and snapped sensor substitutions may also occur

at the beginning of the slave travel. In this case the sub-

stitution is started by the snapped sensor itself which

already has all the available information to evaluate the

opportunity to perform the role exchange. Under these

circumstances, the snapped sensor p sends a MoveToS-

ubst message containing the profile information neces-

sary to perform the substitution. As soon as sensor r arrives

in proximity to the snap position held by p, it sends the

SubstArrival message described before, after which

p starts traveling towards the destination.

6.4 An example

Figure 3 depicts a typical scenario of the push activity. The

snapped sensor q broadcasts its virtual cardinality with a

CardinalityInfo message. The snapped sensors p and

z receive this message and verify the Moving Condition

with the updated information received from q. As both

p and z satisfy the condition, they send an Offer message

to q. Notice that the Offer message always contains an

updated value of the virtual cardinality of the sender. Since

each node can offer at most one sensor at a time the virtual

cardinality does not change until the offer timeout expires,
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or the receiver replies with an AckOffer message. Sensor

q receives the Offer message from p before the one sent

from sensor z. It verifies the validity of the Moving Con-

dition with the updated virtual cardinality of p, received in

the Offer message. As the Moving Condition is still

satisfied, q replies with an AckOffer message, incre-

menting its virtual cardinality and broadcasting a Car-

dinalityInfo message.

When node q receives the Offer message from z it

verifies the Moving Condition again. Note that z sent this

message on the basis of an old value of the virtual cardi-

nality of q. Thus q finds that, as a consequence of the

transaction just concluded with sensor p, the Moving

Condition is unsatisfied with respect to sensor z, and con-

sequently it does not reply to the offerer. Sensor z waits

until the expiration of the offer timeout, after which it is

able to be engaged in other push actions.

Sensor p receives an AckOffer message from q, thus it

selects r within its slaves, and send it a MoveTo message.

Sensor r moves towards the hexagon of q, and sends an

InfoArrived message as soon as it arrives. Sensor

p sends a CardinalityInfo message containing the

decreased value of its virtual cardinality.

An example of the push activity execution can be found

in Fig. 1. Figure 1(d) shows that the snapped node 1 has

some slave sensors in its hexagon, and therefore starts the

push activity towards its three adjacent hexagons. In

Fig. 1(e) the snapped nodes 6 and 9 perform the snap

activity. Notice that the snapped sensor 0 does not perform

any snap action as it does not have any hole around its

hexagon. It also does not execute any push action as the

Moving Condition is not satisfied. In the Fig. 1(e) and (f),

the snapped node 1 continues its push activity while the

node 9 performs a snap of its slave. Figure 1(g)–(k) show

other examples of the push activity execution.

7 Pull activity

The pull activity is intended to attract non snapped sensors

toward coverage holes. We underline that the pull activity

described in this section is slightly different from the one

introduced in [3]. In [3] the pull action is based on the

gradual and temporary modification of the IDs advertised

by the sensors, so as to temporarily alter the flow of push

actions. Nevertheless, we experimentally noticed that such

an activity is very slow and can be performed more effi-

ciently by means of an invitation mechanism, similar to the

one introduced by [15].

In such an invitation mechanism, the sensors may play

different roles. A first role is played by the sensor detecting

a coverage hole in a neighbor location. This sensor starts

the pull activity by sending an invitation that will attract

slave sensors from nearby regions to fill the hole. The

sensors having this role are hereafter called Inviters.

The second role is performed by the slave sensors which

receive the aforementioned invitation messages. These

sensors, hereby called Invited, reply to the inviter to

communicate their availability to move and fill the hole.

If available slave sensors are in the radio proximity of the

inviter, the invitation mechanism has an immediate effect.

By contrast, when there are no available slave sensors, the

Fig. 3 A typical scenario of the push activity

Wireless Netw (2012) 18:381–399 389

123



inviter proceeds inviting new slaves by means of a limited

distance broadcast message at larger and larger distances.

Therefore a third role is performed by snapped sensors

which receive the broadcast invitation messages and act as

forwarder of the invitation, in order to reach hexagons with

redundant slaves that can fill the holes. These sensors will

be named Forwarders.

Our modified pull mechanism also has the beneficial

effect of avoiding the case of too many invited sensors

moving to the same destination which was possible with

the pull technique proposed in [3].

In the following we summarize the invitation mechanism.

1. A snapped sensor detecting a hole sends an invitation

to advertise the presence of a vacant position in its

neighborhood. This message traverses the network

according to a limited distance broadcast, whose extent

is increased in the time slots of successive attempts.

The inviter does not extend the invitation any further

as soon as it receives an acknowledgment from at least

one invited slave sensor.

2. A slave sensor collects the invitations received in a

given time interval. If it receives multiple invitations,

it stores them in a priority based queue, where the

priority is the distance to the destination. The lower the

distance, the higher the priority.

An invited slave acknowledges only the highest

priority invitation, so as to notify the inviter that it is

available to fill the vacant position.

3. The inviter that receives such an acknowledgment from

one or more slaves, selects the one that is closer to the

hole, and notifies the others that an agreement to cover

the hole was already made with another invited slave.

4. The selected invited slave that receives an acknowl-

edgment from the inviter starts moving to the desti-

nation. On the contrary, the other non selected invited

slaves listening the acknowledgment, process the next

element in their priority queue.

Notice that it may occur that the timeout according to

which an inviter snapped sensor s decides to extend the

invitation to the next hop expires before receiving an

invitation acceptance from the closest available slave z. It

can also happen that the closest slave sensor z is not

immediately available to fulfill a pull request because it is

temporarily involved in another pull negotiation with

another snapped sensor q. In both the described situations,

such a slave sensor z may still become available for the

pull action performed by s if the previous negotiation with

q fails. Nevertheless this may occur after the expiration of

the timeout of the snapped sensor s, which in the meantime

could have already extended the invitation to the next hop.

In all these cases, if the vacant position has not been

covered yet, the available slave sensor z will be able to

respond to s and guarantee the coverage of the vacant

position.

7.1 Behavior of the inviter sensors

A snapped sensor p, located in proximity of some vacant

positions (i.e. VP(p) = ;), terminates the snap activity

when no more sensors are available in L(p). Before starting

the pull activity, the sensor p verifies if there is the pos-

sibility to receive slave sensors from its snapped neighbors

performing the push activity. To this purpose, p checks the

validity of the Moving Condition with respect to all of its

snapped neighbors.

If the Moving Condition is not verified for any of its

snapped neighbors, that is p can not receive any sensor by

means of the push activity, it starts the pull activity. To this

purpose p broadcasts an Invitation message containing

its ID, a hop counter h, and the vacant position coordinates.

The hop counter h represents the forwarding horizon of

the Invitation message. Initially h is set to zero, thus

the snapped sensors receiving an Invitation do not

forward this message. After a given timeout, if p does not

receive any acknowledgment, it increases the hop counter

and sends a new Invitation message.

On the contrary, before the expiration of the timeout, the

inviter p may receive some InvitationAcceptance

messages from one or more available slaves. This message

contains the sender and receiver ID and the coordinates of

the sender. After the expiration of the timeout, the inviter

p selects the sensor s*, among the sensors that replied to

the invitation. In particular, the selected sensor s* is the

closest to the vacant position. The sensor p sends a message

SlaveSelected (multicast message at maximum h-

hop) to all the sensors which accepted the invitation. The

message SlaveSelected contains the sender ID, the ID

of s* and the destination coordinates.

Figure 4 illustrates the pull action performed by sensor

p as described above.

7.2 Behavior of the invited sensors

When a slave sensor s receives an Invitation message,

and has not already committed to fill a different hole, it

inserts such invitation message in a priority queue, con-

taining all the invitation received in a given time interval,

according to a priority based on the distance from the

invited slave to the destination. This time interval starts as

soon as a slave sensor receives the first invitation. At the

end of this time interval, the invited sensors processes the

elements in the priority queue one by one. If another slave

sensor has already accepted the invitation to fill the hole

being considered (this event corresponds to s receiving a

SlaveSelected message containing the same hole
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coordinates but another invited ID), s proceeds by con-

sidering the next element in its priority queue.

The sensor s sends an InvitationAcceptance to

the inviter related to the highest priority element in the

queue, for which no previous agreement has been notified.

As soon as s receives a SlaveSelected message

regarding the hole considered in the InvitationAc-

ceptance messages, it verifies to be the selected slave

and, in this case, it starts moving towards the destination.

Otherwise, s drops the record on the considered hole, and

processes the next element in the queue.

7.3 Behavior of forwarder snapped sensors

When a snapped sensor p receives an Invitation

message it participates in the pull activity by forwarding

this message when necessary. The snapped sensor p for-

wards the invitation only if h [ 0 and decreases by one the

hop counter associated to the forwarded invitation.

In order to reduce the number of broadcast messages

each snapped sensor forwards Invitation messages

only if it has not already broadcast a message for the same

hole with a greater or equal value of h.

Notice that, whether the transmission radius Rtx � Rs,

the hop counter h refers to the communication hops. In this

case, the forwarder sensors are only the snapped sensors

located at the boundary of the communication range.

7.4 An example

Figure 5 shows a typical workflow of the pull activity in

the scenario depicted in the sample grid shown in the lower

part of the figure. The snapped sensor p detects a coverage

hole in an adjacent position. Since p has no slaves in its

hexagon and the Moving Condition with respect to its

neighbors is unsatisfied, it starts the pull activity broad-

casting an Invitation message with null hop counter.

Since this invitation does not reach any slave sensor, at the

expiration of the timeout, sensor p broadcasts another

Invitation message increasing the hop counter. Sensor

q evaluates the hop counter of the Invitation message

it received from p and forwards such a message with

decreased hop counter. Once again the timeout set by

p expires because there is no available slave in proximity,

thus the procedure is repeated until the Invitation

message, reaches the slave sensor s which starts a timeout.

The sensor s, after the expiration of the timeout, during

which it has not received any other Invitation mes-

sage, sends an InvitationAcceptance message to

the inviter sensor p. Since the sensor p has not received any

other InvitationAcceptance message during its

timeout, it sends a SlaveSelected message to the

sensor s. Upon receiving such a message, the sensor s starts

traveling towards the coverage hole and snaps itself.

Figure 1 shows the interleaved execution of the pull

activity with the other algorithm activities. In particular,

Fig. 1(f) shows the pull activity started by node 7, which

does not have any slave to perform the snap activity. This

activity is started by node 7 in order to fill the coverage hole

that it detects in its adjacent snapping positions. In agreement

with the pull activity, the closest slave sensor is selected from

the hexagon of the snapped sensor 6, to move towards the

hole. Other examples of the pull activity execution are

depicted in Fig. 1(g) and (i) where one can notice that the

forwarding horizon has been extended in order to attract the

available slave sensors. Figure 1(f) shows an example of

the concurrent execution of the the snap, push and pull

activities highlighted by three different kind of arrows.

8 Merge activity

The fact that many sensors act as starters implies the

generation of several tiling portions with different orien-

tations. The aim of the algorithm is to cover the AoI with a

unique regular tiling thus minimizing overlaps of the

sensing disks and enabling a complete and uniform cov-

erage. Hence, the P&P protocol provides a merge mecha-

nism to be executed whenever a sensor p receives a

neighbor discovery message (IAS) from a snapped sensor

q belonging to another tiling portion.

In this case, sensor p chooses to join the oldest grid

portion. In order to discriminate which is the oldest grid,

the sensor p evaluates the timestamp of the starter action,

attached to any IAS message.

Fig. 4 Behavior of a sensor detecting a hole
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Notice that the detection of the sole neighbor discovery

messages is sufficient to ignite the tiling merge activity

because such messages are sent after any tiling expansion

and, if two tiling portions come in radio proximity to each

other, at least one of them is increasing its extension.

In order to explain the grid merge activity, we refer

again to Fig. 1. Figure 1(h) shows the presence of two grid

portions in radio proximity with each other. As a conse-

quence of this reciprocal detection, the two grid portions

start the tiling merge activity. In particular, the sensor 12

initially belonging to the right grid, is snapped in a vacant

position of the left grid by node 16, as shown in Fig. 1(i).

In Fig. 1(l) the tiling merge activity is concluded and a

unique grid is built.

In the following we give the details on the protocol

implementation of the grid merge activity. We call Gold and

Gnew the tiling portions with lower and higher timestamp,

respectively. We distinguish three possible cases, depending

on the role of the sensor p with respect to the two grids: (1)

p belongs to Gold, (2) p belongs to Gnew or (3) p is a free sensor.

1. The sensor p belongs to Gnew and receives an IAS

message from q belonging to Gold. If sensor p is a slave,

it switches its state to free or to slave of the sensor

q depending on their mutual distance and acquires the

starter timestamp of the sensor q. Sensor p proactively

communicates its new state to its neighborhood by

sending either an InfoFree or an InfoSlave

message. From now on p honors only messages from

Gold and ignores those from Gnew.

This proactive communication of the new state of p is

needed to advertise the presence of Gnew when there is

no message activity within Gnew that is perceivable by

the sensors in Gold. In this way, the snapped sensor

which p belonged to can properly update its slave set.

If p is instead a snapped sensor, it can not immediately

switch to its new state because of its leading role inside

Gnew (e.g. it leads the slave sensors in S(p) and performs

push and pull activities). Hence p temporarily assumes a

hybrid role: it advertises itself as free/slave to the nodes

of Gold with an InfoFree/InfoSlavemessage and,

at the same time, keeps on behaving as snapped node in

Gnew until it receives a movement command (SIP or

MoveTo message) coming from Gold.

When p receives a SIP or a MoveTo command,

p moves to a new position electing one of its slave in

Gnew as a substitute with a MoveToSubst message.

The selected slave should reply with a SubstArri-

val upon arrival to the snap position, within a given

timeout. If p receives a SubstArrival on time, it

ceases its snapped role in Gnew and honors the

Fig. 5 A typical scenario of the pull activity
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commands issued by the snapped node in Gold. Other-

wise, if this timeout expires before the reception of the

SubstArrival message, p selects a new slave to

snap. The process goes on until no more slaves are

available. In this case p ceases its snapped role inside

Gnew advertising its departure to its neighbors in Gnew,

broadcasting a Retirement message. Upon the

reception of a Retirement message the snapped

neighbors that were located in positions adjacent to the

one that p just freed, keep into account the new vacant

position starting new snap activities.

Notice that a sensor q that is neighbor of the retiring

sensor p could lie in a position that is out of the AoI (the

hexagonal tile has an intersection with the AoI, but the

center of the hexagon is outside of it). In this case, it may

occur that, due to the merge activity, the sensor

q remains disconnected from the two grids Gnew and

Gold. To avoid such a situation, when q receives a

Retirement message from any of its adjacent snap-

ped neighbors, it repositions itself inside the AoI, where

it will either be involved in the activity of one grid or

will become free and behave accordingly.

2. The sensor p belongs to Gold and receives an IAS

message from q belonging to Gnew: if p is a slave it

ignores all messages from Gnew. If p is snapped, it

performs a neighbor discovery sending an IAS

message, ignores all messages coming from Gnew,

apart from the neighbor discovery replies, and honors

only messages from Gold. Observe that the neighbor

discovery is necessary to ignite the merge mechanism

and allows each snapped sensor in Gold to collect

complete information on nearby sensors that previ-

ously belonged to Gnew.

3. The sensor p is free: sensor p honors only messages

from Gold and ignores those from Gnew.

9 Experimental results

In this section we study the performance of the P&P pro-

tocol. To this end we consider different initial scenarios

and compare P&P to a previously proposed virtual force

based algorithm, through simulations. We consider the

virtual force approach for our analysis because it is one of

the most popular method proposed for the mobile sensor

deployment. In order to perform the comparison, we

developed a simulator based on the wireless module of the

Opnet software [23]. Before introducing the simulation

results, in the following we briefly describe the virtual

force based algorithm named Parallel and Distributed

Network Dynamics (PDND) [11], used for the compari-

sons. We choose this algorithm as its force model allows to

obtain very good performance and, differently from several

other solutions in the literature, it has a guaranteed

termination.

9.1 Parallel and distributed network dynamics (PDND)

The Parallel and Distributed Network Dynamics (PDND)

algorithm [11] is a virtual force based approach according

to which the force exerted by the sensor si on the sensor sj

is modeled as a piecewise linear function. It is repulsive

when the distance between si and sj is lower than an arbi-

trarily tuned parameter r*, it is attractive when the distance

is larger, and it vanishes at another arbitrarily set distance.

In order to ensure the convergence of PDND, the formu-

lation of this force must respect the condition of Lipschitz

continuity. To obtain this feature, the single sensor move-

ment is limited by a maximum moving distance threshold

which guarantees that the potential energy is always

decreasing.

The PDND algorithm is a round based algorithm. At

each round the sensors initially exchange their position

information, calculate the resulting force exerted by the

sensors in the neighborhood and then move accordingly.

The algorithm is proved to achieve a final stable configu-

ration in which all sensors stop moving provided that a

positive minimum moving distance threshold is set. Note

that, although this algorithm is one of the best proposals

based on virtual forces, it presents the common drawbacks

of the proposals designed following this approach. In par-

ticular, several threshold values must be manually tuned in

order to make the algorithm work at its best.

9.2 Simulation results

In this Section we describe the performance comparisons

between P&P and PDND. The parameter setting used in the

experimental activity is as follows: the transmission radius

Rtx is set to 11 m, the sensing radius Rs is set to 5 m, the

sensor speed is 1 m/sec, and the AoI is a square with size

80 m 9 80 m. For the PDND algorithm, the round length

is set to 1 sec, the threshold r* to 2Rs while the minimum

moving distance is set to 0.1 m, as in [11].

Before giving a quantitative evaluation of the protocol

performance, we show some examples of the execution of

P&P and PDND. In Fig. 6(a)–(d) we show an example of

the P&P protocol execution starting from a random initial

distribution of 150 sensors over the AoI, whereas in

Fig. 7(a)–(d) we show the execution of PDND starting

from the same initial configuration. In Figs. 8 and 9 we

show some snapshots of the execution of P&P and PDND,

respectively, starting from a distribution where 150 sensors

are densely deployed at the center of the AoI.
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The protocol P&P is able to achieve a complete cover-

age of the AoI in both scenarios. It is to notice that, in the

case of randomly deployed sensors, several grid portions

are created at the beginning of the algorithm execution

(Fig. 6(b)), due to the random election of the starters. As

the grids portions keep growing, after a certain time, they

arrive in radio proximity to each other, and the merge

activity starts. The older portions, which are likely com-

posed by a higher number of nodes (Fig. 6(c)), include the

newer ones step by step. At the end of the algorithm exe-

cution, only one tiling portions has remained which entirely

covers the AoI (Fig. 6(d)). On the contrary, when the initial

deployment is dense as the one shown in Fig. 8(a), every

node can communicate with all the other nodes, thus only

one grid is created, as illustrated in Fig. 8(b), (c).

The PDND algorithm is able to cover the AoI in the two

considered scenarios as well. Nevertheless, as we will show

in the following, it requires much longer time to achieve

the final deployment and consumes a higher amount of

energy with respect to P&P.

Furthermore, P&P is able to achieve a complete cover-

age in complex shaped AoIs. In Fig. 10 we show a syn-

thetic representation of how the sensor deployment evolves

under P&P when 150 sensors are sent from a high density

region in an AoI composed by two squared rooms con-

nected by a narrows.

In order to compare the performance of our protocol and

PDND, we run two sets of experiments, starting from two

different initial sensor deployments, by varying the number

of deployed sensors. In the experiments we increase the

number of deployed sensors ranging from 150 to 550. We

do not show the graph of the coverage achieved by the two

algorithms as, in the considered interval of available sen-

sors, both of them always reach a complete coverage.

In the first set of experiments we considered the random

initial deployment depicted in Fig. 8(a). Figure 11 refers to

P&P and represents the number of conflicting snap actions,

averaged over the number of snap positions, and the

number of push conflicts, averaged over the number of

slave sensors involved in a push action. A snap conflict

(a) (b) (c) (d)

Fig. 6 Deployment with random distribution under P&P

(a) (b) (c) (d)

Fig. 7 Deployment with random distribution under PDND

(a) (b) (c) (d)

Fig. 8 Deployment with central distribution under P&P
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occurs whenever the same snap position is contended by

two or more sensors being snapped, whereas a push conflict

happens when a push offer made by one sensor becomes

obsolete because of the push actions performed by other

sensors.

The asynchronous behavior of P&P guarantees the res-

olution of the few snap/push conflicts that arise as a con-

sequence of its distributed execution. Although the average

number of snap conflicts grows with the number of avail-

able sensors, it remains significantly smaller than 1,

meaning that, in the considered scenarios, no more than

one conflict happens per snap position. Similarly, when the

number of sensors is larger than the minimum to guarantee

the coverage completeness, the average number of push

conflicts per slave sensor becomes almost stable at about

1.2 push conflicts per slave sensor.

Figure 12 shows the termination time of P&P and

PDND, i.e. the time at which all sensors stop moving since

a stable configuration is reached. According to the protocol

P&P this situation occurs when all the activities are ter-

minated. In particular, the snap and pull activity terminate

as soon as all the snapping position are occupied. The push

activity terminates when the moving condition is not sat-

isfied among all the adjacent snap sensors. Finally, the

merge activity ends as soon as all the created grid portions

are absorbed by the oldest grid. We have formally proved

in [3] that such a final stable configuration is always

reached by the PUSH&PULL algorithm.

Even the PDND algorithm is proved to converge to a

stable configuration, in which the forces acting on all the

sensors are balanced. Nevertheless, as Fig. 12 points out,

PDND requires a time that is one order of magnitude larger

than the one needed by P&P to terminate. The P&P pro-

tocol completes the deployment in such a moderate time

because it is able to coordinate distributed decisions and

solve local conflicts. On the contrary, the PDND algorithm

requires a so long time to terminate because the sensors are

allowed to traverse only very short distances at each round.

This limitation on the traversed distance is necessary to

guarantee that each movement contributes to a decrease in

the overall potential energy of the system.

Both the algorithms require a longer time to terminate

when 150 sensors are deployed. This is due to the fact that

this value is close to the minimum number of sensors

required to entirely cover the AoI. The results shown in

(a) (b) (c) (d)

Fig. 9 Deployment with central distribution under PDND

(a) (b) (c) (d)

Fig. 10 Coverage of an irregular AoI
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Fig. 12 highlight the good scalability of P&P, in fact the

time needed to terminate slightly decreases as the number

of available sensors increases.

The next figures detail the performance evaluation of the

two protocols in terms of energy consumption. The pro-

tocol activities having the major impact on the energy

consumption are: movements, starting/braking actions and

message exchanges.

Figure 13 shows the average moving distance per sensor.

It is worth noting that under both algorithms the traversed

distance decreases when the number of available sensors

increases. This is due to the initial random distribution which

ensures an even density over the AoI that helps to achieve the

final configuration with few movements. However, P&P let

sensors traverse shorter distances with respect to PDND.

An important contribution to the overall energy con-

sumption is due to the starting/braking actions performed

by the moving sensors [18]. Figure 14 shows that the

PDND algorithm performs at least two orders of magnitude

of starting/braking actions more than P&P. Indeed,

according to PDND, in order to guarantee that the potential

energy of the system decreases with time, sensors are

allowed to move only for a very short distance at each

round, resulting in a very high number of moving actions.

On the contrary, P&P makes precise movements, drasti-

cally reducing the number of starting/braking actions.

Moreover, as Fig. 14 shows, the number of moving actions

decreases when the number of sensors increases, thus

evidencing a good scalability of the proposed approach.

The last term of the overall energy consumption is the

number of message exchanges, shown in Fig. 15. At each

round of the PDND algorithm the sensors have to exchange

their position information. Since the algorithm requires a

very high number of rounds to terminate, a very high

number of messages is exchanged. On the contrary, under

P&P, the number of exchanged messages remains almost

stable even when the number of sensors increases signifi-

cantly, as shown in Fig. 15. It is worth noting that the

energy consumption related to transmitting and receiving

messages is affected by the sensor density too.

Indeed, the higher the sensor density, the higher the

contribution to the overall energy consumption due to

message receiving actions. This trend is made evident in

Fig. 16, where we

analyze the overall energy consumption. In this figure

we utilize a unified energy consumption metric obtained as

the sum of the contributions given by movements, starting/

braking actions and communications. The energy spent by
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sensors for communications and movements is expressed in

energy units. The reception of one message corresponds to

one energy unit, a single transmission costs the same as

1.125 receptions [1], a 1 m movement costs as much as 300

transmissions [18] and a starting/braking action costs the

same as 1 meter movement [18].

As expected by the above comparisons between P&P

and PDND of the energy consuming activities, P&P shows

an overall energy consumption which is two orders of

magnitude less than the one of PDND. Notice that the

overall energy consumption of P&P is even lower than the

one required by PDND only for the communications.

In the second set of experiments we compare the per-

formance of the two algorithms starting from the initial

configuration shown in Fig. 8 where the sensors are den-

sely deployed at the center of the AoI. The results are

shown in the Figs. 17, 18, 19, 20, 21 and 22.

It is to notice that, with respect to the previous experi-

mental setting, the P&P algorithm shows a higher number

of conflicting actions (Fig. 17). Indeed, by starting from a

denser initial deployment, more sensors compete for the

same snapping positions and, similarly, more sensors are

pushed towards the same hexagons. For this reason, the

termination time and the number of exchanged messages

increase with respect to the case of random initial
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deployment. This is due to the fact that, in order to achieve

a uniform deployment, more sensors move from their ini-

tial positions, traverse longer distances, and more coordi-

nation messages are needed. Similarly to the previous

experimental set, P&P outperforms PDND. In particular,

the PDND algorithm terminates in a much longer time with

respect to P&P and exhibits an overall energy consumption

which is two orders of magnitude higher than the one of

P&P.

10 Conclusions

In this paper we introduce P&P, a communication protocol

that permits a correct and efficient coordination of sensor

movements in agreement with the PUSH & PULL algorithm.

Unlike previous works which introduce deployment algo-

rithms without formalizing the related protocol, we address

the realistic applicability of this approach. To this end we

deeply investigate the possible conflicts that may arise

when asynchronous local decisions are to be coordinated,

and propose protocol solutions.

Simulation results show the performance of our protocol

under a range of operative settings, including conflict sit-

uations and irregularly shaped target areas. These results

evidence the protocol capabilities to fulfill the algorithm

requirements, in particular termination, completeness and

stability of the final coverage. Furthermore, the perfor-

mance comparison between the P&P protocol and the

PDND algorithm, based on the virtual force approach,

shows that our solution is able to achieve the final

deployment with a time one order of magnitude shorter

than the one needed by PDND, while consuming at least

two order of magnitude less energy.
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