
Spatial and Temporal Refinement of Typed

Graph Transformation Systems ?

Martin Große–Rhode1, Francesco Parisi–Presicce2, and Marta Simeoni2

1 Dip. di Informatica, Università di Pisa, Corso Italia, 40, I – 56125 Pisa, Italy,
mgr@di.unipi.it

2 Università di Roma La Sapienza, Dip. Scienze dell’Informazione,
Via Salaria 113, I-00198 Rome, Italy,
{parisi,simeoni}@dsi.uniroma1.it

Abstract. Graph transformation systems support the formal modeling
of dynamic, concurrent, and distributed systems. States are given by their
graphical structure, and transitions are modeled by graph transformation
rules. In this paper we investigate two kinds of refinement relations for
graph transformation systems in order to support the development of a
module concept for graph transformation systems. In a spatial refinement
each rule is refined by an amalgamation of rules, in a temporal refinement
it is refined by a sequence of rules.

1 Introduction

Graph grammars and graph transformation systems, in their different varia-
tions, have become a well accepted approach to the formal modeling of systems.
(For a survey see [Roz97].) In this paper we investigate refinement relations be-
tween graph transformation systems, a question that has been addressed only
few in the literature up to now (see [CH95,HCEL96,Par96,Rib96]). Our main
concern are refinement relations that preserve the full behaviour of graph trans-
formation systems, as opposed to [CH95,HCEL96] for instance, whose refinement
relation guarantees only the existence of specialised transformations in the refin-
ing system, not the whole behaviour. Using typed graph transformation systems
([CEL+96]) refinement also supports the implementation of a more abstract sys-
tem by another more concrete one. Thereby type restriction corresponds to the
hiding of implementation details.

A possible application of refinement is the development of a module concept
for graph transformation systems. Well investigated in the field of programming
languages module concepts have been carried over also to formal specification
approaches, as for instance algebraic specification of abstract data types (see
e.g. [BEP87,EM90]). Basically, a module is given by an export and an import
interface, and a body that implements the features offered at the export inter-
face, possibly using the features required at the import interface. A necessary
? This research has been supported by the TMR Network GETGRATS, ERB-FMRX-

CT960061.

Luboš Brim et al. (Eds.): MFCS’98, LNCS 1450, pp. 553–561, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

554 Martin Große–Rhode et al.

formal means to define such modules for formal specifications are morphisms be-
tween the specification units for the three parts, that model these relationships
appropriately. That means, morphisms are required that model the inclusion of
the imported features into the body, and morphisms that model the relation
between the exported features and their implementation in the body. Since the
latter task is of more general nature there should be an embedding of morphisms
of the first kind (inclusions) into morphisms of the second kind (implementa-
tions). In [EM90] horizontal composition operations have been introduced, such
as union and composition via import–export interface matching. The essential
requirement on the category of specification units to support these horizontal op-
erations is that pushouts (more generally colimits) of specifications exist. For the
special and most important case of import–export interface matching it suffices
already, if pushouts of inclusions and implementations exist.

The first kind of morphisms between graph transformation systems, corre-
sponding to inclusions, are mappings between the name sets that are compatible
with the associated rules. In a refinement morphism names are mapped to in-
structions that indicate how a rule is refined to a composition of rules of the
refining system. In a spatial refinement, several rules of the refining system are
glued together in parallel (amalgamated) to obtain the effect of the original rule.
That means, the different rules of the refining system must be applied at the
same time to different, possibly overlapping parts of the actual graph (state),
and their simultaneous application yields the same successor graph as the orig-
inal rule. In a temporal refinement, a sequential composition of rules refines a
given one, i.e. the sequential computation steps are refined.

The paper is organized as follows. In the next two sections graph transfor-
mation systems and refinements are introduced for the untyped case. Although
this case is not very meaningful for applications, the separated presentation
makes the presentation easier. In section 2 basic definitions and facts of graph
transformation systems and their behaviour are revisited. In section 3 spatial
and temporal refinements are introduced. In section 4 types for graph transfor-
mation systems and the extension and restriction constructions associated with
type morphisms are revisited. Finally in section 5 the results of the previous
sections are put together to obtain the results we consider useful for applica-
tions. Full proofs and further examples can be found in the technical reports
[GPS97a,GPS97b].

2 Graph Transformation Systems

In this section we briefly review the standard definitions and facts of graph
transformation systems. A graph G = (N, E, src, tar) is given by a set N of
nodes, a set E of edges, and functions src, tar : E → N that assign source and
target nodes to each edge. Thus graphs are unlabeled directed graphs that may
have multiple edges and loops. A graph morphism f = (fN , fE) : G→ G′ is given
by functions fN : N → N ′ and fE : E → E′ such that src′ ◦ fE = fN ◦ src and

Spatial and Temporal Refinement of Typed Graph Transformation Systems 555

tar ′ ◦ fE = fN ◦ tar . With identities and composition being defined component
wise this defines the category Graph.

A graph transformation rule p = (L l←− K
r−→ R) is given by a left graph

L, that is matched to the actual state graph when the rule is applied, a right
graph R by which the occurrence of L is replaced, and a span L ← K → R,
given by a gluing graph K and graph morphisms to L and R. The span expresses
which items of L are related to which items of R. Intuitively, items related in
this way are preserved when the rule is applied, and items in L−K are deleted.
A rule morphism mp = (mpL, mpK , mpR) : p→ p′ is given by graph morphisms
mpL : L→ L′, mpK : K → K ′, and mpR : R→ R′, that commute with l and l′,
and r and r′ respectively, i.e. mpL ◦ l = l′ ◦mpK and mpR ◦ r = r′ ◦mpK . With
component wise identities and composition this defines the category Rule. The
amalgamation of two rules w.r.t. a common subrule is their pushout in Rule.

A graph transformation system G = (P, π) is given by a set P of names, that
is considered as its signature, and a mapping π : P → |Rule| that assigns to each
name a rule, thus specifying the behaviour. A morphism of graph transformation
systems, f : G → G′ is a mapping f : P → P ′ between the sets of rule names
that is compatible with π and π′, i.e. π′ ◦ f = π . With composition and identity
inherited from Set , this defines the category GTS.

Since Graph and Rule are (isomorphic to) functor categories to Set and
GTS is a comma category to Set all three categories are cocomplete.

Given a graph transformation system G = (P, π) a direct derivation p/m :
G⇒ H over G from a graph G via a rule p and a matching morphism m : L→ G
is a pair (p, S), where p ∈ P , S is a double pushout diagram

L

m

��

K
loo r //

(po) (po)k

��

R

h

��
G D

l̄

oo
r̄

// H

in Graph, and π(p) = (L l←− K
r−→ R). G is called the input, and H the

output of p/m : G ⇒ H . A derivation p1/m1; . . . ; pn/mn : G ⇒ H over G
from a graph G via rules p1, . . . , pn and matching morphisms m1, . . . , mn is
a sequence of direct derivations over G, such that the output of the i’th direct
derivation is the input of the (i+1)’st direct derivation. The set of all derivations
over G is denoted Der(G). Using amalgamated rules for derivations allows to
prescribe synchronized derivations. The expressive power of amalgamated rules
is in general higher than sequential composition, see [BFH87]. For a derivation
with an amalgamated rule q we use the notation q̄/n : G⇒ H . Note that q is a
rule here, whereas p in p/m : G ⇒ H is a rule name. The set of all derivations
over G with amalgamated rules is denoted ADer(G).

Considering Der(G) as the behaviour of a graph transformation system,
morphisms f : G → G′ preserve behaviour. I.e., for each derivation d : G ⇒ H
with d = (p1/m1; . . . ; pn/mn) in Der(G) there is a derivation f(d) : G ⇒
H in Der(G′), where f(d) = (f(p1)/m1; . . . ; f(pn)/mn). The same holds for
ADer(G).

556 Martin Große–Rhode et al.

3 Untyped Refinements

As mentioned in the introduction a refinement of a graph transformation system
is given by a mapping that associates with each rule name an instruction how
to implement the associated rule as a composition of rules of the refining sys-
tem. In a spatial refinement this composition is an amalgamation, in a temporal
refinement a sequence.

Definition 1 (Refinement Instructions). Let G = (P, π) be a graph trans-
formation system. A spatial refinement instruction si on G is defined by:

si = (p1 . . . pk, (π(pi)
mij←− rij

m′
ij−→ π(pj))1≤i<j≤k)

where p1, . . . , pk ∈ P , rij ∈ |Rule| and π(pi)
mij←− rij

m′
ij−→ π(pj) for 1 ≤ i < j ≤ k

is a span of morphisms in Rule.
A temporal refinement instruction ti = p1 . . . pk on G is a string of sort

names p1, . . . , pk ∈ P , such that Ri = Li+1 for i ∈ {1, . . . , k − 1} if π(pj) =
(Lj ← Kj → Rj).

The sets of spatial refinement instructions and temporal refinement instruc-
tions on G are denoted SRI (G) and TRI (G) respectively.

The rule result(si) of a spatial refinement instruction si is defined as the
colimit in Rule of the diagram given by all spans of si with their adjacent
rules. The result of a temporal refinement instruction ti = p1 . . . pk is given
by result(ti) = (L1

l←− K
r−→ Rk), where K is the limit of the diagram

L1 K1
l1oo r1 // R1 = L2 K2

l2oo r2 // · · · Kk
lkoo rk // Rk

in Graph, and l : K → L1 and r : K → Rk are the corresponding projections.

Definition 2 (Refinement Morphisms). Let G = (P, π) and G′ = (P ′, π′)
be two graph transformation systems. A spatial (temporal) refinement morphism
ref : G → G′ is a mapping from the set of rule names P to the set of spatial
(temporal) refinement instructions SRI (G′) (resp. TRI (G′)) such that, for p ∈
P , result(ref (p)) ∼= π(p) .

Two refinement morphisms ref : G → G′ and ref ′ : G→ G′ are equivalent
if, for all p ∈ P , result(ref (p)) ∼= result(ref ′(p)) in Rule.

From this definition follows immediately that any two refinement morphisms
ref : G→ G′ and ref ′ : G→ G′ are equivalent.

Example 1 (Asynchronous Communication). Consider an asynchronous commu-
nication of agents P and Q, with writing and reading access to a common channel
c. Agent P holds a value a, that it sends to Q. Thus the abstract view of the
communication is

asynch-com :
__�� ��
__a

'&%$!"#P
**TTT

TTT
oo_ _ _ /.-,()*+Q +3

'&%$!"#P
**TTT

TTT
/.-,()*+Q //___

__�� ��
__a

c

44jjjjjj c

44jjjjjj

Spatial and Temporal Refinement of Typed Graph Transformation Systems 557

Refined into intermediate steps this communication would look as follows.
send : __�� ��

__a
'&%$!"#P

))SSS
SSS

oo_ _ _ /.-,()*+Q
+3

'&%$!"#P
))SSS

SSS
/.-,()*+Q

c

55kkkkkk __�� ��
__a

//___ c

55kkkkkk

transmit : '&%$!"#P
))SSS

SSS
/.-,()*+Q

+3
'&%$!"#P

))SSS
SSS

/.-,()*+Q
__�� ��
__a

//___ c

55kkkkkk c

55kkkkkk //___
__�� ��
__a

receive : '&%$!"#P
))SSS

SSS
/.-,()*+Q

+3
'&%$!"#P

))SSS
SSS

/.-,()*+Q //___
__�� ��
__a

c

55kkkkkk
55kkkkkk //___
__�� ��
__a c

55kkkkkk

First P sends a to c, then a is transmitted from the input port of c to its output
port, where Q can receive it.

The spatial and temporal refinement relations are transitive. Compositions of
refinement morphisms are constructed via pullbacks and pushouts respectively
([GPS97b]). Thus it cannot be expected that composition is strictly associative.
Moreover, it is impossible to obtain pushouts on this level, that were required for
horizontal composition of modules. This is due to the fact that a refinement of a
single rule may have arbitrary many component rules, that may be connected in
many ways. Thus a common refinement of two given ones, that were required to
construct a pushout, does not exist. Therefore we abstract from the concretely
given refinement instructions at this point, and proceed with existence of spatial
refinements alone.

Definition 3 (Categories of Refinements). The spatial (temporal) refine-
ment category SR≡ (resp. TR≡) has graph transformation systems as objects
and equivalence classes of spatial (temporal) refinements as morphism.

Since all diagrams in these categories commute, all colimits of refinements
exist. They can be constructed as disjoint union (i.e. coproducts) of the rule
name sets of the components and the induced mappings to the rules. Note that
the diagram of morphisms on the underlying sets of names of a colimit diagram
in SR≡ or TR≡ need not commute.

Proposition 1 (Colimits of Refinements). The categories SR≡ and TR≡
have colimits.

As mentioned in the introduction pushouts of inclusion morphisms and spa-
tial refinements are required for the horizontal composition of modules. The
obvious embedding of morphisms of graph transformation systems into the re-
finement categories yields a more intuitive way to construct a pushout of (the
embedding of) an injective GTS–morphism f : G0 → G1 and a spatial refine-
ment morphism sr : G0 → G2. In this case the set of names of the pushout can
in fact be taken as a pushout in Set with the induced mappings to the rules,
thus it also commutes.

Since spatial refinements use amalgamations a refining system must be able
to use amalgamated rules. This is reflected in the preservation properties for the
two kinds of refinements.

558 Martin Große–Rhode et al.

Theorem 1 (Preservation of Behaviour). Let sr : G → G′ be a spatial
refinement morphism of graph transformation systems. For each derivation d :
G ⇒ H with d = (p1/m1; . . . ; pn/mn) in Der(G) there is an amalgamated
derivation d̄ : G ⇒ H in ADer(G′), where d̄ = (q1/m1; . . . ; qn/mn) and qi =
result(sr(pi)).

Let G′ be a graph transformation system with injective rules, i.e. for each

rule name p′ ∈ P ′ the graph morphisms l′i, r
′
i of π′(p′i) = (L′i

l′i←− K ′
i

r′i−→ R′
i)

are injective, and tr : G → G′ be a temporal refinement morphism. Then for
each derivation d : G ⇒ H with d = (p1/m1; . . . ; pn/mn) in Der(G) there is a
derivation d′ : G ⇒ H in Der(G′), where d′ = (p′11/m11; . . . ; p′nkn

/mnkn) and
tr(pi) = p′i1 . . . p′ini

for i = 1, . . . , n.

4 Typed Graph Transformation Systems

In [CMR96] typed graphs have been introduced as a technical means for the
construction of graph processes. This typing, however, may also be considered
as a structuring means for graph transformation systems in the usual sense of
typing. Morphisms and refinements of graph transformation systems with type
graphs as structuring means have been introduced in [CH95,HCEL96,Rib96].

Definition 4 (Categories of Typed Graphs and Typed Rules). Given
a graph TG, a TG–typed graph g is a graph morphism g : G → TG, and a
TG–typed graph morphism k : g → h is a graph morphism with h ◦ k = g. This
defines the category GraphTG.

The category RuleTG of TG–typed rules is given by TG–typed graph spans
and morphisms, as for untyped rules.

Definition 5 (Retyping, Forgetful Functor and Free Functor). Let f :
TG → TG′ be a graph morphism. f induces a backward retyping functor f< :
GraphTG′ → GraphTG, f<(g′) = g∗ and f<(k′ : g′ → h′) = k∗ : g∗ → h∗ by
pullbacks and mediating morphisms as in the following diagram,

H∗ //

h∗

��

H ′

h′

��

G∗ //

k∗
==zzzzzzzz

g∗ !!D
DD

DD
DD

D G′

k′
==zzzzzzzz

g′ !!D
DD

DD
DD

D

TG
f

// TG′

and a forward retyping functor f> : GraphTG → GraphTG′ , f>(g) = f ◦ g
and f>(k : g → h) = k by composition.

Forward and backward retyping functors are left and right adjoints, i.e. for
each f : TG → TG′ we have f> a f< : GraphTG → GraphTG′ . Moreover,
forward retyping is a functor > : Graph → Cat, and backward retyping is a

Spatial and Temporal Refinement of Typed Graph Transformation Systems 559

pseudo functor < : Graph→ Catop, i.e. (idTG)< ∼= idGraphTG
and (e ◦ f)< ∼=

f< ◦ e<.
Typing a graph transformation system means to define a type system as a

type graph TG, and have all rules typed w.r.t. TG.

Definition 6 (Typed Graph Transformation System). A typed graph
transformation system TG = (TG, P, π) consists of a type graph TG, a set
of rule names P , and a mapping π : P → |RuleTG|, associating with each rule
name its TG–typed rule.

A morphism of typed graph transformation systems must first of all relate
their type systems, i.e. it must contain a type graph homomorphism. Forward
and backward retyping then induce translations to compare the rules of both
systems. In general, however, compatibility with the forgetful functor (backward
retyping) is too weak to preserve derivations.

Definition 7. A morphism of typed graph transformation systems, f =
(fP , fTG) : TG → TG′ is given by a mapping fP : P → P ′ between the sets of
rule names and an injective type graph morphism fTG : TG → TG′, such that
f>

TG(π(p)) = π′(fP (p)) for all p ∈ P .

Typed graph transformation systems and morphisms form a category, called
TGTS.

Proposition 2 (Colimits). The category TGTS has colimits.

The preservation theorem for morphisms of typed graph transformation sys-
tems compares the behaviour of the systems again in both directions. Each
derivation of the first system gives rise to a corresponding derivation in the sec-
ond system, and the forgetful image of the derivation coincides with the original
one.

Theorem 2 (Preservation of Behaviour). Let f = (fP , fTG) :
TG → TG′ be a TGTS–morphism. For each derivation d : G ⇒ H with d =
(p1/m1; . . . ; pn/mn) in Der(TG) there is a derivation f(d) : f>

TG(G)⇒ f>
TG(H)

in Der(TG′), where f(d) = (f(p1)/f>
TG(m1); . . . ; f(pn)/f>

TG(mn)). Furthermore
f<(f(d) : f>

TG(G)⇒ f>
TG(H)) = (d : G⇒ H).

5 Typed Refinements

Having defined refinements and typing we are now in a position to combine
the results and obtain the constructions that we consider appropriate for the
module concept discussed in the introduction, and other applications. In the
following definition the sets TySRI (G′) and TyTRI (G′) of typed spatial and
temporal refinement instructions are given by replacing all rules by TG ′–typed
rules. Their results are the corresponding constructions in RuleTG′ .

560 Martin Große–Rhode et al.

Definition 8 (Typed Refinements). Let TG = (TG, P, π) and TG′ =
(TG′, P ′, π′) be typed graph transformation systems. A typed spatial (temporal)
refinement morphism tr = (r , fTG) : TG→ TG′ is given by a mapping r : P →
TySRI (G′), (resp. r : P → TyTRI (G′)) and an injective type graph morphism
fTG : TG→ TG′ , such that result(r(p)) ∼= f>

TG(π(p)) for all p ∈ P .

Theorem 3 (Preservation of Behaviour). Let ref = (r, fTG) : TG → TG′

be a typed refinement. For each derivation d : G⇒ H with d = (p1/m1; . . . ;
pn/mn) in Der(TG) there is a derivation ref (d) : f>

TG(G) ⇒ f>
TG(H) over

Der(TG′), where ref (d)=(q1/f>
TG(m1); . . . ; qn/f>

TG(mn)) and qi =result(r(pi)).
Furthermore f<

TG(ref (d) : f>
TG(G)⇒ f>

TG(H)) = (d : G⇒ H).

Example 2. The channel used for the asynchronous communication of agents P
and Q in example 1 should be considered as an internal communication infras-
tructure for the group that contains P and Q, and should not be visible from
the outside. With the type graphs for the abstract system (left) and the refined
system (right)

�������� //___
__�� ��
__

�������� //______
**TTT

TTT
__�� ��
__

ttj j jjjTTTTTT
44jjj

(that we implicitely already used in example 1) we obtain as visible (abstract)
behaviour the rule

__�� ��
__a

'&%$!"#Poo_ _ _ /.-,()*+Q +3 '&%$!"#P /.-,()*+Q //___
__�� ��
__a

which is given by the backward retyping along the type inclusion of the rule
asynch-com. Then the rules send, transmit, and receive given in example 1,
together with rules to connect and disconnect agents P and Q via channel c,
form a typed temporal refinement of this abstract behaviour, using the internal
communication channel.

6 Conclusion

In this paper we have started the investigation of refinements of graph trans-
formation systems. For two cases we have shown how these can be defined in
a categorical framework. The background has been the use of refinement mor-
phisms as relations between the interfaces and the body of a graph transforma-
tion module, similar to algebraic specification modules. The pattern has been
the same in both cases, and the investigation of further possibilities of refine-
ment, as e.g. the combination of temporal and spatial refinement as discussed
here, would also pursue this pattern. First the shape of the refinement instruc-
tions is defined, basing on operations of rules like amalgamation and sequential
composition. It must be shown then, that these refinement instructions can be
composed vertically in order to obtain transitivity of refinement and to allow
for a categorical treatment. The latter proceeds by taking equivalence classes

Spatial and Temporal Refinement of Typed Graph Transformation Systems 561

of refinement morphisms, i.e. a pre–order of refinement relationships is consid-
ered. This reflects the fact that the vertical composition in most cases is not
associative, and pushouts do not exist. However, passing to the abstract level
of existence of refinements instead of concrete refinement constructions yields
the framework for the investigation and general formulation of further proper-
ties, like the existence of pushouts for the general case, and the special case of
pushout of a refinement with an inclusion morphism. This particular result is
especially important for the application to graph transformation module compo-
sition, since it corresponds to the composition of modules via their export and
import interfaces.

References

BEP87. E.K. Blum, H. Ehrig, and F. Parisi-Presicce. Algebraic specification of mod-
ules and their basic interconnections. JCSS, 34(2-3):293–339, 1987.

BFH87. P. Böhm, H.-R. Fonio, and A. Habel. Amalgamation of graph transforma-
tions: a synchronization mechanism. JCSS, 34:377–408, 1987.

CEL+96. A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and J. Padberg. The cate-
gory of typed graph grammars and its adjunctions with categories of deriva-
tions. In 5th Int. Workshop on Graph Grammars and their Application to
Computer Science, Williamsburg ’94, Springer LNCS 1073, pages 240–256.
1996.

CH95. A. Corradini and R. Heckel. A compositional approach to structur-
ing and refinement of typed graph grammars. Proc. of SEGRAGRA’95
”Graph Rewriting and Computation”, Electronic Notes of TCS, 2, 1995.
http://www.elsevier.nl/locate/entcs/volume2.html .

CMR96. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta
Informaticae, 26(3,4):241–266, 1996.

Ehr79. H. Ehrig. Introduction to the algebraic theory of graph grammars. In
V. Claus, H. Ehrig, and G. Rozenberg, editors, 1st Graph Grammar Work-
shop Springer LNCS 73, pages 1–69. 1979.

EM90. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 2: Module
Specifications and Constraints, volume 21 of EATCS Monographs on Theo-
retical Computer Science. Springer Verlag, Berlin, 1990.

GPS97a. M. Große–Rhode, F. Parisi-Presicce, and M. Simeoni. Concrete spatial re-
finement constructions for graph transformation systems. Technical Report
97-10, Università di Roma La Sapienza, 1997.

GPS97b. M. Große–Rhode, F. Parisi-Presicce, and M. Simeoni. Spatial and temporal
refinement of typed graph transformation systems. Technical Report 97-11,
Università di Roma La Sapienza, 1997.

HCEL96. R. Heckel, A. Corradini, H. Ehrig, and M. Löwe. Horizontal and vertical
structuring of typed graph transformation systems. MSCS, pages 1–35, 1996.

Par96. F. Parisi-Presicce. Transformation of graph grammars. In 5th Int. Workshop
on Graph Grammars and their Application to Computer Science, Williams-
burg ’94, Springer LNCS 1073, 1996.

Rib96. L. Ribeiro. Parallel Composition and Unfolding Semantics of Graph Gram-
mars. PhD thesis, TU Berlin, 1996.

Roz97. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundations. World Scientific Publishing,
1997.

	Introduction
	Graph Transformation Systems
	Untyped Refinements
	Typed Graph Transformation Systems
	Typed Refinements
	Conclusion

