
AWT vs Swing
By: Josh Fletcher

Abstract: A brief comparison of Swing and the AWT when used for GUI developement.

AWT vs Swing

When developing a Java program it is important to select the appropriate Java Graphical User
Interface (GUI) components. There are two basic sets of components that you will most likely build
your Java programs with. These two groups of components are called the Abstract Window Toolkit
(AWT) and Swing. Both of these groups of components are part of the Java Foundation Classes (JFC).

An Overview of the AWT

AWT stands for Abstract Window ToolKit. The Abstract Window Toolkit supports GUI Java
programming. It is a portable GUI library for stand-alone applications and/or applets. The Abstract
Window Toolkit provides the connection between your application and the native GUI. The AWT
provides a high level of abstraction for your Java program since it hides you from the underlying
details of the GUI your program will be running on.

AWT features include:

A rich set of user interface components.
A robust event-handling model.
Graphics and imaging tools, including shape, color, and font classes.
Layout managers, for flexible window layouts that don't depend on a particular window size or
screen resolution.
Data transfer classes, for cut-and-paste through the native platform clipboard.

The AWT components depend on native code counterparts (called peers) to handle their functionality.
Thus, these components are often called "heavyweight" components.

An Overview of Swing

Swing implements a set of GUI components that build on AWT technology and provide a pluggable
look and feel. Swing is implemented entirely in the Java programming language, and is based on the
JDK 1.1 Lightweight UI Framework.

Swing features include:

All the features of AWT.
100% Pure Java certified versions of the existing AWT component set (Button, Scrollbar, Label,
etc.).
A rich set of higher-level components (such as tree view, list box, and tabbed panes).
Pure Java design, no reliance on peers.
Pluggable Look and Feel.

Swing components do not depend on peers to handle their functionality. Thus, these components are
often called "lightweight" components.

AWT vs. Swing

There are, of course, both pros and cons to using either set of components from the JFC in your Java

AWT vs Swing http://edn.embarcadero.com/print/26970

1 of 3 25/05/2009 13.51



applications. Here is a summary:

AWT:
Pros

Speed: use of native peers speeds component performance.
Applet Portability: most Web browsers support AWT classes so AWT applets can run without the
Java plugin.
Look and Feel: AWT components more closely reflect the look and feel of the OS they run on.

Cons

Portability: use of native peers creates platform specific limitations. Some components may not
function at all on some platforms.
Third Party Development: the majority of component makers, including Borland and Sun, base
new component development on Swing components. There is a much smaller set of AWT
components available, thus placing the burden on the programmer to create his or her own
AWT-based components.
Features: AWT components do not support features like icons and tool-tips.

Swing:
Pros

Portability: Pure Java design provides for fewer platform specific limitations.
Behavior: Pure Java design allows for a greater range of behavior for Swing components since
they are not limited by the native peers that AWT uses.
Features: Swing supports a wider range of features like icons and pop-up tool-tips for
components.
Vendor Support: Swing development is more active. Sun puts much more energy into making
Swing robust.
Look and Feel: The pluggable look and feel lets you design a single set of GUI components that
can automatically have the look and feel of any OS platform (Microsoft Windows, Solaris,
Macintosh, etc.). It also makes it easier to make global changes to your Java programs that
provide greater accessibility (like picking a hi-contrast color scheme or changing all the fonts in
all dialogs, etc.).

Cons

Applet Portability: Most Web browsers do not include the Swing classes, so the Java plugin must
be used.
Performance: Swing components are generally slower and buggier than AWT, due to both the
fact that they are pure Java and to video issues on various platforms. Since Swing components
handle their own painting (rather than using native API's like DirectX on Windows) you may
run into graphical glitches.
Look and Feel: Even when Swing components are set to use the look and feel of the OS they
are run on, they may not look like their native counterparts.

In general, AWT components are appropriate for simple applet development or development that
targets a specific platform (i.e. the Java program will run on only one platform).

For most any other Java GUI development you will want to use Swing components. Also note that the
Borland value-added components included with JBuilder, like dbSwing and JBCL, are based on Swing
components so if you wish to use these components you will want to base your development on
Swing.

Tip: Whether you choose to use Swing or AWT for your Java program development, you should
avoid mixing the two. There are many painting problems that can occur when you mix heavyweight
AWT components with lightweight Swing.

 

AWT vs Swing http://edn.embarcadero.com/print/26970

2 of 3 25/05/2009 13.51




