
1

Buffer Overflow Defenses
Some examples, pros, and cons of various

defenses against buffer overflows.

Caveats:
1. Not intended to be a complete list of products that defend

against buffer overflows.
2. There is no silver bullet that will stamp out buffer

overflows, but some of these tools may help.

Kinds of Defenses
Better software engineering
practices
Find-and-patch methods
Language tools
Analysis tools
Compiler tools
Operating system tools

2

Better Software Engineering
Practices

Testing
Execution of the software with selected data.

Code Inspection
Inspection of the code by humans with a

checklist to make sure the code meets certain
criteria.

Documentation of vendor code
Documentation of vendor code components

that others may reuse in their own projects.

Better Software Engineering
Practices - Testing

Pros:
Good testing practices should catch most buffer
overflows

Cons:
Time is money, sometimes it is a more economically
sound solution to allow buffer overflows than to
find them
When using vendor software, you cannot white-box
test software that you do not have the source code
or the documentation for
Data corruption is harder to detect than abnormal
program behavior without dynamic analysis tools

3

Better Software Engineering
Practices– Code Inspection

Pros:
Code inspection may catch many buffer
overflows that testing won’t

Cons:
Time is money
When using vendor software, you cannot
do a code inspection if you do not have
the source code

Better Software Engineering
Practices - Documentation

Pros:
Good documentation of reusable software
components will allow people who use your
code in their own projects to test and
inspect it

Cons:
Time is money, and the cost of documenting
the code gets passed on to the customers
Often software companies do not want to
release the source code for libraries that
they sell

4

Find-and-patch Methods

Software patches
released by vendors when a security
problem in their software is found, to fix
the vulnerability.

Programs that block known attacks
Programs that keep a list of known attacks
and watch for those attacks on your
system.

Find-and-patch Methods –
Software patches

Example: The vendor, the customer, or a group concerned about
software security finds a buffer overflow and a patch is written
and released

Pros:
Very effective at preventing known buffer overflow attacks
for specific vulnerabilities

Cons:
No protection against unknown attacks or known attacks for
which a patch has not been released
Not all patches fix the buffer overflow, some are specific to
one attack but leave the buffer overflow itself in place
The customer must regularly check for patches for their
system (at the vendor’s website or www.cert.org) and install
them.

5

Find-and-patch Methods–
Programs that block known attacks

Example: An anti-virus program that checks files and
other inputs to the system for signatures of known attacks

Pros:
Very effective against specific attacks that are known

Cons:
Not effective against unknown attacks or attacks for
which the anti-virus program does not yet have the
signature
The program must keep a current list of signatures for
known attacks and must be updated regularly

Language tools
Languages less susceptible to buffer overflows

Languages other than C/C++ that are less susceptible to
buffer overflows when used properly.

Languages based on C
Languages like Cyclone that were designed with preventing
buffer overflows in mind.

“Safe” buffers
Buffers that automatically truncate inputs, generate
exceptions, grow bigger.

Safer library functions
Library functions that are less susceptible to buffer
overflows than the standard C library.

6

Language tools – Languages less
susceptible to buffer overflows

Examples: Ada, Java, Perl, Python, etc.

Pros:
Automatic bounds checking makes them less susceptible to the buffer
overflow problem
Exception handling can greatly ameliorate the problem

Cons:
Using different languages can increase development cost
None of these languages give the programmer access to the machine at a low
level
None of these languages give you the performance of C/C++, most require
distributable run-time environments
C/C++ are popular languages that many programmers are familiar with
What happens when a string that is too long is entered or an array is
referenced out of bounds, is an exception generated, does the buffer grow,
does the program just halt, is the user asked to provide different input?
Programmer still must be aware of buffer overflows to provide exception
handlers to do what they want (Exception handling comes with its own set of
problems)

Language tools – Languages based
on C

Example: Cyclone is a different dialect of C that handles pointers in
a much safer manner

Pros:
The transition from C to Cyclone is an easy one because
Cyclone is nearly identical to C

Cons:
Existing C source code must be recompiled and probably
modified
Code ported to Cyclone must be debugged, and gdb (a
commonly used UNIX-based debugger) does not work well
with Cyclone
Using pointers in Cyclone is considerably more complicated
than using pointers in C (‘*’ is replaced with ‘*’, ‘@’, and ‘?’)
Cyclone does not provide object-oriented features

7

Language tools – “Safe” buffers

Example: C++ class objects that do bounds checking like CString,
or “limitless” strings like libmib

Pros:
Much safer than standard string handling in C
Exceptions can be handled instead of a program halt

Cons:
Require the use of different library functions, meaning that
existing code has to be modified or interfaced with in a low-
level way
A “limitless” string has to continually be reallocated meaning
a bigger heap and a performance cost
What if you do not want the buffer to grow and accept a
bigger input?

Language tools – Safer library
functions

Example: Use of a different library than the standard C libraries

Pros:
Eliminates problems with unsafe library function calls in C/C++

Cons:
Existing code has to be modified
Programmers have to become familiar with a different set of libraries
Often string and memory handling libraries are replaced, but not
standard library functions specific to an operating system, like file
handling and environment variable functions which can also lead to
buffer overflows
Not all buffer overflows are caused by library functions
What happens when a buffer’s limit is reached? Does the program
halt? Is the string truncated? Is an exception generated?

8

Analysis tools

Static analysis – Tools that find
possible defects in the source code.
Dynamic analysis – Tools that find
possible defects by analyzing things
like memory usage during execution
of the program.

Analysis tools - Static
Examples: Software that searches source code for

unsafe library function calls like ITS4
Pros:

Can be a very effective tool during code inspection
by finding unsafe library function calls and making
recommendations

Cons:
Only effective against buffer overflows caused by
unsafe standard C library function calls
Produces many false positives, only a fraction of
the library function calls that are reported are
actually unsafe

9

Analysis tools - Dynamic

Examples: Tools that analyze memory use of a program
during testing, like Purify

Pros:
Can detect buffer overflows that occur during testing
Sometimes testing will not catch buffer overflows where
data is corrupted but program behavior is not affected,
dynamic analysis will

Cons:
Buffer overflows that lead to erratic program behavior
can usually be found during testing without dynamic
analysis tools

Compiler tools

Add bounds checking to all buffers
Protect the return pointer on the
stack

10

Compiler tools – Bounds
checking

Example: Attempts to add bounds checking to
gcc

Pros:
Does not require modification of the source
code, although you do still have to recompile

Cons:
Very significant decrease in performance, code
size and execution time can double
All of the programs that a systems
administrator wants to protect must be
recompiled
Cannot prevent every possible buffer overflow

Compiler tools –
Protect the return pointer

Examples: Placing a canary on the stack to detect buffer overflows such as
StackGuard, or adding automatic bounds checking for all strings on the stack like
libsafe

Pros:
Does not require that existing code be modified (although it sometimes must
be recompiled)
Will effectively prevent stack smashing attacks

Cons:
Not all buffer overflow attacks are stack smashing attacks, program
execution can be hijacked using heap-based attacks and data can always be
corrupted
Significant performance overhead
StackGuard causes the program to halt upon detection of a buffer overflow
leaving it open to denial-of-service attacks
StackGuard requires that the target program to be protected is recompiled,
libsafe doesn’t

11

Operating system tools
Disable execution of code outside the code space

It is possible on some architectures to distinguish
between code and data, and not allow data to be
executed as code.

Intrusion detection systems
These are programs that watch for abnormal behavior
or behavior that is similar to attack behavior.

Generation of an interrupt
With hardware support it is possible to set bounds on a
buffer and generate an interrupt when an attempt is
made to access or change memory outside those
bounds.

OS tools – Disable code execution
outside the code space

Example: A patch for Linux that disables execution of code on the stack as well as maps
library function calls to addresses with a zero byte in them

Pros:
Currently, the most common and most devastating buffer overflow exploit is stack
smashing and this patch makes stack smashing much more difficult
Does not require that existing software be modified or recompiled
A zero byte in the address of a system call forces the attacker to have a null character in
the attack string

Cons:
Does not prevent all stack smashing attacks, often attack code can be placed in global
variables or on the heap, or library code to spin a shell already exists in the code space
(i.e., system() or execv())
Crashing still leaves programs open to denial-of-service and core dump attacks
A null character in just the right place in an attack string is not always impossible for an
attacker to accomplish, and they can always jump to a small piece of code in variable space
that contains a second jump to the desired location
Some legitimate programs execute code on the stack, but very few, and there is a work-
around for this

12

OS tools – Intrusion detection

Example: An intrusion detection system could keep track of
what patterns of system calls programs usually exhibit, and
then report or react to anomalies such as an “execv()” call
when the next system call is usually to close a file

Pros:
Could be able to detect a variety of hijacking attacks, not
just stack smashing
Could be able to detect many attacks on unknown
vulnerabilities

Cons:
Intrusion detection is a developing technology
The offending process will probably be killed, leaving it
open to a denial-of-service attack

OS tools – Generation of an
Interrupt

Example: With hardware support the program could set the
bounds of every buffer and an interrupt would be generated if an
attempt was made to access or change memory outside of those
bounds

Pros:
Would prevent many buffer overflows if done properly

Cons:
Pointer arithmetic would still be unbounded as a pointer might
be pointing to an array of 100 bytes, and array of 50 bytes,
or to the 40th byte of an array of 50 bytes
Programmers would still have to be educated about buffer
overflows because they need to write an interrupt handler to
do what they want it to (halt, truncate the buffer, ask the
user for different input?)

