
1

1

Basic Cryptography

Introduction
Cryptographic Building Blocks
Key Management Issues
Software interfaces to cryptographic 

primitives

2

Introduction

Definition 
Cryptography is the scientific study of 
mathematical techniques relating to 
information security

Goals of cryptography:
message confidentiality (= privacy, secrecy)
message integrity
message or entity authentication
non repudiation



2

3

Cryptographic Primitives
Introduction
Cryptographic Building Blocks
Key Management Issues
Software interfaces to cryptographic 
primitives

4

Cryptographic Building 
Blocks

Symmetric cryptography
Public-key cryptography
Hash functions

Unkeyed hash functions
Message Authentication Codes (MAC’s)

Digital signatures
Secure random numbers



3

5

Symmetric Cryptography

E Dciphertextplaintext plaintext

secret key secret key
Alice Bob

• NOTE: Algorithm secrecy ↔ key secrecy

6

Cryptanalytic Attacks
Algorithm should be secure against

Ciphertext-only attack
Find k or plaintext given only ciphertext.

Known-plaintext attack
Find k given 〈M1, C1〉, 〈M2, C2〉, ...

Chosen-plaintext attack
Known-plaintext, but adversary chooses M1, M2, ...

Chosen-ciphertext
Known-plaintext, but adversary chooses C1, C2, ...

Security depends on:
Algorithm: use well-known algorithms
Key-length: longer keys improve security



4

7

Block and stream ciphers
Block ciphers encrypt fixed-size input 
blocks

Padding may be necessary.
Different modes of operation on arbitrary 
sized streams (see next slide)
Block size influences security of the cipher

Stream ciphers can encrypt bit-by-bit
e.g. one-time-pad
Key stream generators

8

Encryption modes (block ciphers)

Electronic Codebook (ECB)

Cipher Block Chaining (CBC)

M1

Ek

C1

M2

Ek

C2

...

Ek

C1

...

⊕

M1

IV

Ek

C2

⊕

M2



5

9

Real-world Algorithms

DES (Data Encryption Standard)
Designed by IBM in 1970’s, influenced by NSA
64-bit blocks, 56-bit key (too short nowadays)

Triple DES
Three DES encryptions with independent keys

AES (Advanced Encryption Standard) / 
Rijndael

Made in Belgium
Variable key/block length (128, 192 or 256 bits)

RC4
Proprietary stream cipher of RSA Labs

10

Public-key Cryptography

E Dciphertextplaintext plaintext

Bob’s public key Bob’s private key
Alice Bob

P S

• Key generation algorithm
• Should be secure against the same attacks as symmetric 

encryption 
• Easier key management but slower



6

11

Public-key Cryptography

Public-key ciphers are all block ciphers
Block size is much larger than for 
symmetric ciphers
Typically only single block encryption to 
encrypt a symmetric key
Padding is more elaborate to deal with small 
message space attacks

Randomization of the plaintext

12

Real-world Algorithms
RSA (Rivest, Shamir, Adleman)

Widely used: de facto standard for public-key cryptography
Variable key length
Based on problem of factoring large integers

ECC (Elliptic Curve Cryptography)
For wireless and embedded environments

Others exist but not frequently used
e.g. Rabin, ElGamal, ...

Padding algoritms
PKCS#1 v1.5
OAEP



7

13

Notational Conventions

Notation for keys:
Symmetric key: K, KAB

A’s public key: PKA

A’s private key: SKA

Notation for encryption:
ciphertext = {plaintext}K
ciphertext = {plaintext}PK

P
S

14

Hash Functions

Definition
Maps arbitrary strings on fixed-length hash 
values
“Fingerprint” of message
AKA  Message Digest

Cryptographic hash functions are:
One way
Collision resistant

Two flavors: keyed (MAC’s) and unkeyed



8

15

Unkeyed Hash Functions

One way:
Easy to compute hash value for message
Hard to find message with specific hash value

Collision resistant:
Hard to find second message with same hash value

Used for detecting unauthorized changes
e.g. Detection of virus infection

H hash value
(fixed length)

message
(any length)

16

Message Authentication Codes

Properties:
One way
Collision resistant
Protected by secret key:

Computing and checking impossible without key

Used for message integrity check

secret key

MAC MAC value
(fixed length)

message
(any length)



9

17

Real-world Algorithms

Unkeyed hash functions:
SHA-1 (Secure Hash Algorithm)

Designed by NSA
Arbitrary-length input → 160-bit output

MD-5 (Message Digest)
By Ron Rivest
Arbitrary-length input → 128-bit output

MAC’s:
Any symmetric encryption of any hash function
Using only hash functions: MACk(M) = H(k,M),
or better: H-MAC turns any unkeyed hash in a MAC
DES-CBC-MAC: the last block of a CBC encryption

18

Digital Signatures

Key generation algorithm
Digital signatures provide:

Message origin authentication
Non repudiation

Sign Verifymessage
+

signature
message OK / Reject

Alice’s private key Alice’s public key
Alice Bob

PS



10

19

Digital Signatures
Digital signatures also operate on fixed size 
input blocks

Padding is necessary but has completely 
different requirements than padding for 
encryption

E.g. no randomization
To sign arbitrary sized messages

Sign a hash of the message
Standardized signature schemes specify how 
hashing and padding must be used

20

Real-world Algorithms
RSA

Public key and private key are interchangeable
Signature = encryption with private key
Verification = decryption with public key

DSA (Digital Signature Algorithm)
Designed by NSA
Key length from 512 to 1024 bits

Elliptic curve variant of DSA (ECDSA)



11

21

Notational Conventions

MAC’s:
MAC value = [message]K

Digital Signatures:
signature = [message]SK

22

Secure Random Numbers

True randomness is slow to obtain:
physical processes: noise diode, coin tosses, …
timing user interface events

Solution: Pseudo-Random Generators
John von Neumann: “Anyone who considers 
arithmetical methods of producing random 
digits is, of course, in a state of sin”
generate many (seemingly) random numbers 
starting from one seed



12

23

Secure Random Numbers

Importance of random number generation:
Generating cryptographic keys
Generating “challenges” in cryptographic 
protocols

Cryptographically secure randomness
Passes all statistical tests of randomness
Impossible to predict next bit from previous 
output bits

Do not use a built-in random generator that 
uses an unknown algorithm!

24

Conclusions

Designing cryptographic primitives is 
extremely hard

never try to design your own algorithms, 
use well-known algorithms

Implementing cryptographic 
primitives is extremely hard

whenever possible, use a crypto library 
or API from a reputable vendor



13

25

Cryptographic Primitives
Introduction
Cryptographic Building Blocks
Key Management Issues

Generating keys
Key length
Storing keys
Key establishment

Software interfaces to cryptographic 
primitives

26

Generating Keys
Algorithm security = key secrecy
Key should be hard or impossible to 
guess

Human password → dictionary attack!
Better: hash of entire pass-phrase
Machine-generated → use cryptographically 
secure pseudo-random generator



14

27

Trade-off: information value ↔ cracking cost
Symmetric algorithms

$1 000 000 investment in VLSI-implementation

Public-key algorithms

Key Length

1017 years10 days1 hour
128 bits64 bits56 bits

2048153612802010

2048153612802005

1536128010242000

vs. 
Government

vs. 
Corporation

vs. IndividualYear

28

Storing Keys
Simplest: human memory

Remember key itself
Key generated from pass-phrase

Use Operating System access control
Key embedded in chip on smart card
Storage in encrypted form

Key encryption keys ↔ data encryption keys
Limit key lifetime depending on

Value of the data
Amount of encrypted data



15

29

Key Establishment

Key agreement = Two parties compute 
a secret key together

E.g. Diffie – Hellman protocol
Key distribution or transport = One 
party generates a key and distributes 
it in a secure way to all authorized 
parties

30

Key Distribution
Using symmetric encryption

Trusted party: Key Distribution Center (KDC)
General idea ( oversimplified: )

KDC
Ka, Kb

Alice Bob

Bob?

{K}KA, {K}KB

{K}KB



16

31

Key Distribution
Using public-key encryption

No need for KDC?

Alice Bob
S

Public key?

P
PKB

{M}PKB

– Man-in-the-middle attack!

32

Man-in-the-middle attack

How can Alice be sure she got Bob’s public 
key?

Solution: Certificates
Public Key Infrastructure (PKI)

Alice Bob
S

Public key?

{M}PKE

Public key?
PKE

P
Eve

S {M}PKB

PKB

P

M!



17

33

Cryptographic Primitives
Introduction
Cryptographic Building Blocks
Key Management Issues
Software interfaces to cryptographic 
primitives

34

Overview
Design principles of modern API’s: 
Cryptographic Service Providers (CSP’s)
The Java Cryptography Architecture 
and Extensions  (JCA/JCE)
The .NET cryptographic library



18

35

Design principles
Algorithm independence

Engine classes
Implementation independence

Provider based architecture
Implementation interoperability

Transparent and opaque data types

Bottom line: security mechanisms should be 
easy to change over time

36

Basic Architecture



19

37

Engine classes
Abstraction for a cryptographic service

interface between JCA and the actual 
implementation of the service classes
Provide cryptographic operations
Generate/supply cryptographic material
Generate objects encapsulating 
cryptographic keys

Define the Cryptographic API
Bridge pattern or inheritance hierarchy to 
allow for implementation independence
Instances created by factory method

38

Bridge pattern



20

39

Inheritance based 
decoupling

MessageDigest

update(byte[] input): void
digest() : byte[]

…

return SHA1.digestSize

getDigestSize() : int

SHA1

update(byte[] input): void
digest() : byte[]

…
getDigestSize() : int

Md5

update(byte[] input): void
digest() : byte[]

…
getDigestSize() : int

SHA1-Impl2

update(byte[] input): void
d igest() : byte[]

…
getDigestSize() : int

SHA1-Impl1

update(byte[] input): void
digest() : byte[]

…
getDigestSize() : int

40

Opaque vs transparent data
Representation of data items like keys, 
algorithm parameters, initialization vectors:

Opaque: chosen by the implementation object
Transparent: chosen by the designer of the 
cryptographic API

Transparent data allow for implementation 
interoperability
Opaque data allow for efficiency or hardware 
implementation



21

41

Crypto frameworks and 
CSP’s

A cryptographic framework defines:
Engine classes (and possibly algorithm classes)
Transparent key and parameter classes
Interfaces for opaque keys and parameters

A cryptographic service provider defines:
Implementation classes
Opaque key and parameter classes
Possibly methods to convert between opaque 
and transparent data

42

Example
JCA implements a class, for example message 
digest, 
We know what a message digest is, but just 
having a generic message digest does not tell us 
anything 
The cryptographic service provider implements 
the actual algorithm, such as MD5 or SHA-1 
JCA implements the generic class
The service provider implements the actual 
algorithm or type of cryptographic service that 
will be used 



22

43

The JCA/JCE
Java Crypto API structured as a 
cryptographic framework with CSP’s
Split in:

The Java Cryptography Architecure
(JCA)
The Java Cryptography Extensions 
(JCE)

This split is because of US export-
control regulations for cryptography

44

US Export Restrictions

US consider crypto software as munitions
→ export controls
→ no internal or import controls

Before January 2000
Export of strong encryption products (> 40 bits) 
forbidden

Download is form of export!
No restrictions on authentication products

Since January 2000: relaxed
Exception License needed for export

Received after technical review by NSA
Still forbidden to “Terrorist-7” countries



23

45

Engine classes (JCA)

MessageDigest
hash functions

Signature
SecureRandom
KeyPairGenerator

generate new key pairs
KeyFactory

convert existing keys

CerticateFactory
generate certificates 
from encoded form

KeyStore
database of keys

AlgorithmParameters
AlgorithmParameter-
Generator

java.security.*

46

Engine classes (JCE)

Cipher
encryption, decryption

Mac
KeyGenerator

generate new symmetric keys

SecretKeyFactory
convert existing keys

KeyAgreement

javax.crypto.*



24

47

Key Classes
Opaque 

Representation
No direct access to 
key material
Encoded in provider-
specific format
java.security.Key

Transparent 
Representation

Access each key material 
value individually
Provider-independent 
format
java.security.KeySpec

y = …
p = …
q = …
g = …

KeyFactory

48

Parameter Classes
Opaque 

Representation
No direct access to 
parameter fields
Encoded in provider-
specific format
AlgorithmParameters

Transparent 
Representation

Access each parameter 
value individually
Provider-independent 
format
AlgorithmParameterSpec

g = …
p = …
q = …

getParameterSpec()

init(paramSpec)



25

49

Overall structure of the 
framework

Security class encapsulates configuration 
information (what providers are installed)
Per provider, an instance of the provider class 
contains provider specific information (e.g. 
what algorithms are implemented in what 
classes)
Factory method on the engine class interacts 
with the Security class and provider objects to 
instantiate a correct implementation object

50

Example: creating ciphers

application : Cipher

1: getInstance("DES/CBC/PKSC5Padding", "IAIK")

Security

IAIK : Provider

2: getProvider("IAIK")

3: getProperty("Cipher.DES")

des : CipherSpi

4: CipherSpi( )

5: engineSetMode("CBC")

6: engineSetPadding("PKCS5Padding")



26

51

Additional support and 
convenience classes

Secure streams
For easy bulk encryption and decryption

Signed objects
Integrity checked serialized objects

Sealed objects
Confidentiality protected serialized objects

Working with certificates
Keystores

52

• Combination of Stream and Cipher object
• CipherInputStream

• CipherOutputStream

Secure Streams

Ciphertext CipherInputStream Cleartext

Cipher

Cleartext CipherOutputStream Ciphertext

Cipher



27

53

Secure Objects

Object

SignedObject

Objectserialization

Signature

Object

SealedObject

Ciphertextserialization

Cipher

• Signed objects
– Authenticated
– Integrity checked

• Sealed objects
– Encrypted

54

Working with Certificates
JCA/JCE does not have built-in support 
for generating new certificates

On purpose? (to make it harder for end-
users to act as CA)

Various commercial Java libraries 
implementing certificate generation on 
top of JCA/JCE are available

E.g. Baltimore KeyTools



28

55

Keystores
Repository of

Secret keys (encrypted and integrity checked)
Private keys (encrypted and integrity checked)
Trusted certificates (integrity checked)

KeyStore engine class
Access and modify keystore
Different types:

JKS: built-in default by Sun
weak cryptography

JCEKS: included in JCE
strong cryptography

56

JCA/JCE code examples
Encryption
Key factories and generation
Digital signatures



29

57

Encryption Example

Generate random session key
KeyGenerator keyGen =

KeyGenerator.getInstance(“DES”, “SUN”);

SecretKey sKey = keyGen.generateKey();

Create and initialize cipher
Cipher cipher = 

Cipher.getInstance(“DES/CBC/PKCS5Padding”);

cipher.init(Cipher.ENCRYPT_MODE, sKey);

58

Encryption example (cont.)

Encrypt data (single stage)
cipherText = cipher.doFinal(clearText);

Encrypt data (multi stage)
while  ( <more bytes> ) {

// produce clearText

cipherText = cipher.update(clearText);   }

cipherText = c.doFinal();



30

59

Key Factory Example
Create transparent key
BigInteger y = …;  BigInteger p = …;

BigInteger q = …;  BigInteger g = …;

DSAPublicKeySpec spec = new DSAPublicKeySpec(y, p, q, g);

Convert to opaque key
KeyFactory kfac = KeyFactory.getInstance("DSA");

PublicKey dsaPubKey = kfac.generatePublic(spec);

And back to transparent
PublicKeySpec spec2 = 

kfac.getKeySpec(dsaPubKey, DSAPublicKeySpec.class)

60

Key Pair Generator 
Example

Create key pair generator
KeyPairGenerator keyGen = 

KeyPairGenerator.getInstance(“DSA”);

Algorithm-independent initialization
keyGen.initialize(1024);

Algorithm-specific initialization
p = …; q = …; g = …;

DSAParameterSpec dsaSpec = new DSAParameterSpec(p, q, g);

keyGen.initialize(dsaSpec);

Generate key pair
KeyPair dsaPair = keyGen.generateKeyPair();



31

61

Signing and Verifying 
Example

Create and initialize signature object
Signature signEngine = Signature.getInstance(“SHA1withDSA”);
PrivateKey priv = dsaPair.getPrivate();
signEngine.initSign(priv);

Sign data
signEngine.update(data);
byte[] signature = signEngine.sign();

Verify signature
PublicKey pub = dsaPair.getPublic();
signEngine.initVerify(pub);
signEngine.update(data);
boolean valid = signEngine.verify(signature);

62

Working with Certificates
Reading in an encoded X.509 certificate:
CertificateFactory cf = 

CertificateFactory.getInstance("X.509");
X509Certificate cert = 

(X509Certificate)cf.generateCertificate(inStream);
inStream.close();

Verifying a certificate:
cert.verify(publickey); // LIMITED verification!!!

Accessing certificate information:
System.out.println(cert.getSubjectDN());
PublicKey pk = cert.getPublicKey();



32

63

Overview

Design principles of modern API’s: 
Cryptographic Service Providers 
(CSP’s)
The Java Cryptography Architecture 
and Extensions  (JCA/JCE)
The .NET cryptographic library

64

The .NET cryptographic 
library

CSP based library that uses inheritance based 
decoupling
Bulk data processing algorithms are all made 
available as ICryptoTransforms
Essentially 2 methods: TransformBlock() and 
TransformFinalBlock()

ICryptoTransformInput block Output block



33

65

ICryptoTransform and 
CryptoStream

ICryptoTransforms can wrap streams
E.g. (in read mode)

Resulting stream

Wrapped stream

ICryptoTransform

66

Bulk data engine classes
SymmetricAlgorithm, with algorithm 
classes

TripleDES, DES, Rijndael, …
HashAlgorithm, with algorithm classes

SHA1, MD5, …
KeyedHashAlgorithm, with algorithm 
classes

HMACSHA1, MACTripleDES, …



34

67

Asymmetric engine classes
Generic AsymmetricAlgorithm engine class

RSA and DSA algorithm classes
Specialized engine classes for typical uses of 
asymmetric cryptography, that take care of 
padding and formatting

AsymmetricKeyExchangeFormatter
AsymmetricSignatureFormatter

In current version, asymmetric crypto is 
delegated to Windows CryptoAPI

68

Engine classes for key 
generation

RandomNumberGenerator
For generating secure random numbers

DeriveBytes
For deriving key material from passwords



35

69

Other functionality in the 
.NET cryptographic library

Facilities for interacting with Windows 
CryptoAPI

To manage CryptoAPI Key containers manually
To call extended functionality in CryptoAPI 2.0

Configuration mechanism
The factory methods that create engine classes are 
driven by a configuration file that can be edited to 
change default algorithms and implementations

On top of the .NET crypto API, an 
implementation of XML Digital Signatures is 
provided

70

.NET code examples

Symmetric encryption and 
CryptoStreams
Digital signatures



36

71

Symmetric encryption
Creating an encrypting CryptoStream

Now, just writing to the stream will encrypt
Decryption is similar

SymmetricAlgorithm cipher = SymmetricAlgorithm.Create();

FileStream outStream = 
new FileStream(filename + ".enc", FileMode.Create);

CryptoStream encOutStream = new CryptoStream
(outStream, cipher.CreateEncryptor(),
CryptoStreamMode.Write);

72

Digital Signatures
Signing:

AsymmetricAlgorithm cipher = DSA.Create();

AsymmetricSignatureFormatter asf = 
new DSASignatureFormatter(cipher);

SHA1 sha1 = SHA1.Create();

FileStream inStream = 
new FileStream(filename, FileMode.Open);

byte[] sig = 
asf.CreateSignature(sha1.ComputeHash(inStream));



37

73

Digital Signatures
Verifying:

AsymmetricAlgorithm cipher = DSA.Create();
// String pubkey contains XML representation of public key
cipher.FromXmlString(pubkey);

AsymmetricSignatureDeformatter asd = 
new DSASignatureDeformatter(cipher);

SHA1 sha1 = SHA1.Create();

FileStream inStream3 = 
new FileStream(filename, FileMode.Open);

byte[] hash = sha1.ComputeHash(inStream3);

if (asd.VerifySignature(hash,sig)) 
Console.WriteLine("Signature OK!"); 

74

Conclusion
Cryptographic mechanisms should be used 
in such away that they are easy to evolve

To deal with implementation errors
To deal with algorithms being broken

By structuring a library around CSP’s, 
this can be achieved
Java and .NET both offer a CSP based 
library with similar functionalities


