B Basic Cryptography

sIntroduction
=Cryptographic Building Blocks
=Key Management Issues

sSoftware interfaces to cryptographic
primitives

:-L Introduction

= Definition
= Cryptography is the scientific study of
mathematical techniques relating to
information security

= Goals of cryptography:

message confidentiality (= privacy, secrecy)
message integrity

message or entity authentication

non repudiation

* Cryptographic Primitives

= Cryptographic Building Blocks

Cryptographic Building
Blocks

= Symmetric cryptography
= Public-key cryptography
= Hash functions

= Unkeyed hash functions
= Message Authentication Codes (MAC's)

= Digital signatures
= Secure random numbers

i Symmetric Cryptography

Alice Bob
secret key secret key

D

D
plaintext q E ‘ciphertext q D qplaintext

* NOTE: Algorithm secrecy <> key secrecy

Cryptanalytic Attacks

= Algorithm should be secure against
= Ciphertext-only attack
= Find kor plaintext given only ciphertext.
= Known-plaintext attack
= Find kgiven (M, &), (M,, &), ...
= Chosen-plaintext attack
= Known-plaintext, but adversary chooses M;, M,, ...
= Chosen-ciphertext
= Known-plaintext, but adversary chooses ¢, &, ...
= Security depends on:
= Algorithm: use well-known algorithms
= Key-length: longer keys improve security

:-L Block and stream ciphers

= Block ciphers encrypt fixed-size input

blocks

= Padding may be necessary.

= Different modes of operation on arbitrary

sized streams (see next slide)

= Block size influences security of the cipher
= Stream ciphers can encrypt bit-by-bit

= e.g. one-time-pad

= Key stream generators

iEncr'yp’rion modes (block ciphers)

Ml MZ
= Electronic Codebook (ECB)
C, c,

= Cipher Block Chaining (CBC) '1"1 '1"2
IV—®@

C C,

i Real-world Algorithms

= DES (Data Encryption Standard)
= Designed by IBM in 1970's, influenced by NSA
= 64-bit blocks, 56-bit key (too short nowadays)

= Triple DES
= Three DES encryptions with independent keys

= AES (Advanced Encryption Standard) /
Rijndael

= Made in Belgium
= Variable key/block length (128, 192 or 256 bits)

= RC4
= Proprietary stream cipher of RSA Labs

Public-key Cryptography

Alice . . Bob
Bob’s public key Bob’s private key

plaintext q E qciphertext q D qplaintext

» Key generation algorithm

» Should be secure against the same attacks as symmetric
encryption

« Easier key management but slower 1

:-L Public-key Cryptography

= Public-key ciphers are all block ciphers
= Block size is much larger than for
symmeftric ciphers

= Typically only single block encryption to
encrypt a symmetric key
= Padding is more elaborate to deal with small
message space attacks
= Randomization of the plaintext

11

i Real-world Algorithms

= RSA (Rivest, Shamir, Adleman)

= Widely used: de facto standard for public-key cryptography
= Variable key length
= Based on problem of factoring large integers

ECC (Elliptic Curve Cryptography)
= For wireless and embedded environments

Others exist but not frequently used
= e.g. Rabin, ElGamal, ...

Padding algoritms

= PKCS#1v15
=« OAEP

12

i Notational Conventions

= Notation for keys:
= Symmetric key: K, K,g =D
= A's public key: PK,
= A's private key: SK, 29
= Notation for encryption:
= ciphertext = {plaintext}K
= ciphertext = {plaintext}PK

13

:_L Hash Functions

= Definition

= Maps arbitrary strings on fixed-length hash

values
= "Fingerprint” of message
= AKA Message Digest
= Cryptographic hash functions are:

= One way
= Collision resistant

= Two flavors: keyed (MAC's) and unkeyed

14

i Unkeyed Hash Functions

message
(any length) q

H q hash value
(fixed length)

= One way:

= Easy to compute hash value for message
= Hard to find message with specific hash value

= Collision resistant:

= Hard to find second message with same hash value
= Used for detecting unauthorized changes
= e.g. Detection of virus infection

15

i Message Authentication Codes

secret key

1 1

message
(any length) q

MAC value
MAC ‘ (fixed length)

= Properties:
= One way
= Collision resistant

= Protected by secret key:
= Computing and checking impossible without key

= Used for message integrity check

16

i Real-world Algorithms

= Unkeyed hash functions:

= SHA-1 (Secure Hash Algorithm)

= Designed by NSA

= Arbitrary-length input — 160-bit output
= MD-5 (Message Digest)

= By Ron Rivest

= Arbitrary-length input — 128-bit output

= MAC's:
= Any symmetric encryption of any hash function
= Using only hash functions: MAC (M) = H(AM),
or better: H-MAC turns any unkeyed hash in a MAC
= DES-CBC-MAC: the last block of a CBC encryption

17

Digital Signhatures
E

Alice . . Bob
Alice’s private key Alice’s public key

£29
message q Slgn q g:;gjfrzqﬂoK/Reject

= Key generation algorithm

= Digital signatures provide:
= Message origin authentication
= Non repudiation

18

i Digital Signatures

= Digital signatures also operate on fixed size
input blocks
= Padding is necessary but has completely
different requirements than padding for
encryption
= E.g. no randomization
= To sign arbitrary sized messages
= Sign a hash of the message
= Standardized signature schemes specify how
hashing and padding must be used

19

:.L Real-world Algorithms

= RSA
= Public key and private key are interchangeable
= Signature = encryption with private key
= Verification = decryption with public key
= DSA (Digital Signature Algorithm)
= Designed by NSA
= Key length from 512 to 1024 bits

= Elliptic curve variant of DSA (ECDSA)

20

10

i Notational Conventions

= MAC's:

= MAC value = [message]K
= Digital Signatures:

= signature = [message]SK

21

i Secure Random Numbers

= True randomness is slow to obtain:
= physical processes: noise diode, coin tosses, ...
= timing user interface events
= Solution: Pseudo-Random Generators
= John von Neumann: " Anyone who considers
arithmetical methods of producing random
digits is, of course, in a state of sin'
= generate many (seemingly) random numbers
starting from one seed

22

11

:_L Secure Random Numbers

= Importance of random number generation:
= Generating cryptographic keys
= Generating "challenges” in cryptographic
protocols
= Cryptographically secure randomness
= Passes all statistical tests of randomness
= Impossible to predict next bit from previous
output bits
= Do not use a built-in random generator that
uses an unknown algorithm!

23

:-L Conclusions

= Designing cryptographic primitives is
extremely hard

= hever try to design your own algorithms,
use well-known algorithms

= Implementing cryptographic
primitives is extremely hard

= whenever possible, use a crypto library
or API from a reputable vendor

24

12

i Cryptographic Primitives

+ = Key Management Issues
= Generating keys
= Key length
= Storing keys
= Key establishment

25

i Generating Keys

= Algorithm security = key secrecy

= Key should be hard or impossible to
guess
= Human password — dictionary attack!
= Better: hash of entire pass-phrase

= Machine-generated — use cryptographically
secure pseudo-random generator

26

13

i Key Length

= Trade-off: information value <> cracking cost

= Symmeftric algorithms
= $1000 000 investment in VLSI-implementation

56 bits 64 bits 128 bits
1 hour 10 days 107 years
= Public-key algorithms
Year vs. Individual vs. vs.
Corporation Government
2000 1024 1280 1536
2005 1280 1536 2048
2010 1280 1536 2048 2

i Storing Keys

= Simplest: human memory

= Remember key itself

= Key generated from pass-phrase

Use Operating System access control
Key embedded in chip on smart card
Storage in encrypted form

= Key encryption keys <> data encryption keys
Limit key lifetime depending on

= Value of the data

= Amount of encrypted data

28

14

i Key Establishment

= Key agreement = Two parties compute
a secret key fogether
= E.g. Diffie - Hellman protocol

= Key distribution or transport = One
party generates a key and distributes
it in a secure way to all authorized
parties

29

i Key Distribution

= Using symmetric encryption
= Trusted party: Key Distribution Center (KDC)
= General idea (oversimplified:)

KDC

Bob? e
{K}IKA, {K}Kg

Alice Bob
{K}Kg

30

15

i Key Distribution

= Using public-key encryption
= No need for KDC?

Public ke

Alice Bob
22) G 29

— Man-in-the-middle attack!

31

i Man-in-the-middle attack

Public key? Public key?
Alice PKe Eve PKg Bob
Peo {MIPKe By Sq {MIPKg)
M1
= How can Alice be sure she got Bob's public

key?
= Solution: Certificates
Public Key Infrastructure (PKT)

32

16

i Cryptographic Primitives

« = Software interfaces to cryptographic
primitives

33

i Overview

= Design principles of modern APT's:
Cryptographic Service Providers (CSP's)

= The Java Cryptography Architecture
and Extensions (JCA/JCE)

= The .NET cryptographic library

34

17

i Design principles

= Algorithm independence
» £Engine classes

= Implementation independence
= Provider based architecture

= Implementation interoperability
= Transparent and opague data types

Bottom line: security mechanisms should be
easy to change over time 35

i Basic Architecture

* Provider based architecture

18

i Engine classes

= Abstraction for a cryptographic service
= interface between JCA and the actual
implementation of the service classes
= Provide cryptographic operations
= Generate/supply cryptographic material
= Generate objects encapsulating
cryptographic keys
= Define the Cryptographic APT
= Bridge pattern or inheritance hierarchy to
allow for implementation independence

= Instances created by factory method

37

Bridge pattern

MessageDigest

update(byte[] input): void

digest() : byte[] © retum imp->

digest_imp()
[imp

MessageDigestimpl

update_imp(byte[] input): void
digest_ imp() : byte]]

38

19

Inheritance based
i decoupling

MessageDigest

update(byte[] input): void

digest() : byte[]
getDigegdze(): int

\ \

Md5 SHAL
update(byte[] input): void update(byte[] input): void
digest() : byte[] digest() : byte[]
getDigestSze() : int getDigestSze() : int © R
retum SHAL .dige stSze
\ I
SHAL-Impll SHAL-Impl2

update (byte[] input): void update(byte[] input): void

digest() : byte[] digest() : byte[]

getDigestSze() : int getDigestSze() : int 39

i Opaque vs transparent data

= Representation of data items like keys,
algorithm parameters, initialization vectors:

= Opaque: chosen by the implementation object

= Transparent: chosen by the designer of the
cryptographic API
= Transparent data allow for implementation
interoperability
= Opaque data allow for efficiency or hardware
implementation

40

20

Crypto frameworks and

:-L CSP's

= A cryptographic framework defines:
= Engine classes (and possibly algorithm classes)
= Transparent key and parameter classes
= Interfaces for opaque keys and parameters
s A cryptographic service provider defines:
= Implementation classes
= Opaque key and parameter classes
= Possibly methods to convert between opaque
and transparent data

41

Example

= JCA implements a class, for example message
digest,

= We know what a message digest is, but just
having a generic message digest does not tell us
anything

= The cryptographic service provider implements
the actual algorithm, such as MD5 or SHA-1

= JCA implements the generic class

= The service provider implements the actual
algorithm or type of cryptographic service that
will be used

42

21

The JCA/JCE

= Java Crypto APT structured as a
cryptographic framework with CSP's
= Split in:
= The Java Cryptography Architecure
(JCA)
= The Java Cryptography Extensions
(JCE)
= This split is because of US export-
control regulations for cryptography

43

US Export Restrictions

= US consider crypto software as munitions
— export controls
— no internal or import controls
= Before January 2000
= Export of strong encryption products (> 40 bits)
forbidden
= Download is form of export!
= No restrictions on authentication products
= Since January 2000: relaxed
= Exception License needed for export
= Received after technical review by NSA
» Still forbidden to "Terrorist-7" countries

44

22

i Engine classes (JCA)

java.security.*

= MessageDigest = CerticateFactory
hash functions generate certificates
= Signature from encoded form
= SecureRandom = KeyStore
= KeyPairGenerator database of keys
generate new key pairs ® AlgorithmParameters
= KeyFactory = AlgorithmParameter-
Generator

convert existing keys

45

iEngine classes (JCE)

javax.crypto.*
= Cipher
encryption, decryption

= Mac

KeyGenerator
generate new symmetric keys

SecretKeyFactory
convert existing keys

KeyAgreement

46

23

i Key Classes

Opaque
Representation

= No direct access to
key material

= Encoded in provider-
specific format

= java.security.Key

Y (!KeyFactory -
K f ; 0 = 8
=" ..

Transparent
Representation

= Access each key material
value individually

= Provider-independent
format

= java.security.KeySpec

= ... 4

i Parameter Classes

Opaque
Representation

= No direct access to -

parameter fields

= Encoded in provider- E

specific format

= AlgorithmParameters o

Transparent

Representation
Access each parameter
value individually
Provider-independent
format
AlgorithmParameterSpec

48

24

Overall structure of the
i framework

= Security class encapsulates configuration
information (what providers are installed)

= Per provider, an instance of the provider class
contains provider specific information (e.g.
what algorithms are implemented in what
classes)

= Factory method on the engine class interacts
with the Security class and provider objects to
instantiate a correct implementation object

49

Example: creating ciphers

i 2: getProvider("1AIK"

1: getinstance("DES/CBC/PKSC5Padding"”, "IAIK") /

—

4: CipherSpi() l

Security

3: getProperty("Cipher.DES"™)

5: engineSetMode("CBC") l

IAIK : Provider

6: engineSetPadding("PKCS5Padding™) l

des : CipherSpi

50

Additional support and
i convenience classes

= Secure streams

= For easy bulk encryption and decryption
Sighed objects

= Integrity checked serialized objects
Sealed objects

= Confidentiality protected serialized objects
Working with certificates

Keystores

51

i Secure Streams

* Combination of Stream and Cipher object
e CipherlnputStream

CipherOutputStream

e CipherOutputStream

CipherlnputStream

26

Secure Objects

- Signed objects
- Authenticated
- Integrity checked

SignedObiject

Object || serialization

- Sealed objects
- Encrypted

SealedObject

Object || serialization

53

:-L Working with Certificates

= JCA/JCE does not have built-in support
for generating new certificates
= On purpose? (to make it harder for end-
users to act as CA)
= Various commercial Java libraries
implementing certificate generation on
top of JCA/JCE are available

= E.g. Baltimore KeyTools

54

27

i Keystores

= Repository of
= Secret keys (encrypted and integrity checked)
= Private keys (encrypted and integrity checked)
= Trusted certificates (integrity checked)

= KeyStore engine class
= Access and modify keystore
= Different types:
= JKS: built-in default by Sun
weak cryptography
= JCEKS: included in JCE
strong cryptography

55

i JCA/JCE code examples

= Encryption
= Key factories and generation
= Digital signatures

56

28

i Encryption Example

= Generate random session key

KeyGenerator keyGen =
KeyGenerator.getlnstance(“DES”, “SUN");
SecretKey sKey = keyGen.generateKey();

= Create and initialize cipher

Cipher cipher =
Cipher.getlnstance(“DES/CBC/PKCS5Padding”);
cipher.init(Cipher.ENCRYPT_MODE, sKey);

57

i Encryption example (cont.)

= Encrypt data (single stage)

cipherText = cipher.doFinal(clearText);

= Encrypt data (multi stage)

while (<more bytes>) {

cipherText = cipher.update(clearText); }
cipherText = c.doFinal();

58

29

Key Factory Example

= Create transparent key

Biginteger y = ...; Biglnteger p = ...;

Biginteger q = ...; Biglnteger g = ...;

DSAPublicKeySpec spec = new DSAPublicKeySpec(y, p, q, 9);
= Convert to opaque key

KeyFactory kfac = KeyFactory.getlnstance("DSA");
Publickey dsaPubKey = kfac.generatePublic(spec);

= And back to transparent

PublicKeySpec spec2 =

kfac.getKeySpec(dsaPubKey, DSAPublicKeySpec.class)
59

Key Pair Generator
Example

= Create key pair generator

KeyPairGenerator keyGen =
KeyPairGenerator.getlnstance(“DSA”);

= Algorithm-independent initialization
keyGen.initialize(1024);

= Algorithm-specific initialization
p=..;9=..;9=..;
DSAParameterSpec dsaSpec = new DSAParameterSpec(p, g, 9);
keyGen.initialize(dsaSpec);

= Generate key pair

KeyPair dsaPair = keyGen.generateKeyPair(); 60

30

Signing and Verifying
:.L Example

= Create and initialize signature object

Signature signEngine = Signature.getinstance(“SHAl1withDSA”);

PrivateKey priv = dsaPair.getPrivate();
signEngine.initSign(priv);

= Signh data

signEngine.update(data);
byte[] signature = signEngine.sign();

= Verify signature

PublicKey pub = dsaPair.getPublic();
signEngine.initVerify(pub);
signEngine.update(data);

boolean valid = signEngine.verify(signature);

61

:-L Working with Certificates

= Reading in an encoded X.509 certificate:
CertificateFactory cf =
CertificateFactory.getinstance("X.509");
X509Certificate cert =
(X509Certificate)cf.generateCertificate(inStream);
inStream.close();

= Verifying a certificate:
cert.verify(publickey); // LIMITED verification!!!

= Accessing certificate information:
System.out.printin(cert.getSubjectDN());
Publickey pk = cert.getPublicKey();

62

31

i Overview

% = The .NET cryptographic library

63

The .NET cryptographic

i library

s CSP based library that uses inheritance based
decoupling

= Bulk data processing algorithms are all made
available as ICryptoTransforms

= Essentially 2 methods: TransformBlock() and
TransformFinalBlock()

Input block l Output block

64

32

ICryptoTransform and
i CryptoStream

= ICryptoTransforms can wrap streams
E.g. (in read mode)

Resulting stream

65

i Bulk data engine classes

= SymmetricAlgorithm, with algorithm
classes

= TripleDES, DES, Rijndael, ...

s HashAlgorithm, with algorithm classes
= SHAL, MD5, ...

= KeyedHashAlgorithm, with algorithm
classes
= HMACSHA1, MACTripleDES, ..

66

33

i Asymmetric engine classes

= Generic AsymmetricAlgorithm engine class
= RSA and DSA algorithm classes

= Specialized engine classes for typical uses of
asymmeftric cryptography, that take care of
padding and formatting

= AsymmetricKeyExchangeFormatter
= AsymmetricSignatureFormatter

= In current version, asymmetric crypto is
delegated to Windows CryptoAPI

67

Engine classes for key
i generation

= RandomNumberGenerator
= For generating secure random numbers
= DeriveBytes
= For deriving key material from passwords

68

34

Other functionality in the
:-L NET cryptographic library

= Facilities for interacting with Windows
CryptoAPI
= To manage CryptoAPI Key containers manually
= To call extended functionality in CryptoAPI 2.0
= Configuration mechanism
= The factory methods that create engine classes are
driven by a configuration file that can be edited to
change default algorithms and implementations

= On top of the .NET crypto API, an
implementation of XML Digital Signatures is
provided

69

i NET code examples

= Symmetric encryption and
CryptoStreams

= Digital signatures

70

35

:-L Symmetric encryption

= Creating an encrypting CryptoStream
SymmetricAlgorithm cipher = SymmetricAlgorithm.Create();

FileStream outStream =
new FileStream(filename + ".enc", FileMode.Create);

CryptoStream encOutStream = new CryptoStream
(outStream, cipher.CreateEncryptor(),
CryptoStreamMode.Write);

= Now, just writing to the stream will encrypt
= Decryption is similar

71

i Digital Signatures

= Signing:
AsymmetricAlgorithm cipher = DSA.Create();

AsymmetricSignatureFormatter asf =
new DSASignatureFormatter(cipher);

SHA1 shal = SHA1.Create();

FileStream inStream =
new FileStream(filename, FileMode.Open);

byte[] sig =
asf.CreateSignature(shal.ComputeHash(inStream));

72

36

Digital Signhatures
= Verifying:

AsymmetricAlgorithm cipher = DSA.Create();
// String pubkey contains XML representation of public key
cipher.FromXmiString(pubkey);

AsymmetricSignatureDeformatter asd =
new DSASignatureDeformatter(cipher);
SHA1 shal = SHA1.Create();

FileStream inStream3 =
new FileStream(filename, FileMode.Open);
byte[] hash = shal.ComputeHash(inStream3);

if (asd.VerifySignature(hash,sig))
Console.WriteLine("Signature OKI™); 8

:-L Conclusion

= Cryptographic mechanisms should be used
in such away that they are easy to evolve

= To deal with implementation errors
= To deal with algorithms being broken

= By structuring a library around CSP's,
this can be achieved

= Java and .NET both offer a CSP based
library with similar functionalities

74

37

