Foundational Results

- Safety Question
- HRU Model
- Take-Grant Protection Model
- Expressive power
- Typed Access Matrix Model

What Is “Secure”?

- Giving a generic right r to a subject who did not initially possessed it is called “leaking”
- If a system S, beginning in initial state s_0, cannot leak right r, it is safe with respect to the right r.
- Leaking a right is not inherently bad
 - Legitimate transfer of rights by owner
- Safety Question
 - Does there exist an algorithm for determining whether a protection system S with initial state s_0 is safe with respect to a generic right r?
Formally:

- Given
 - initial state $X_0 = (S_0, O_0, A_0)$
 - Set of primitive commands c

- Can we reach a state X_n ($X_0 \vdash^* X_n$) where
 $\exists s \in S$ and $\exists o \in O$ such that $A_n[s,o]$ includes a right r not in $A_0[s,o]$?
 - If so, the system is not safe
 - But is a “safe” system a secure system?
 Are commands correctly implemented?

Trust

- Safety does not distinguish a leak of a right from an authorized transfer of rights
- Subjects authorized to receive transfer of rights deemed “trusted”
 - Eliminate trusted subjects from matrix
- Trivial cases of safety
 - $r = \text{read, own} \in a[s,o]$, command $\text{can\grant\read\if\own}$
 - No command includes the enter primitive command

How about the general case?
Mono-Operational Commands

- Answer: yes
- Sketch of proof:
 Consider minimal sequence of commands c_1, \ldots, c_k to leak the right.
 - Can omit delete, destroy
 - Can merge all creates into one (since new subjects are all equal)
- Worst case: insert every right into every entry; with s subjects and o objects initially, and n rights, upper bound is $k \leq n(s+1)(o+1)$

General Case

- Answer: no
- Sketch of proof:
 Reduce halting problem to safety problem
 Turing Machine review:
 - Infinite tape in one direction
 - States K, symbols M; distinguished blank b
 - Transition function $\delta(k, m) = (k', m', L)$ means in state k, symbol m on tape location replaced by symbol m', head moves to left one square, and enters state k'
 - Halting state is q_f: TM halts when it enters this state
Current state is k

After $\delta(k, C) = (k_1, X, R)$ where k is the current state and k_1 the next state
Command Mapping

\[\delta(k, C) = (k_1, X, R) \] at intermediate becomes

\[\text{command } c_{k,C}(s_3, s_4) \]
\[\text{if } \text{own in } A[s_3, s_4] \text{ and } k \text{ in } A[s_3, s_3] \]
\[\text{and } C \text{ in } A[s_3, s_3] \]
\[\text{then} \]
\[\text{delete } k \text{ from } A[s_3, s_3]; \]
\[\text{delete } C \text{ from } A[s_3, s_3]; \]
\[\text{enter } X \text{ into } A[s_3, s_3]; \]
\[\text{enter } k_1 \text{ into } A[s_4, s_4]; \]
\[\text{end} \]

Mapping

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>X</td>
<td>Y</td>
<td>b</td>
</tr>
</tbody>
</table>

After \(\delta(k_1, D) = (k_2, Y, R) \) where \(k_1 \) is the current state and \(k_2 \) the next state.

<table>
<thead>
<tr>
<th>s_1</th>
<th>s_2</th>
<th>s_3</th>
<th>s_4</th>
<th>s_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>A</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_2</td>
<td>B</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_3</td>
<td>X</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_4</td>
<td></td>
<td>Y</td>
<td>own</td>
<td></td>
</tr>
<tr>
<td>s_5</td>
<td></td>
<td></td>
<td></td>
<td>b k_2 end</td>
</tr>
</tbody>
</table>
Command Mapping

\[\delta(k_1, D) = (k_2, Y, R) \text{ at end becomes} \]

```plaintext
command crightmost_{k, c}(s_4, s_5)
if end in A[s_4, s_4] and k_1 in A[s_4, s_4] and D in A[s_4, s_4]
then
delete end from A[s_4, s_4];
create subject s_5;
enter own into A[s_4, s_5];
enter end into A[s_5, s_5];
delete k_1 from A[s_4, s_4];
delete D from A[s_4, s_4];
enter Y into A[s_4, s_5];
enter k_2 into A[s_5, s_5];
end
```

Rest of Proof

- Protection system exactly simulates a TM
 - Exactly 1 *end* right in ACM
 - 1 right in entries corresponds to state
 - Thus, at most 1 applicable command
- If TM enters state *q_f*, then right has leaked
- If safety question decidable, then represent TM as above and determine if *q_f* leaks
 - Implies halting problem decidable
- Conclusion: safety question undecidable
Other Results

- Set of unsafe systems is recursively enumerable
- Delete `create` primitive; then safety question is complete in **P-SPACE**
- Delete `destroy`, `delete` primitives (this system is called monotonic): safety question is undecidable
- Safety question for monoconditional, monotonic protection systems is decidable
- Safety question for monoconditional protection systems with `create`, `enter`, `delete` (and no `destroy`) is decidable.

Where does this leave us?

- Safety decidable for some models
 - Are they practical?
- Safety only works if maximum rights known in advance
 - Policy must specify all rights someone could get, not just what they have
- Can the safety of a particular system, with specific rules, be established?
Take-Grant Protection Model

- A specific (not generic) system
 - System represented as a directed graph
 - Set of graph rewriting rules for state transitions
- Safety is decidable, and in time linear with the size of the system
- Goal: find conditions under which rights can be transferred from one entity to another in the system

System

- objects (files, …)
 - subjects (users, processes, …)
 - don’t care (either a subject or an object)

\[G \xrightarrow{x} G' \] apply a rewriting rule \(x \) (witness) to \(G \) to get \(G' \)

\[G \xrightarrow{*} G' \] apply a sequence of rewriting rules (witness) to \(G \) to get \(G' \)

\(R = \{ t, g, r, w, \ldots \} \) set of rights
Rules

- take
- grant

More Rules

- create
- remove

These four rules are called the *de jure* rules
Example: Shared Buffer

- Initially s has grant rights for processes p and q.
- s sets up a shared buffer for p,q with the following steps
 - s creates new object b
 - s grants \(\{r,w\} \) to b to p
 - s grants \(\{r,w\} \) to b to q

Symmetry

1. x creates \((tg \text{ to new}) \) v
2. z takes \((g \text{ to } v) \) from x
3. z grants \((\alpha \text{ to } y) \) to v
4. x takes \((\alpha \text{ to } y) \) from v

Similar result for grant
Islands

- *tg*-path: path of distinct vertices connected by edges labeled *t* or *g*
 - Call them "tg-connected"
- *island*: maximal *tg*-connected subject-only subgraph
 - Any right one vertex has can be shared with any other vertex

Example

![Diagram](attachment:image.png)
can\textbf{•}share Predicate

Definition:

\[\text{can•share}(r, x, y, G_0)\] if, and only if, there is a sequence of protection graphs \(G_0, \ldots, G_n\) such that \(G_0 \models^* G_n\) using only \textit{de jure} rules and in \(G_n\) there is an edge from \(x\) to \(y\) labeled \(r\).

can\textbf{•}share Properties

- If \(x\) and \(y\) are subjects in an island, then \(\text{can•share}(r, x, y, G_0)\)
 - Proof by induction using the properties of \(\text{tg}\)-connected subjects
- General result: \(\text{can•share}(r, x, y, G_0)\) is decidable using an algorithm of complexity \(O(|V| + |E|)\) where \(V\) and \(E\) are the vertices and edges in the graph
 - Proof omitted (Exercise)
Key Question

- Characterize class of models for which safety is decidable
 - Existence: Take-Grant Protection Model is a member of such a class
 - Universality: in general, the question undecidable, so for some models it is not decidable
- What is the dividing line?

Typed Access Matrix Model

- Like ACM, but with set of types T
 - All subjects, objects have types
 - Set of types for subjects TS
- Protection state is (S, O, τ, A)
 - $\tau: O \rightarrow T$ specifies type of each object
 - If X subject, $\tau(X)$ in TS
 - If X object, $\tau(X)$ in $T - TS$
- Same rules as ACM except for create
Create Rules

- Subject creation
 - **create subject** *s* of type *ts*
 - *s* must not exist as subject or object when operation executed
 - *ts* ∈ *TS*

- Object creation
 - **create object** *o* of type *to*
 - *o* must not exist as object when operation executed
 - *to* ∈ *T* − *TS*

Create Subject

- Precondition: *s* ∉ *S*
- Primitive command: **create subject** *s* of type *t*
- Postconditions:
 - *S*’ = *S* ∪ { *s* }, *O*’ = *O* ∪ { *s* }
 - (∀ *y* ∈ *O*)[τ’(*y*) = τ(*y*), τ’(*s*) = *t*]
 - (∀ *y* ∈ *O*’)[a’[*s*, *y*] = Ø], (∀ *x* ∈ *S*’)[a’[*x*, *s*] = Ø]
 - (∀ *x* ∈ *S*)(∀ *y* ∈ *O*)[a’[*x*, *y*] = a[*x*, *y*]]
Create Object

- Precondition: \(o \notin O \)
- Primitive command: \textbf{create object} \(o \) \textbf{of type} \(t \)
- Postconditions:
 - \(S' = S, \ O' = O \cup \{o\} \)
 - \((\forall y \in O)[\tau'(y) = \tau(y)], \ \tau'(o) = t \)
 - \((\forall x \in S')[a'[x, o] = \emptyset] \)
 - \((\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]] \)

Definitions

- MTAM (Monotonic TAM) Model: TAM model without \textbf{delete, destroy}
- \(\alpha(x_1:t_1, ..., x_n:t_n) \) create command
 - \(t_i \) child type in \(\alpha \) if any of \textbf{create subject} \(x_i \) \textbf{of type} \(t_i \) or \textbf{create object} \(x_i \) \textbf{of type} \(t_i \) occur in body of \(\alpha \)
 - \(t_i \) parent type otherwise
Cyclic Creates

command havoc(s₁ : u , s₂ : u , o₁ : v , o₂ : v , o₃ : w , o₄ : w)
 create subject s₁ of type u;
 create object o₁ of type v;
 create object o₃ of type w;
 enter r into a[s₂, s₁] ;
 enter r into a[s₂, o₂] ;
 enter r into a[s₂, o₄] ;
End

What kind of types are u, v and w?

Creation Graph

- u, v, w child types
- u, v, w also parent types
- Graph: lines from parent types to child types
- This graph has cycles
Theorems

- Safety decidable for systems with acyclic MTAM schemes
- Safety for acyclic ternary MATM decidable in time polynomial in the size of the initial ACM
 - “ternary” means commands have no more than 3 parameters
 - Equivalent in expressive power to MTAM

Key Points

- Safety problem undecidable
- Limiting scope of systems can make problem decidable
- Types critical to safety problem’s analysis