i Foundational Results

= Safety Question

= HRU Model

= Take-Grant Protection Model
= EXpressive power

= Typed Access Matrix Model

i What Is “Secure™?

= Giving a generic right r to a subject who did
not initially possessed it is called “leaking”

= If a system S, beginning in initial state s,
cannot leak right 7, it is safe with respect to
the right r.

= Leaking a right is not inherently bad
» Legitimate transfer of rights by owner

= Safety Question

= Does there exist an algorithm for determining
whether a protection system S with initial state s,
is safe with respect to a generic right 7?

i Formally:

= Given
= initial state X, = (S, O, Ay
= Set of primitive commands ¢

= Can we reach a state X, (X, |-" X,) where
3 seSand 3 0 e Osuch that A [s,0] includes
a right rnot in A/s,0]?
= If so, the system is not safe

= But is a "safe” system a secure system?
Are commands correctly implemented?

i Trust

= Safety does not distinguish a leak of a right
from an authorized transfer of rights

= Subjects authorized to receive transfer of
rights deemed “trusted”
= Eliminate trusted subjects from matrix

= Trivial cases of safety

= I = read, own €afs,oj, command
canegrantereadeifeown

= No command includes the enter primitive
command

How about the general case?

i Mono-Operational Commands

= Answer: yes
= Sketch of proof:

Consider minimal sequence of commands ¢, ..., ¢,
to leak the right.

=« Can omit delete, destroy

= Can merge all creates into one (since new
subjects are all equal)

Worst case: insert every right into every entry; with
ssubjects and o objects initially, and n rights, upper
bound is k < M(s+1)(o+1)

i General Case

= Answer: no

= Sketch of proof:
Reduce halting problem to safety problem
Turing Machine review:
= Infinite tape in one direction
= States K, symbols M; distinguished blank &

= Transition function 8(k, m) = (K, n7, L) means in state
k, symbol m on tape location replaced by symbol 7,
head moves to left one square, and enters state ¥

» Halting state is g; TM halts when it enters this state

6

pping

iMa

3

4

Al B|C|D ﬁ S; ISy | S3| S4
N\ S;| A |own
head s, B |own
Current state is k S3 Ck | own
Sq D end
i Mapping
1 2 3 4
Al B X|D ﬁ S, 1Sy | S3| Sa
Si| A |own
head s, 5 | own
S3 X own
Atfter 3(k, C) = (k;, X, R)
where k is the current S D k, end

state and k; the next state

i Command Mapping

3(k, C) = (k;, X, R) at intermediate becomes

command c, .(s;,s,)
if own in Als,, s,]
and C in Al[s,, s;]

then

delete k from Al[s,, s5];
delete C from Al[s,, s5];
enter X into Als,, s;];
enter k, into Als,, s,];

end

and k in Al[s,, s,]

i Mapping

3 4 5
A B X|Y|b > S; |S2 | S3 | Sy Sg
S;| A |own
head S, B |own
S3 X |own
Atfter 8(k,, D) = (k,, Y, R)
where kK, is the current S4 Y | own
state and k, the next state
S5 b k, end

10

i Command Mapping

3(k;, D) = (k, Y, R) at end becomes

command crightmost, .(s,, s;s)
if end in Als,,s,] and k, in Als,, s,]
and D in Al[s,, s,]
then
delete end from Als,,s,];
create subject s.;
enter own into Als,,s.];
enter end into Als., s.];
delete k; from Als,,s,];
delete D from Als,, s,];
enter Y into Als,, s,];
enter k, into Als., s.];
end
11

i Rest of Proof

= Protection system exactly simulates a TM
« Exactly 1 endright in ACM
= 1 right in entries corresponds to state
» Thus, at most 1 applicable command
= If TM enters state g; then right has leaked
= If safety question decidable, then represent
TM as above and determine if g,leaks
= Implies halting problem decidable

= Conclusion: safety question undecidable

12

i Other Results

= Set of unsafe systems is recursively enumerable

= Delete create primitive; then safety question is
complete in P-SPACE

= Delete destroy, delete primitives (this system is
called monotonic): safety question is undecidable

= Safety question for monoconditional, monotonic
protection systems is decidable

= Safety question for monoconditional protection
systems with create, enter, delete (and no
destroy) is decidable.

13

i Where does this leave us?

= Safety decidable for some models
= Are they practical?

= Safety only works if maximum rights
known in advance

= Policy must specify all rights someone
could get, not just what they have

= Can the safety of a particular system,

with specific rules, be established?

14

i Take-Grant Protection Model

= A specific (not generic) system
= System represented as a directed graph
= Set of graph rewriting rules for state transitions
= Safety is decidable, and in time linear with
the size of the system
= Goal: find conditions under which rights can

be transferred from one entity to another in
the system

15

i System

o objects (files, ...)
e subjects (users, processes, ...)
® don't care (either a subject or an object)

G |—X G' apply a rewriting rule x (witness) to
Gtoget G

G |—* G' apply a sequence of rewriting rules
(witness) to G to get G'

R={¢tg rw, ..} setofrights

16

17

i More Rules
create ° - e—t—g
remove @& —® - et g

These four rules are called the de jure rules

18

i Example: Shared Buffer

= Initially s has grant rights for processes
p and q.

= S sets up a shared buffer for p,q with
the following steps
= S creates new object b
» s grants ({r,w}tob) top
= S grants ({r,w} to b) to g

19

i Symmetry

X

Qo . y a
x&
f |_ t o
tg o
z

v

X creates (tg to new) v

z takes (g to v) from X similar result for grant
zgrants (atoy) tov

x takes (o to y) from v

PN =

20

10

i Islands

= [g-path: path of distinct vertices
connected by edges labeled tor g
» Call them “tg-connected”
= island: maximal fg-connected subject-
only subgraph
= Any right one vertex has can be shared
with any other vertex

21

22

11

i caneshare Predicate

Definition:

camshard(r, X, y, Gy) if, and only if, there
is a sequence of protection graphs Gy,
..., G, such that G, |-* G,, using only de
Jurerules and in G, there is an edge
from x to y labeled r.

23

i caneshare Properties

= If x and y are subjects in an island, then
cameshare(r, X, y, Gy)
= Proof by induction using the properties of tg-

connected subjects

= General result: caneshare(r, X, y, Gp) is
decidable using an algorithm of complexity
O(|V| + |E|]) where V and E are the vertices
and edges in the graph
= Proof omitted (Exercise)

24

12

i Key Question

= Characterize class of models for which
safety is decidable

= Existence: Take-Grant Protection Model is
a member of such a class

= Universality: in general, the question
undecidable, so for some models it is not
decidable

= What is the dividing line?

25

i Typed Access Matrix Model

= Like ACM, but with set of types 7
= All subjects, objects have types
= Set of types for subjects 75

= Protection state is (S, O, t, A)
= T: O — T specifies type of each object
= If X subject, (X)) in 75
= If X object, 7(X) in 7—- 75

= Same rules as ACM except for create

26

13

i Create Rules

= Subject creation
= Create subject sof type &5

= smust not exist as subject or object when
operation executed

n 5 TS
= Object creation

= create object o of type fo

= o must not exist as object when operation
executed

[] tOE 7-— TS

27

i Create Subject

= Precondition: s¢ S

= Primitive command: create subject s of
type ¢

= Postconditions:
s S =5U{s}, O =0U{s}
= (Vye Ol =], 7'(9) =t

= (Vye O)@'[s] =2, (vxe S)a'[x s] = 2]

= (Vxe S)Vye Ola’[x 1 = dx /]

28

14

i Create Object

= Precondition: o ¢ O
= Primitive command: create object o
of type ¢
= Postconditions:
=S =50 =0u{o}
= (Vye Ol =tW], r(0)=t
« (Vxe S)[a'[x o] =]
= (Vxe S)(Vye Ola'[x v = dx ¥l

29

i Definitions

= MTAM (Monotonic TAM) Model: TAM
model without delete, destroy
s a(x:g, ..., X,:t) create command

= ;child type in a if any of create subject
x; of type t;or create object x; of type ¢
occur in body of o

= {; parent type otherwise

30

15

i Cyclic Creates

command Aavods, : U, S U, 0V, 0V, 0 W, 0 W)
create subject s, of type v;
create object o, of type v;
create object o; of type w;
enter rinto 4ds, 5] ;
enter rinto 4s, o] ;
enter rinto ds, o,] ;
End

What kind of types are u, v and w?

31

i Creation Graph

= U, V, wchild types
= U, v, walso parent types

= Graph: lines from parent
types to child types

(%\?‘7’@% = This graph has cycles

32

16

i Theorems

= Safety decidable for systems with
acyclic MTAM schemes

= Safety for acyclic ternary MATM
decidable in time polynomial in the size
of the initial ACM

= “ternary” means commands have no more
than 3 parameters

» Equivalent in expressive power to MTAM

33

i Key Points

= Safety problem undecidable

= Limiting scope of systems can make
problem decidable

= Types critical to safety problem’s
analysis

34

17

