
1

1

Foundational Results
Safety Question
HRU Model
Take-Grant Protection Model
Expressive power
Typed Access Matrix Model

2

What Is “Secure”?
Giving a generic right r to a subject who did
not initially possessed it is called “leaking”
If a system S, beginning in initial state s0,
cannot leak right r, it is safe with respect to
the right r.
Leaking a right is not inherently bad

Legitimate transfer of rights by owner
Safety Question

Does there exist an algorithm for determining
whether a protection system S with initial state s0
is safe with respect to a generic right r?

2

3

Formally:

Given
initial state X0 = (S0, O0, A0)
Set of primitive commands c

Can we reach a state Xn (X0 |– * Xn) where
∃ s ∈S and ∃ o ∈O such that An[s,o] includes
a right r not in A0[s,o]?

If so, the system is not safe
But is a “safe” system a secure system?

Are commands correctly implemented?

4

Trust
Safety does not distinguish a leak of a right
from an authorized transfer of rights
Subjects authorized to receive transfer of
rights deemed “trusted”

Eliminate trusted subjects from matrix
Trivial cases of safety

r = read, own ∈a[s,o], command
can•grant•read•if•own
No command includes the enter primitive
command

How about the general case?

3

5

Mono-Operational Commands

Answer: yes
Sketch of proof:
Consider minimal sequence of commands c1, …, ck
to leak the right.

Can omit delete, destroy
Can merge all creates into one (since new

subjects are all equal)
Worst case: insert every right into every entry; with
s subjects and o objects initially, and n rights, upper
bound is k ≤ n(s+1)(o+1)

6

General Case
Answer: no
Sketch of proof:
Reduce halting problem to safety problem
Turing Machine review:

Infinite tape in one direction
States K, symbols M; distinguished blank b
Transition function δ(k, m) = (k′, m′, L) means in state
k, symbol m on tape location replaced by symbol m′,
head moves to left one square, and enters state k′
Halting state is qf; TM halts when it enters this state

4

7

Mapping

A B C D …

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

C k

D end

own

own

ownCurrent state is k

8

Mapping

A B X D …

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

D k1 end

own

own

own
After δ(k, C) = (k1, X, R)
where k is the current
state and k1 the next state

5

9

Command Mapping
δ(k, C) = (k1, X, R) at intermediate becomes

command ck,C(s3,s4)
if own in A[s3,s4] and k in A[s3,s3]

and C in A[s3,s3]
then
delete k from A[s3,s3];
delete C from A[s3,s3];
enter X into A[s3,s3];
enter k1 into A[s4,s4];

end

10

Mapping

A B X Y

1 2 3 4

head

s1 s2 s3 s4

s4

s3

s2

s1 A

B

X

Y

own

own

own
After δ(k1, D) = (k2, Y, R)
where k1 is the current
state and k2 the next state

s5

s5

own

b k2 end

5

b

6

11

Command Mapping
δ(k1, D) = (k2, Y, R) at end becomes

command crightmostk,C(s4,s5)
if end in A[s4,s4] and k1 in A[s4,s4]

and D in A[s4,s4]
then
delete end from A[s4,s4];
create subject s5;
enter own into A[s4,s5];
enter end into A[s5,s5];
delete k1 from A[s4,s4];
delete D from A[s4,s4];
enter Y into A[s4,s4];
enter k2 into A[s5,s5];

end

12

Rest of Proof
Protection system exactly simulates a TM

Exactly 1 end right in ACM
1 right in entries corresponds to state
Thus, at most 1 applicable command

If TM enters state qf, then right has leaked
If safety question decidable, then represent
TM as above and determine if qf leaks

Implies halting problem decidable

Conclusion: safety question undecidable

7

13

Other Results
Set of unsafe systems is recursively enumerable
Delete create primitive; then safety question is
complete in P-SPACE
Delete destroy, delete primitives (this system is
called monotonic): safety question is undecidable
Safety question for monoconditional, monotonic
protection systems is decidable
Safety question for monoconditional protection
systems with create, enter, delete (and no
destroy) is decidable.

14

Where does this leave us?
Safety decidable for some models

Are they practical?
Safety only works if maximum rights
known in advance

Policy must specify all rights someone
could get, not just what they have

Can the safety of a particular system,
with specific rules, be established?

8

15

Take-Grant Protection Model

A specific (not generic) system
System represented as a directed graph
Set of graph rewriting rules for state transitions

Safety is decidable, and in time linear with
the size of the system
Goal: find conditions under which rights can
be transferred from one entity to another in
the system

16

System
О objects (files, …)

subjects (users, processes, …)
⊗ don't care (either a subject or an object)

G |–x G' apply a rewriting rule x (witness) to
G to get G'

G |–* G' apply a sequence of rewriting rules
(witness) to G to get G'

R = { t, g, r, w, … } set of rights

9

17

Rules

⊗

t α t α

α

take

g α α

α

grant g

⊗

⊗

⊗

⊗ ⊗ ⊗ ⊗

|-

|-

18

More Rules

create

α

α

remove
α – β ⊗⊗

⊗|-

|-

These four rules are called the de jure rules

10

19

Example: Shared Buffer
Initially s has grant rights for processes
p and q.
s sets up a shared buffer for p,q with
the following steps

s creates new object b
s grants ({r,w} to b) to p
s grants ({r,w} to b) to q

20

Symmetry

t
α

t α

α
⊗ ⊗|–

1. x creates (tg to new) v
2. z takes (g to v) from x
3. z grants (α to y) to v
4. x takes (α to y) from v

z
v

tg

x

g

y

α

α

Similar result for grant

11

21

Islands
tg-path: path of distinct vertices
connected by edges labeled t or g

Call them “tg-connected”

island: maximal tg-connected subject-
only subgraph

Any right one vertex has can be shared
with any other vertex

22

Example

p

u v w x y

s'
s q

t

t t

t r

gg

g

12

23

can•share Predicate
Definition:
can•share(r, x, y, G0) if, and only if, there

is a sequence of protection graphs G0,
…, Gn such that G0 |–* Gn using only de
jure rules and in Gn there is an edge
from x to y labeled r.

24

can•share Properties
If x and y are subjects in an island, then
can•share(r, x, y, G0)

Proof by induction using the properties of tg-
connected subjects

General result: can•share(r, x, y, G0) is
decidable using an algorithm of complexity
O(|V| + |E|) where V and E are the vertices
and edges in the graph

Proof omitted (Exercise)

13

25

Key Question

Characterize class of models for which
safety is decidable

Existence: Take-Grant Protection Model is
a member of such a class
Universality: in general, the question
undecidable, so for some models it is not
decidable

What is the dividing line?

26

Typed Access Matrix Model
Like ACM, but with set of types T

All subjects, objects have types
Set of types for subjects TS

Protection state is (S, O, τ, A)
τ: O →T specifies type of each object
If X subject, τ(X) in TS
If X object, τ(X) in T – TS

Same rules as ACM except for create

14

27

Create Rules
Subject creation

create subject s of type ts
s must not exist as subject or object when
operation executed
ts ∈ TS

Object creation
create object o of type to
o must not exist as object when operation
executed
to ∈ T – TS

28

Create Subject
Precondition: s ∉ S
Primitive command: create subject s of
type t
Postconditions:

S´ = S ∪{ s }, O´ = O ∪{ s }
(∀y ∈ O)[τ´(y) = τ (y)], τ´(s) = t
(∀y ∈ O´)[a´[s, y] = ∅], (∀x ∈ S´)[a´[x, s] = ∅]
(∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]

15

29

Create Object

Precondition: o ∉ O
Primitive command: create object o
of type t
Postconditions:

S´ = S, O´ = O ∪ { o }
(∀y ∈ O)[τ´(y) = τ (y)], τ´(o) = t
(∀x ∈ S´)[a´[x, o] = ∅]
(∀x ∈ S)(∀y ∈ O)[a´[x, y] = a[x, y]]

30

Definitions

MTAM (Monotonic TAM) Model: TAM
model without delete, destroy
α(x1:t1, ..., xn:tn) create command

ti child type in α if any of create subject
xi of type ti or create object xi of type ti
occur in body of α
ti parent type otherwise

16

31

Cyclic Creates
command havoc(s1 : u , s2 : u , o1 : v , o2 : v , o3 : w , o4 : w)

create subject s1 of type u ;
create object o1 of type v ;
create object o3 of type w ;
enter r into a[s2, s1] ;
enter r into a[s2, o2] ;
enter r into a[s2, o4] ;

End

What kind of types are u, v and w?

32

Creation Graph
u, v, w child types
u, v, w also parent types
Graph: lines from parent
types to child types
This graph has cycles

u

v w

17

33

Theorems

Safety decidable for systems with
acyclic MTAM schemes
Safety for acyclic ternary MATM
decidable in time polynomial in the size
of the initial ACM

“ternary” means commands have no more
than 3 parameters
Equivalent in expressive power to MTAM

34

Key Points

Safety problem undecidable
Limiting scope of systems can make
problem decidable
Types critical to safety problem’s
analysis

