
1

1

Hybrid Policies

Chinese Wall Model
Focuses on conflict of interest
Combines integrity and confidentiality

RBAC
Base controls on job function

2

Chinese Wall Model
Introduced by Brewer-Nash in 1989

Problem:
Consultant advises Bank1 and Bank2 about investments
Conflict of interest: advice for either bank would affect advice to
the other bank

Solution
Consultant can only access objects on his/her side of the wall

Organization
Organize entities into “conflict of interest” classes
Control read accesses based on COI and access history
Control writing to all classes to ensure information is not passed
along in violation of rules
No control over sanitized data (no conflict)

2

3

Definitions

Objects : items of information related to a
company
Company dataset (CD): collection of objects
related to a single company

Written CD(o)
Conflict of interest class (COI): collection of
datasets of companies in competition

Written COI(o)
Assumption: each object belongs to exactly
one CD and each CD to one COI class

4

Example

Bank of America

Citibank Bank of the West

Bank COI Class

Shell Oil

Union ’76

Standard Oil

ARCO

Gasoline Company COI Class

3

5

Temporal Element

Rights depend on access history
Initially, a subject can read any object in any
CD of any COI
If a subject reads an object in a CD in a COI,
he can never read an object in another CD in
the same COI

Possible that information learned earlier may allow
him to make decisions later

PR(s) denotes the set of objects that a
subject s has already read

6

Sanitization

Public information may belong to a CD
As is publicly available, no conflicts of
interest arise
So, should not affect ability of subject
to read
Typically, all sensitive data removed
from such information before it is
released publicly (called sanitization)

4

7

CW-Simple Security Condition

s can read o iff any of these conditions holds:
1. There is an o′ such that o′ ∈PR(s) and CD(o′)=CD(o)

– Meaning s has read something else in o’s dataset

2. For all o′ ∈ O, o′ ∈ PR(s) ⇒ COI(o′) ≠ COI(o)
– Meaning s has not read any objects in COI(o)

3. o is a sanitized object

Initially, PR(s) = ∅, so any initial read request is
granted

8

What about writing

Alice and Bob work in same trading house
Alice can read objects in Citibank’s CD and in
Shell’s CD
Bob can read objects in Bank of America’s CD
and in Shell’s CD
If Alice could write (information from
Citibank’s objects) to objects in Shell’s CD,
then Bob can read it

Hence, indirectly, he can read information from
Citibank’s CD, a clear conflict of interest

5

9

CW-*-Property

s can write to o if and only if :
1. The CW-simple security condition permits s to read o

– No blind writes as in BLP

and
2. For all unsanitized objects o′, if s can read o′, then

CD(o′) = CD(o)
– Says that s can write to an object if all the objects it can

read are in the same dataset or sanitized

10

Compare to Bell-LaPadula

Fundamentally different
ChW has no security labels, BLP does
ChW has notion of past accesses, BLP does not

BLP can capture state at any time, but cannot
track changes over time

Each (COI, CD) pair gets security category
Two clearances, S (sanitized) and U (unsanitized)

U dom S
Subjects assigned clearance for compartments
that do not have categories corresponding to CDs
in the same COI class

6

11

Summary of Chinese Wall

The Chinese Wall policy is just another
lattice-based information flow policy

To properly understand and enforce
Information Security policies we must
distinguish between
• policy applied to users, and

• policy applied to principals and subjects

Role-Based Access Control

user_sessions

(RH)
Role Hierarchy

session_roles

(UA)
User Assign-

ment

(PA)
Permission
Assignment

USERS OBSOPS

SESSIONS

ROLES

PRMS

SSD

DSD

7

13

RBAC (http://csrc.nist.gov/rbac/)

A policy-neutral model, that can express both
DAC (role as identity) and MAC (role as
clearance)
Access/right often depends on role (job
function), not on identity

Example:
Allison, bookkeeper, has access to financial records.
Bob hired to replace Allison as the new bookkeeper
Bob now has access automatically to those records

The role of “bookkeeper” determines access, not the
identity of the individual, and ‘connects’ the subject to
the permission(s).

14

Role-Based AC
A user has access to an object based on the
assigned role.
Roles are defined based on job functions.
Permissions are defined based on job authority
and responsibilities within a job function.
Operations on an object are invocated based on
the permissions.
The object is concerned with the user’s role and
not the user.

8

15

Privilege
Roles are engineered based on the principle of
least privilege.
A role contains the minimum amount of
permissions to instantiate an object.
A user is assigned to a role that allows him or her
to perform only what is required for that role.
No single role is given more permission than the
same role for another user.

16

Role-Based AC Framework
Core Components
Constraining Components

Hierarchical RBAC
General
Limited

Separation of Duty Relations
Static
Dynamic

9

17

Core Components
Defines:

USERS {process, intelligent agent, human}
ROLES
OPERATIONS (ops)
OBJECTS (obs)
User Assignments (ua)

assigned_users

18

Core Components (cont)
Permissions (prms)

Assigned Permissions
Object Permissions
Operation Permissions

Sessions
User Sessions
Available Session Permissions
Session Roles

10

19

Constraint Components
Role Hierarchies (rh)

General
Limited

Separation of Duties
Static
Dynamic

20

RBAC Transition

YesYesRBAC3

YesNoRBAC2

NoYesRBAC1

NoNoRBAC0

ConstraintsHierarchiesModels

Most
Complex

Least Privilege
Separation of

Duties

11

21

RBAC Functional Specification
It defines the features required of an RBAC system.
These features fall into three categories

Administrative Operations
Administrative operations define requirements in terms of an
administrative interfaces and an associated set of semantics that provide
the capability to create, delete and maintain RBAC elements and relations.

Administrative Reviews
The administrative review features define requirements in terms of an
administrative interfaces and an associated set of semantics that provide
the capability to perform query operations on RBAC elements and
relations.

System level functionality
The System level functionality defines features for the creations of user
sessions to include role activation/deactivation, the enforcement of
constraints on role activation, and for calculation of an access decision.

22

Core RBAC

user_sessions session_roles

(UA)
User Assign-

ment

(PA)
Permission
Assignment

USERS OBSOPS

SESSIONS

ROLES

PRMS

12

23

Definitions
Role r : collection of job functions

developer, director, manager, …
an organizational job function with a clear
definition of inherent responsibility and
authority (permissions).

M-T-M relation between USERS and PRMS
(going through roles)

24

Definitions
Role r

trans(r): set of authorized transactions for r

Active role of subject s : the role s is currently in
actr(s)

Authorized roles of s : set of roles s can assume
authr(s)

canexec(s, t) is true if and only if subject s can
execute transaction t at current time

13

25

Axioms (mandatory style)
S the set of subjects; T the set of transactions.

Rule of role assignment:
(∀s ∈ S)(∀t ∈ T) [canexec (s, t) → actr(s) ≠ ∅].

If s can execute a transaction, it has a role
This ties transactions to roles, not users

Rule of role authorization:
(∀s ∈ S) [actr(s) ⊆ authr(s)].

Subject must be authorized to assume an active role
(otherwise, any subject could assume any role)

26

UA (user assignment)

SUSERSxROLEUA⊆

}),(|{)(_ UAruUSERSuruserassigned ∈∈=

A user can be assigned to
one or more roles

A role can be assigned
to one or more users

usersROLESruserassigned 2):(:_ →

14

27

PRMS (permissions)
The set of permissions that each grant the approval to
perform an operation on a protected object.

)(2 OPSxOBSPRMS =

User.DB1
•View
•Update
•Append

permissions object

User.F1
•Read
•Write
•Execute

permissions object

28

PA (prms assignment)

PRMSxROLESPA ⊆

PRMSROLESrspermissionassigned 2):(_ →

•A prms can be assigned to one or more roles
•A role can be assigned to one or more prms

}),(|{)(_ PArpPRMSprspermissionassigned ∈∈=

){):(OPSopPRMSpOp ⊆→
){):(OBSobPRMSpOb ⊆→

15

29

SESSIONS

)})),(_(|{)(_
2):(_

UArsuserssessionROLESrsrolessession
SESSIONSsrolessession

ii

ROLES

∈∈⊆
→

SESSIONSUSERSusessionsuser 2):(_ →

PRMSSESSIONSspersmsessionavail 2):(__ →

Each session is associated to a number of roles and each
user u is associated to a set of sessions.

U
)(_

)(_
srolessessionr

rspermissionassigned
∈

30

Axiom
Rule of transaction authorization:

(∀s ∈ S)(∀t ∈ T)
[canexec(s, t) → t ∈ trans(actr(s))].

A subject s can execute a transaction only if
the transaction is authorized one for the role s
has assumed (active)

16

31

Hierarchical RBAC

user_sessions

(RH)
Role Hierarchy

session_roles

(UA)
User Assign-

ment

(PA)
Permission
Assignment

USERS OBSOPS

SESSIONS

ROLES

PRMS

32

RH (Role Hierarchies)
Natural means of structuring roles to reflect
organizational lines of authority and
responsibilities
General and Limited
Define the inheritance relation among roles

i.e. r1 inherits r2

User
r-w-h

Guest
-r-

SROLESxROLERH ⊆

17

33

Containment of Roles
Trainer can do all the transactions that
trainee can do (and then some). This
means role r contains role r′ (r > r′). So:
(∀s ∈ S)[r′ ∈ authr(s) ∧ r′ >r → r ∈ authr(s)]
(∀t ∈ T)[t ∈ trans(r) ∧ r′ >r → t ∈ trans(r′)]
The set of roles is organized in a hierarchy
(partial order)

34

Tree Hierarchies
Production
Engineer 1

Engineer 1

Quality
Engineer 1

Engineering Dept

Production
Engineer 2

Engineer 2

Quality
Engineer 2

Production
Engineer 1

Project Lead 1

Quality
Engineer 1

Director

Production
Engineer 2

Project Lead 2

Quality
Engineer 2

18

35

Lattice Hierarchy

Production
Engineer 1

Engineer 1

Quality
Engineer 1

Engineering Dept

Production
Engineer 2

Engineer 2

Quality
Engineer 2

Project Lead 1

Director

Project Lead 2

Supports multiple inheritance

36

General RH

})',('|{)(_ UArurrUSERSurusersauthorized ∈∧∈= f

)(_)(_^
)(_)(_

21

1221

rusersauthorizedrusersauthorized
rspermissionauthorizedrspermissionauthorizedrr

⊆
⊆⇒f

}),(|{)(_ UAruUSERSuruserassigned ∈∈=

PRMSROLESrspermissionauthorized 2):(_ →
})',(,'|{)(_ PArprrPRMSprspermissionauthorized ∈∈= f

SUSERSxROLEUA ⊆

19

37

Limited RH

212121 ^,,, rrrrrrROLESrrr =⇒∈∀ ff

A restriction on the immediate descendants in the general role
hierarchy: roles can have only one descendant, but may have
one or more ascendants (single inheritance)

Role1

Role2

Role3
Role2 inherits from Role1

Role3 does not inherit from
Role1 or Role2

38

Limited RH (cont)

Tom

AcctRec

AcctRecSpv

Accounting

Tammy

Cashier

CashierSpv

Fred

Sally

Auditing

Joe Frank

Billing

BillingSpv

Curt Tuan

Accounting Role

Notice that Frank has two roles: Billing and Cashier
This requires the union of two distinct roles and prevents Frank
from being a (role) node to others

20

39

Constrained RBAC

user_sessions

(RH)
Role Hierarchy

session_roles

(UA)
User Assign-

ment

(PA)
Permission
Assignment

USERS OBSOPS

SESSIONS

ROLES

PRMS

SSD

DSD

40

Separation of Duties
Enforces conflict of interest policies employed to
prevent users from exceeding a reasonable level
of authority for their position.
Ensures that failures of omission or commission
within an organization can be caused only as a
result of collusion among individuals.
Two Types:

Static Separation of Duties (SSD)
Dynamic Separation of Duties (DSD)

21

41

Separation of Duty (static)
For r a role, the predicate meauth(r) (for
mutually exclusive authorizations) is the set of
roles that a subject s , for which r ∈ auth(s),
cannot assume because of some separation of
duty requirement.
Separation of duty constraint:
(∀r1, r2 ∈ R) [r2 ∈ meauth(r1) →

[(∀s ∈ S) [r1∈ authr(s) → r2 ∉ authr(s)]]]

42

SSD
)2(xNSSD ROLES⊆

∅=⇒≥⊆∀∈∀ ∈)(_|:|,),(rusersassignedntrstSSDnrs trI

SSD places restrictions on the set of roles and in
particular on their ability to form UA relations.
No user is assigned to n or more roles from the
same role set, where n or more roles conflict with
each other.
A user may be in one role, but not in another—
mutually exclusive.
Prevents a person from submitting and approving
their own request.

22

43

SSD in Presence of RH
A constraint on the authorized users of the roles that have
an SSD relation.
Based on the authorized users rather than assigned users.
Ensures that inheritance does not undermine SSD policies.
Reduce the number of potential permissions that can be
made available to a user by placing constraints on the users
that can be assigned to a set of roles.

∅=⇒≥⊆∀∈∀
∈

)(_|:|,),(rusersauthorizedntrstSSDnrs
tr
I

44

DSD
)2(ROLESxNDSD ⊆

Places constraints on the users that can be assigned to
a set of roles, thereby reducing the number of potential
prms that can be made available to a user.
Constraints are across or within a user’s session.
No user may activate n or more roles from the roles set
in each user session.
Timely Revocation of Trust ensures that prms do not
persist beyond the time that they are required for
performance of duty.

23

45

DSD

andnrsnDSDnrsNnrs ROLES ,||^2),(,,2 ≥≥⇒∈∈∈∀

)2(ROLESxNDSD ⊆

nsubsetrolesrolesessionsubsetrolerssubsetrole
DSDnrsNnsubsetrolersSESSIONSs ROLESROLES

<⇒⊆⊆
∈∈∀∈∀∈∀∈∀

|_|)(__,_
,),(,,2_,2,

There can be constraints on mutually exclusive
permissions as well, both static and dynamic

