
Page

Identification and
Authentication

Why Authentication?
Common policy requirement: restrict the behavior
of a user
To permit different users to do different things, we
need a way to identify or distinguish between users

Identification mechanisms to indicate/provide identity
Authentication mechanisms to validate identity

Authentication is a mutual process which may use
different mechanisms (and therefore have different
levels of assurance):

Users must prove their identity to the computer.
Computers must prove their identity to the user.
(This also applies to processes and other computers …
any subject wishing to interact)

Page

Identification & Authentication

When logging on to a computer you enter
user name and
password

The first step is called identification:
You announce who you are.

The second step is called authentication;
You prove that you are who you claim to be.

To distinguish this type of ‘authentication’ from other
interpretations, we refer here to user authentication: the
process of verifying a claimed user identity.
Authentication by password is widely accepted and not
too difficult to implement.

Authentication System
(A, C, F, L, S)

A set of authentication information used by entities
to prove identity
C complementary information stored on computer
and used by system to validate authentication
information
F complementation functions f : A → C to generate
c=f(a)
L functions that prove identity l (a,c)= T/F
S functions enabling entity to create or alter
information in A or C

Page

(bad) Example
Password system, with passwords stored on line in
clear text

A set of strings over fixed alphabet to construct the
passwords
C = A
F singleton set of identity function { I }
L single equality test function { eq }
S functions to set/change password

User Authentication
Common mechanisms for “proving” user identity

where the user is
access to the keyboard or IP address

what the user knows
passwords, personal information

what the user possesses
a physical key, a ticket, a passport, a token, a
smart card, a badge

what the user is (biometrics)
fingerprints, voiceprint, signature dynamics

… or some combination of these

Page

“Something you have”
Very similar to the “something you know”
technique - in order to implement it, there
needs to be:

an object which may or may not be unique, but
to which the access is limited to “authorized”
users or other subjects
a way to present this object to the entity which
requires the subject to provide proof
a way to determine if the object as presented is
the one which was expected

Smart Cards
A portable device with a CPU, I/O ports, and some
nonvolatile memory (currently few thousand bytes)
that is accessible only through its CPU
It can carry out the computations required (for
example by public key algorithms) and transmit
results directly to the host
Since devices are subject to theft, some devices
require a PIN (something you know)
PIN used by the device to authenticate the user
Some use biometrics data about the user instead of
the PIN

Page

“Something you know”
a word (password)
an algorithm (pass-algorithm)
a phrase (pass-phrase)
a picture (pass-picture?)
a combination or sequence of the above

Authentication
Allows an entity (a user or a system) to prove its
identity to another entity
Typically, the entity whose identity is verified
reveals knowledge of some secret S to the verifier
Strong Authentication: The entity reveals
knowledge of S to the verifier without revealing S
to the verifier

Passwords

Sequence of characters
Examples: 10 digits, a string of letters, etc.
Generated randomly, by user, by computer with
user input

Sequence of words
Examples: pass-phrases

Algorithms
Examples: challenge-response, one-time
passwords

Page

How well does this work?

Ideal Policy: only a certain set of individuals
are allowed into the system.

Stated Policy: only users having a valid
password are allowed into the systems.

Actual Policy: permit users who
Are issued a valid password (authenticator)
Can obtain a valid authenticator
Can bypass the authentication process

To get a valid authenticator…
Social engineering
Guessing: most break-ins occur because of bad
passwords.

Do not use Your name (first, last, account name), Spouse, SO,
pet, children, …, even with a single digit, Any word in any
language, even with standard replacement (1=i, 0=o, ...)

Known/standard account and password pairs
Many systems have certain accounts set up with certain default
passwords (either well known or easy to guess). UNIX provides
the guest account, with password often GUEST! VAX/VMS used to
come with FIELD/SERVICE.
Known algorithms for assigning passwords

use some/part of SSN, birthday, name, student/employee id,
account name, phone extension

Page

Social Engineering
Univ. of Sydney study (1996)

336 CS students emailed asking for their passwords
Pretext: “validate” password database after
suspected break-in

138 returned their passwords; 30 returned invalid
passwords; 200 reset passwords (not disjoint)

Treasury Dept. report (2005)
Auditors pose as IT personnel attempting to correct a
“network problem”
35 (of 100) IRS managers and employees provide their
usernames and change passwords to a known value

Problem: pswd Storage

Store as cleartext
If password file compromised, all passwords
revealed

Encipher file
Need to have decipherment, encipherment keys
in memory
Reduces to previous problem (where is the key?)

Store one-way hash of password
If the file is read, attacker must still guess
passwords or invert the hash (but where is the
hash?)

Page

Example

UNIX system standard hash function
Hashes password into 11 printable char string
using one of 4096 hash functions

As authentication system:
A = { strings of 8 chars or less }
C = { 2 char hash id || 11 char hash }
F = { 4096 versions of modified DES }
L = { login, su, … }
S = { passwd, nispasswd, passwd+, … }

Challenge-Response
User and system share a secret function f (in practice,

f is a known function with unknown parameters,
such as a cryptographic key)

user systemrequest to authenticate

user systemrandom message r
(the challenge)

user systemf(r)
(the response)

Page

Pass Algorithms

Challenge-response with the function f itself a
secret

Example:
Challenge is a random string of characters such as
“abcdefg”, “ageksido”
Response is some function of that string such as “bdf”,
“gkip”

Can alter algorithm based on ancillary information
Network connection is as above, dial-up might require
“aceg”, “aesd”

Usually used in conjunction with fixed, reusable
password

What is the advantage over passwords?

Avoids “replay” attacks
One-time password

authentication information a changes after each use
Why is this challenge-response?

Attack
Attacker knows (space of) encryption function
Captures challenge and response
Learns encryption function / key
Can now properly respond to new challenge

Solution: encrypt challenge
Use shared key to share session key
Session key encrypts challenge
Challenge thus indistinguishable from random data

Page

Dictionary Attacks
Trial-and-error from a list of potential
passwords

Off-line: attacker knows A, f and c’s, and
repeatedly tries different guesses g ∈ A until
the list is done or passwords guessed

Examples: crack, john-the-ripper
On-line: have access to functions in L and try
guesses g until some l (g) succeeds

Examples: trying to log in by guessing a password

Using Time to counter guessing

Anderson’s formula:
P probability of guessing a password in
specified period of time
G number of guesses tested in 1 time
unit
T number of time units
N number of possible passwords (|A|)
Then P ≥ TG/N

Page

Example
Goal

Passwords drawn from a 96-char alphabet
Can test 104 guesses per second
Probability of a success to be 0.5 over a 365 day
period
What is minimum password length?

Solution
N ≥ TG/P = (365×24×60×60)×104/0.5 = 6.31×1011

Choose s such that Σs
j=0 96j ≥ N

So s ≥ 6, meaning passwords must be at least 6
chars long

First UNIX Password Scheme

[Wilkes68] (recall DES was 1976)
Encryption based on M-209 cipher machine
(US Army WWII)
Easy to invert unknown plaintext and
known key, used password as key:

Instead of EK (password) used hash
function EPassword (0)

PDP-11 could check all 5 or less letter
lower-case passwords in 4 hours!

Page

Making Brute Force Attacks Harder

Use a slower encryption (hashing) algorithm
Switched to DES: H(p) = DESp(0)

Even slower: run DES lots of times
UNIX uses DESp

25(0)
… DESp (DESp (DESp (DESp (0))))

Require longer passwords
DES key is only 56 bits: only uses first 7.5
characters (ASCII)
95 printable characters, 958 = 6.6 * 1015

UNIX Passwords

• UNIX passwords were kept in a publicly
readable file, etc/passwords.

• Now they are often kept in a “shadow”
directory and only visible by “root”.
The salt serves three purposes:

Prevents duplicate passwords.
Effectively increases the length of the password.
Prevents the use of hardware implementations
of DES

Page

Password Salt
It is used to make the dictionary attack a bit more
difficult
Salt is a 12 bit number between 0 and 4095
It is derived from the system clock and the process
identifier
Rather than computing F(pwd), F(pwd + salt) is
computed; both salt and F(pwd + salt) are stored in the
password table
When a user supplies the password, system fetches the
salt for the user and computes F(pwd + salt) to check
for a match
Notice that with salt, the same password is computed in
4096 different ways

UNIX Password Scheme

Loading a new password

Page

UNIX Password Scheme

Verifying a password file

Dictionary Attacks on
Passwords
Attack 1:

Create a dictionary of common words and names and their
simple transformations and use them to guess the password

Attack 2:
Usually F is public and so is the password file

In Unix, F is crypt(3) and /etc/passwd may be world
readable

Compute F(word) for each word in the dictionary
A match gives the password

Attack 3:
To speed up search, pre-compute F(dictionary)
A simple look up gives the password

Note that these attacks work only with weak
passwords

Page

Password Management Policy
and Procedure
Educate users to make better choices

Does not work if the user population is large or novice
Define rules for good password selection and ask users to follow
them

Rules serve as guideline for attackers
Ask or force users to change their passwords periodically
Force users to use machine generated passwords

Random password are difficult to memorize; also password
generator may become known to the attacker through
analysis

Actively attempt to break users’ passwords; force users to
change those that are broken

Attacker may have better dictionary
Screen password choices; if a choice is weak, force users to
make a different choice

Single Sign-on

Having to remember many passwords for different
services is a nuisance; with a single sign-on service, you
have to enter your password only once.

A simplistic single-sign on service could store your
password and do the job for you whenever you have to
authenticate yourself.

Such a service adds to your convenience but it also raises new
security concerns.

System designers have to balance convenience and
security; ease-of-use is an important factor in making IT
systems really useful, but many practices which are
convenient also introduce new vulnerabilities.

Page

One-Time Passwords
Password that can be used exactly once

After use, it is immediately invalidated

Challenge-response mechanism
Challenge is number of authentications; response is
password for that particular number

Problems
Synchronization of user, system
Generation of good random passwords
Password distribution problem

Lamport’s Scheme
Does not require any special hardware
User selects x and computes F(x), F2(x), ..., F100(x) (This will allow
100 logins before a seed change)
System stores (User name, F100(x)) (need not know x)
User supplies y = F99(x) the first time
System computes F(y) and compares it with F100(x)
If they match, the login is correct and the system replaces F100(x) by
F99(x)
User supplies F98(x) the next time, and so on
Knowing (intercepting) y does not reveal the next password (F-1(y))
if F is a one-way function
User calculates Fn(x) using a hand-held calculator, a trusted
workstation, or a portable computer
In Bellcore’s implementation of this scheme, called S/Key, user
calculates the sequence on a secure machine, encodes it as a
sequence of short words, and prints it

Page

S/Key
One-time password scheme based on idea of
Lamport
h one-way hash function (MD5 or SHA-1, for
example)
User chooses initial seed k
System calculates:

h(k) = k1, h(k1) = k2, …, h(kn–1) = kn

Passwords are reverse order:
p1 = kn, p2 = kn–1, …, pn–1 = k2, pn = k1

S/Key Protocol

user system{ name }

user system{ i }

user system
{ pi }

System stores maximum number of authentications n, number
of next authentication i, last correctly supplied password pi–1.

System computes h(pi) = h(kn–i+1) = kn–i = pi–1. If match with
what is stored, system replaces pi–1 with pi and increments i.

Page

“Something about you”
Biometrics are increasingly common as
identification rates improve.

fingerprints
retinal scan, iris scan
facial heat
voice pattern/recognition
signatures (handwriting)
typing

See also:
U.S. National Biometric Test Center; San Jose State Univ. (CA)
www.nist.gov/biometrics

Some typical biometrics
Primarily Physical Features

Hand based
Fingerprint or fingerscan
Hand geometry

Face/eye
Facial recognition
Retinal scans / Iris scans

Strong Behavioral Component
Voice recognition
Signature recognition, including how the signature is
produced (pressure, speed, stroke order) and not just how
the signature looks
Typing style, including speed and rhythm of key pressure

Page

How does this work?
Some aspects are quite similar to standard
authentication procedures

Calibrate and store user information
Storage styles vary:

Common way in ‘99 was to encrypt user biometric
information and store it
Alternate method would be to store a validator for the
biometric information (hash, Unix-style validator)

Authenticate “as usual”
User “inputs” biometric info

(this might not be overt, and might not be a single event)
Proceed as with password techniques.

Matches are probabilities
Identifying information is not typed in, but obtained
by a device (imprecise measurement)

Characteristics mapped from analog to digital and
not all of the original information is retained
Devices for most common biometrics may not
produce identical results or even identically
repeatable results

Ex: fingerprint readers depend on environmental factors
such as the positioning of the finger, the “moisture” of the
hand, oils, and occupational issues which may cause a
print to be roughened over time

Page

Effectiveness

Other Characteristics
Can use several other characteristics

Eyes: patterns in irises unique
Measure patterns, determine if differences are
random; or correlate images using statistical tests

Faces: image, or specific characteristics like
distance from nose to chin

Lighting, view of face, other noise can hinder this
Keystroke dynamics: believed to be unique

Keystroke intervals, pressure, duration of stroke,
where key is struck
Statistical tests used

Page

Multimodal Biometrics

Cautions
These can be fooled!

Assumes biometric device accurate in the
environment it is being used in!
Transmission of data to validator is
tamperproof, correct

Page

Higher Storage Requirements

“Size” of the template as stored can be
quite large in comparison with a password
and is not necessarily directly tied to the
accuracy
Some typical template sizes:

Fingerscan: 250 - 100 bytes
Hand geometry: 9-20 bytes
Iris: 512 bytes
Retina: 96 bytes

Devices Usually Required

The device collecting the data is often proprietary
and/or uses proprietary algorithms
Patents protect much of the technology
There may be considerable computation involved in
computing a “validator” or template for storage
(far beyond the Unix validator)
Sometimes the biometric requires local installation
of a specialized reader device (such as for
fingerprints, but not for voice)

Page

Costs

Identity
Authentication is the binding of an identity to a subject
But what is identity?
A set of properties/attributes characteristic of a principal

(subject or object)

How to represent identity?
randomly chosen : not useful to humans
user chosen: probably not unique globally
hierarchical system: used to disambiguate

file system
X.500
IP address

Page

To verify identity
Authentication: does subject match identity?

Problem: does identity match principal ?
Solution: certificate

validation that identity belongs to known principal
Certification Authority issues certificate user chosen:
probably not unique globally
CA is trusted

Certificate Examples
Verisign

Independently verifies identity of principal
Levels of certification

Email address verified
Name/address verified
Legal identity verified

More common: corporate identity
Is this really PayTuition.EDU I am giving my bank account
number to?

PGP (Pretty Good Privacy): “Web of Trust”
Users verify/sign certificates of other users
Do I trust the signer?

or someone who signed their certificate?

Page

Anonymity
What if identity not needed?

Web browsing
Complaints about assignments

Removing identity not as easy as it sounds
I can send email without my userid
But it still traces back to my machine

Solution: anonymizer
Strips identity from message
Replaces with (generated) id
Send to original destination
Response: map generated id back to original
identity

Anonymity
Problem: Anonymizer knows identity

Can it be trusted?
Courts say no!

Solution: multiple anonymizers
Onion Routing
Crowds

