
Page 1

1

KERBEROS

2

Kerberos Authentication
Service
Developed at MIT under Project Athena in mid
1980s
Versions 1-3 were for internal use; versions 4 and
5 are being used externally
Version 4 has a larger installed base, is simpler,
and has better performance, but works only with
TCP/IP networks
Version 5 developed in mid 90’s (RFC-1510)
corrects some of the security deficiencies of
Version 4
Kerberos (intended) Services:

Authentication
Accounting
Audit

The last two were never implemented

Page 2

3

Objective
To provide a trusted third-party service
(based on the Needham/Schroeder
authentication protocol), named Kerberos,
that can perform authentication between
any pair of entities in TCP/IP networks
primarily used to authenticate user-at-
workstation to server
Authentication is two-way
Not meant for high risk operations (e.g.,
bank transactions, classified government
data, student grades)

4

Needham-Schroeder
Protocol
original third-party key distribution
protocol, for session between A and B
mediated by KDC
protocol overview is:
1. A→KDC: IDA || IDB || N1
2. KDC→A: EKa[Ks || IDB || N1 || EKb[Ks||IDA]]
3. A→B: EKb[Ks||IDA]
4. B→A: EKs[N2]
5. A→B: EKs[f(N2)]

Page 3

5

Physical Security

CLIENT WORKSTATIONS
None, so cannot be trusted

SERVERS
Moderately secure rooms, with moderately
diligent system administration

KERBEROS
Highly secure room, with extremely diligent
system administration

6

Design Goals
Impeccability

No cleartext passwords on the network
No client passwords on servers (server must store
secret server key)
Minimum exposure of client key on workstation
(smartcard solution would eliminate this need)

Containment
Compromise affects only one client (or server)
Limited authentication lifetime (8 hours, 24 hours,
more)

Transparency
Password required only at login
Minimum modification to existing applications

Page 4

7

Kerberos model
Network consists of clients and servers

clients may be users, or
programs that can, e.g., download files, send messages,
access databases and access printers

Kerberos keeps a database of clients and servers
with a secret key for each one (selected at the
time of registration)

O(n+m) keyspace, instead of O(nm) keyspace with n
clients and m servers

Kerberos provides authentication of one entity to
another and issues session key
Issues tickets for access rights

temporary rights issued by authentication server
tickets time-stamped to reduce replay attacks

8

Where To Start

Every principal has a master (secret) key
Human user’s master key is derived from the
password
Other resources must have their keys
configured in

Every principal is registered with the
Kerberos server AS
All principals’ master keys are stored in
the AS database (encrypted using the AS
master key)

Page 5

9

Encryption and clocks
Note:

Each user has a password which is converted
to a DES key
Client and server do not initially share an
encryption key
Any symmetric key system would work

Clocks
All machines that use Kerberos are loosely
synchronized (within a few minutes) to
prevent replays

10

Kerberos Components
Key Distribution Center (KDC) –
consists of two logical components:

Kerberos Database — with secret key for
each principal (user or service)
Authentication Service (AS) — uses the
Kerberos database to verify the identity of
users requesting the use of network services

Ticket Granting Server (TGS) — issues
tickets to clients for communicating with
network servers after the AS has verified
the identity of the client

Page 6

11

Kerberos Operation
The Kerberos protocol is
simple and straightforward.
First, the Client requests a
ticket for a Ticket-Granting
Service (TGS) from Kerberos
(Msg 1).
This ticket is sent to the
client encrypted using the
client’s secret key (Msg 2).
To use a particular server,
the client requests a ticket
for that server from the TGS
(Msg 3).

12

Kerberos Operation
If everything is in order,
the TGS sends back a
ticket to the client for the
server (Msg 4).
At this point the client
presents this ticket to the
server along with an
authenticator (Msg 5).
If there is nothing wrong
with the client’s
credentials, the server
permits access to the
service.

Page 7

13

Getting an Initial Ticket

When Bob logs into a workstation (WS),
WS sends Bob’s user id to AS in the clear
AS returns to the WS, encrypted with
Bob’s secret key KBob :

A session key KBob,TGS (a secret key to be used
during the current session)
A ticket-granting ticket (TGT) containing the
session key, the user id, and an expiration time,
encrypted with KTGS

14

Getting an Initial Ticket
After receiving the message from AS, WS
prompts Bob for his password and uses it to
derive Bob’s secret key KBob
Bob’s secret key is then used to decipher the
session key KBob,TGS and the TGT
WS discards both Bob’s password and his secret
key

Note that
When Bob requires access to a service (Alice), WS will
need to send the TGT to TGS.
Bob cannot read the contents of the TGT encrypted with
TGS secret key.
Since TGT contains all the information TGS needs about
the initial login session, Kerberos can be stateless.

Page 8

15

Getting a Server Ticket
When Bob wants to access a service (Alice), WS sends to
TGS the name Alice, and an authenticator which proves that
WS knows the session key
Authenticator consists of the time of day encrypted with
the session key (in this case KBob,TGS)
TGS decrypts the TGT to obtain KBob,TGS , and verifies the
timestamp (times can be off by some amount). If so, TGS
generates a new session key KBob, Alice (session key to be
shared by Bob and Alice), finds Alice’s master key, and
sends to WS a “ticket for Alice” and KBob, Alice, encrypted
with the session key KBob,TGS
The “ticket for Alice” consists of Bob’s identity, an
expiration time, and KBob, Alice encrypted using Alice’s master
key

16

Requesting a Service
Upon receiving the message from TGS, WS
decrypts the message using KBob,TGS

WS sends the “ticket for Alice” (that it cannot
read) and an authenticator to Alice
Alice uses KAlice to decrypt the ticket to obtain
KBob,Alice and decrypts the authenticator using
KBob,Alice to verify the timestamp
If everything checks out, Alice knows that the
message is from Bob

Page 9

17

Use of session key
Kerberos establishes a session key
KBob,Alice to be used by the applications for

client to server authentication (no additional
step required in the protocol)
mutual authentication (requires the additional
step of sending another message from server
to client { f(ABob, Alice) } KBob, Alice , using some
known (hash) function f)
message confidentiality using KBob, Alice

message integrity using KBob, Alice

18

Kerberos Version 4
Terms:

C = Client
AS = authentication server
V = server
IDc = identifier of user on C
IDv = identifier of V
ADc = network address of C
Kv = secret encryption key shared by AS and V
Kc,v = secret encryption key shared by C and V
TS = timestamp
|| = concatenation

Page 10

19

How Kerberos works
Kerberos uses two types of credentials

tickets (to convey keys and identity)
authenticators (to verify ‘identity’)

Tickettgs = EKtgs [Kc,tgs|| IDc || ADc || IDtgs || TS || Life]

Authenticatorc = EKc,tgs [IDc || ADc || TS]
A client uses a ticket (that he/she cannot read or
modify) to access a server

It can be used multiple times until it expires
A client generates an authenticator to use a service
on the server (once only)

20

V4 Authentication Dialogue

Authentication Service Exhange: To obtain
Ticket-Granting Ticket

(1) C AS:

IDc || IDtgs ||TS1

(2) AS C:

EKc [Kc,tgs|| IDtgs || TS2 || Lifetime2 || Tickettgs]

Page 11

21

V4 Authentication Dialogue

Ticket-Granting Service Echange: To obtain
Service-Granting Ticket

(3) C TGS:

IDv ||Tickettgs ||Authenticatorc

(4) TGS C:

EKc,tgs [Kc,v|| IDv || TS4 || Ticketv]

22

V4 Authentication Dialogue
Client/Server Authentication Exhange: To

Obtain Service

(5) C V:

Ticketv || Authenticatorc

(6) V C:

EKc,v[TS5 +1]

Page 12

23

Replicated Kerberos
Servers

To avoid single point of failure and performance
bottleneck, it is possible to replicate Kerberos
server
Mutual consistency of copies of password
database could be maintained as follows:

All updates are made to a primary (master) copy
Other (slave) copies are read only; these copies are
replaced periodically by downloading the master copy
The database (with encrypted keys) is transferred in the
clear
To ensure that an attacker has not rearranged data in
transit, a cryptographic checksum is also exchanged
To ensure that an attacker does not replace a copy by an
older copy, a timestamp is also sent

24

Kerberos V4 Realm
A full-service Kerberos environment
consists of the following entities:

A Kerberos server
A set of one, or more, clients
A set of one, or more, application servers

This environment is known as a realm.
Networks of clients and servers under
different administrative organizations
typically constitute different realms.

Page 13

25

Cross-Realm Operation
The Kerberos protocol is
designed to operate across
organizational boundaries: a
client in one organization can
be authenticated to a server
in another.
Each organization wishing to
run a Kerberos server
establishes its own "realm".
The name of the realm in
which a client is registered
is part of the client's name,
and can be used by the end-
service to decide whether to
honor a request.

26

Cross-Realm Operation
By establishing "inter-
realm" keys, the
administrators of two
realms can allow a client
authenticated in the local
realm to use its
authentication remotely.
With appropriate
permissions, a client could
arrange registration of a
separately-named
principal in a remote
realm, and engage in
normal exchanges with
that realm's services.

Page 14

27

Cross-Realm Operation: Message
Exchange

Typically, cross-realm message
exchange operates as follows:
C → AS:

IDC || IDtgs || TS1

AS → C:
EKC [KC, tgs || IDtgs ||

TS2 || Lifetime2 || Tickettgs]
C → TGS:

IDtgsrem || Tickettgs ||AuthenticatorC

28

Cross-Realm Operation: Message
Exchange

TGS → C:
E Kc,tgs [KC, tgsrem ||

IDtgsrem || TS4 ||Tickettgsrem]

C → TGSrem:
IDvrem || Tickettgsrem|| AuthenticatorC

TGSrem → C:
E Kc,tgsrem [Kc, vrem ||

IDvrem || TS6 || Ticketvrem]

C → Vrem:
Ticketvrem || AuthenticatorC

Page 15

29

Kerberos V5 vs. V4
addresses environmental shortcomings

encryption system dependence (only DES)
internet protocol dependence (only IP
addresses)
byte order (sender’s choosing + tag)
ticket lifetime (only 8bit of 5 min units =
21 hrs)
authentication forwarding (not allowed)
Inter-realm authentication (n2

relationships in V4, fewer in V5)

30

Kerberos V5 vs. V4
and technical deficiencies

double encryption (of ticket= not
necessary)
non-std mode of DES Propagating CBC
(now CBC DES for encryption and
separate integrity checks)
session keys (used too often: now
subsession keys)
password attacks (still possible)

Page 16

31

Kerberos V5 Realm
For a realm to function, it requires the
following:

The Kerberos server must have the user ID
(UID) and hashed password of all
participating users in its database.

All users are registered with the Kerberos
server.

The Kerberos server must share a secret key
with each server.

All servers are registered with the
Kerberos server.

32

Kerberos V5 Multiple Realms
Kerberos provides a mechanism for support multiple
realms and inter-realm authentication.
Inter-realm authentication adds the following third
requirement:

The Kerberos server in each inter-operating realm share a
secret key with the server in the other realm.

The two Kerberos servers are registered with each
other.

This inter-realm scheme requires that the Kerberos
server in one realm trust the Kerberos server in the
other realm to authenticate its users.

In a similar fashion, the participating servers in the second
realm must also be willing to trust the Kerberos server in
the first realm.

Page 17

33

Realms: Hierarchical Organization

Realms are typically organized hierarchically.
Each realm shares a key with its parent and a
different key with each child.

If an inter-realm key is not directly shared by
two realms, the hierarchical organization allows
an authentication path to be easily constructed.
If a hierarchical organization is not used, it may
be necessary to consult some database in order
to construct an authentication path between
realms.

34

Kerberos V5 Credentials: Ticket
A Kerberos ticket used to pass to server identity of
client for whom the ticket was issued.

also contains information that server uses to ensure that
client using ticket is same client to whom ticket was issued.

Some of the information, encrypted using the
server’s secret key, in a ticket include

Client’s name
Client’s network address
Timestamp
Session key

A ticket is good for a single server and a single
client; it can, however, be used multiple times to
access a server ─ until the ticket expires.
Ticket security is assured since its critical elements
are encrypted using the server’s secret key.

Page 18

35

Kerberos V5 Tickets

Kerberos version 5 tickets are renewable,
so service can be maintained beyond
maximum ticket lifetime.
Ticket can be renewed until minimum of:

requested end time
start time + requesting principal’s max
renewable lifetime
start time + requested server’s max renewable
lifetime
start time + max renewable lifetime of realm

36

Kerberos V5 Authenticator
A Kerberos authenticator is generated each time a
client wishes to use a service on a server.
Some of the information, encrypted using the key
between the client and the server, in an
authenticator includes:

Client’s name
Timestamp
Session key

Unlike a ticket, an authenticator can be used only
once.

However, a client can create authenticators as
needed.

Page 19

37

Kerberos V5 Message Types

Kerberos uses six message types:
Client to Kerberos Authentication Server (AS)
Kerberos Authentication Server (AS) to Client
Client to Ticket-Granting Server
Ticket-Granting Server to Client
Client to Server
Server to Client

38

Getting the Initial Ticket

The client has one piece of information
to prove client’s identity – the password.

However, sending the password over the
network is not advisable.

Instead, the client sends a message
containing its name and the name of the
TGS to the Kerberos Authentication
Server (AS).

A network may have multiple TGS servers.

Page 20

39

Client to Authentication Server
In Kerberos V5 the initial message from the client to
the Kerberos Authentication Server would look as
follows:

C → AS:
Options || IDC || Realm || IDtgs || Times || Nonce1

Options: Used to request that certain flags be set
in the returned ticket.
IDC: The identifier of the client C.
Realm: Indicates the realm of the user.
IDtgs: Used to represent the identifier of the
Ticket-Granting Server.

40

Client to Authentication Server

Times: Used by the client to request the
following time settings in the ticket:

from: desired start time for requested ticket.
till: requested expiration time for the requested
ticket.
rtime: requested renew-till time.

Nonce: A random number to be repeated in the
message back to the client to assure that the
response is fresh and has not been replayed by
an attacker.

Page 21

41

Authentication Server to Client

The Kerberos Authentication Server (AS) looks
up the client in its database.
If the client exists in the database, Kerberos
generates a session key to be used between the
client and the TGS known as the Ticket Granting
Ticket (TGT).
In Kerberos V5 the message from the
Authentication Server to the client would look
as follows:
AS → C:

RealmC || IDC || Tickettgs ||
EKC [KC,tgs || Times || Nonce1 || Realmtgs || IDtgs]

42

Ticket Granting Ticket Format
The format for the TGT ticket is as follows:
Tickettgs =
Ektgs[Flags || KC,tgs || RealmC || IDC || ADC || Times]

What is encrypted using the TGS’s encryption key:
Flags
Encryption key Client C to TGS
Realm and ID for C
(optional) Addresses for which ticket valid
Time setting information

Page 22

43

Getting Server Tickets
A client has to obtain a separate ticket for each
service it wants to use.

When a client needs a ticket that it does not
already have, it sends a request to the Ticket-
Granting Server (TGS).

In reality, in most cases the program would do
this automatically and it would be invisible to
the user.

44

Client to TGS
The format for the this message is as follows:

C → TGS:
Options|| IDV || Times|| Nonce2 || Tickettgs|| AuthenticatorC

Options: Used to request that certain flags be set in the
return ticket.
IDV: The ID of the server for which the ticket is being
requested.
Nonce2: A different random number between the client
and the TGS.
Tickettgs: The ticket provided by the Ticket-Granting
Ticket server.
AuthenticatorC: An authenticator created by Client C to
validate it to the TGS.

Page 23

45

Client: Authenticator Format
The format for the client authenticator is as
follows:
AuthenticatorC = KKC,tgs [IDC || RealmC || TS1]

Notice that the following information is
encrypted using the secret key between Client C
and the TGS:

IDC: ID of Client C
RealmC: Realm of Client C
TS1: Timestamp when the authenticator was
created.

46

Getting Server Tickets
When TGS receives the request, it decrypts the
Ticket Granting Ticket (TGT) with the secret key
and uses the session key in the TGT to decrypt the
authenticator.
It compares the information in the authenticator
with the information in the ticket:

Client’s network address
Timestamp [Clocks must be in close synchronization]

If all is correct, the TGS returns a valid ticket for
the client to present to the requested server.
TGS creates new session key for client and server
encrypted with the session key shared by the client
and the TGS.
Information is sent back to client via a message.

Page 24

47

TGS to Client
The format for the this message is as follows:

TGS → C:
RealmC || IDC || TicketV ||

EKC, tgs [KC,V || Times || Nonce2 || RealmV || IDV]

The message from the TGS to C, encrypted using
secret key shared by Client and the TGS, contains
the following information:

ID and Realm information for Server V
Session key to be used by Client C and Server V
Time setting information
Return nonce

48

Requested Server: Ticket Format
The format for the TGT ticket is as follows:

TicketV =
EKV[Flags || KC,V || RealmC || IDC || ADC || Times]

Notice what is encrypted using the secret key
between the TGS and Server V:

Flags
Encryption key from Client C to Server V
Realm and ID for C
(optional) Addresses for which ticket valid
Time setting information

Page 25

49

Client to Server
Now, the client is able to authenticate itself to
the server that will provide the requested
service

The format for the message from the client to a
server to request the service is as follows:

C → V: Options || TicketV || AuthenticatorC

50

Client to Server: Ticket Formats
The format for the ticket between the client and the
server is:

TicketV =
EKV [Flags || KC, V || RealmC || IDC || ADC || Times]

Page 26

51

Client to Server: Authenticator Format

The authenticator sent by client to sever is:
AuthenticatorC =

EKV, C [IDC || RealmC || TS2 || Subkey || Seq #]

The subkey field is a client’s choice for an encryption key to be
used to protect this specific application session.

If omitted, session key from the ticket KC, V is used.
The Seq# field is an optional field that specifies the starting
sequence number to used by server for messages sent to the
client during this session.

Messages may be sequenced numbered to detect replays.

52

Message: Server to Client
The server decrypts and check the ticket, the
authenticator, and the client’s address and
timestamp.
If everything checks out, server is assured by the
Kerberos protocol that the client is who it says it is.
For applications that require mutual authentication,
the server sends the client back a message consisting
of the timestamp encrypted with the session key.

This demonstrates that the server knew the secret key and
could decrypt the ticket and authenticator.

Now, the client and serve can encrypt future
messages with the shared key.

Page 27

53

Message: Server to Client
The format for the message from the server
back to the client to provide mutual
authentication is:

V → C: E KC, V [TS2 || Subkey || Seq#]

54

Kerberos V5 Ticket Flags
The flags field was added in Kerberos V5.

The standard defines 11 flags (see Table 4.4 on Page
104 of text for the complete lists).

INITIAL: This flag indicates that a ticket was
issued using the AS protocol and not issued
based on a ticket-granting ticket.
INVALID: This flag indicates that a ticket is
invalid, which means that application servers
must reject tickets which have this flag set.

Page 28

55

Kerberos V5 Ticket Flags
RENEWABLE: This flag is normally only
interpreted by the ticket-granting service, not by
application servers, and can be used to obtain a
replacement ticket that expires at a later date.
POSTDATED: The POSTDATED flag indicates
that a ticket has been postdated.

The application server can check the auth-time field in the
ticket to see when the original authentication occurred.
Some services may choose to reject postdated tickets, or
they may only accept them within a certain period after
the original authentication.

56

Kerberos V5 Ticket Flags
PROXIABLE: normally interpreted by the ticket-
granting service and ignored by application servers.

When set, this flag tells the ticket-granting server that
it is OK to issue a new (proxy) ‘client’ ticket with a
different network address based on this ticket.

PROXY: This flag is set in a ticket by the TGS
when it issues a proxy ticket.
FORWARDABLE: This flag has an interpretation
similar to that of the PROXIABLE flag, except
ticket-granting tickets may also be issued with
different network addresses (to be used with
remote TGS)

Page 29

57

Limitations of Kerberos
It is possible to cache and replay old
authenticators during the lifetime (typically 8
hours) of the ticket
If a server can be fooled about the correct
time, old tickets can be reused
Vulnerable to password guessing attacks (attacker
collects tickets and does trial decryptions with guessed
passwords)
Active intruder on the network can cause denial
of service by impersonation of Kerberos IP
address

58

Not Addressed by Kerberos V5

"Denial of service" attacks are not solved with
Kerberos.

There are places in these protocols where an
intruder can prevent an application from
participating in the proper authentication
steps.

Principals must keep their secret keys secret.
If an intruder steals a principal's key, can
masquerade as that principal or impersonate
any server to the legitimate principal.

Page 30

59

Not Addressed by Kerberos V5

"Password guessing" attacks are not solved by
Kerberos.

If a user chooses a poor password, it is
possible for an attacker to successfully mount
an offline dictionary attack by repeatedly
attempting to decrypt, with successive
entries from a dictionary, messages obtained
which are encrypted under a key derived from
the user's password.

60

Kerberos V5 availability
Kerberos is not in the public domain, but MIT freely
distributes the code.

Integrating it into the UNIX environment is another story.
A number of companies sell versions of Kerberos
Microsoft has incorporated it into the Windows
2000 Server product line.
(http://www.sans.org/rr/win2000/kerberos.php)

Additional references
S. M. Bellovin and M. Merritt, “Limitations of the Kerberos
Authentication System,” Proc. USENIX, Winter 1991.
B. C. Neuman and T. Ts’o, “Kerberos: An authentication service
for computer networks,” IEEE Communications, September
1994, pp. 33-38.

