iAccess Control Mechanisms

= Access control lists
= Capabilities
= Locks and keys

= Secret sharing

i What's Wrong with ACM?

= Suppose we have 1k ‘users’ and 100k ‘files’
and users should only read/write their own
files
= The ACM will have 101k columns and 1k rows
= Most of the 101M elements are either empty or

identical

= Good for theoretical study but bad for

implementation

= Why bother with the empty elements?




Access Control Lists

s Columns of access control matrix

filel file2 file3
Anady rx r rwo
Betty rwxo r
Charlie rx rwo w

ACLs:

= filel: { (Andy, rx) (Betty, rwxo) (Charlie, rx) }
» file2: { (Andy, r) (Betty, r) (Charlie, rwo) }

= file3: { (Andy, rwo) (Charlie, w) }

i Default Permissions

= Normal: if not named, no rights over file
= Principle of Fail-Safe Defaults

= If many subjects, may use groups or
wildcards in ACL

= UNICOS: entries are (user, group, rights)
« If useris in group, has rights over file

= “*'is wildcard for user, group
(holly, *, r): holly can read file regardless of her group
(*, gleep, w): anyone in group gleep can write file




i Abbreviations

= ACLs can be long ... so combine users
= UNIX: 3 classes of users: owner, group, rest
= WX WX WX

Y
rest
group

owner
= Ownership assigned based on creating process
= Limited granularity

= Cannot “exclude”

i ACLs + Abbreviations

= Augment abbreviated lists with ACLs
= Intent is to shorten ACL

= ACLs override abbreviations
= Exact method varies

= Example: IBM AIX

= Base permissions are abbreviations, extended permissions
are ACLs with user, group

= ACL entries can add rights, but on deny, access is denied




i Permissions in IBM AlX

attributes:
base permissions

owner (bishop) : rw-
group (sys) : r--
others: ---

extended permissions enabled

specify rw- u:holly

permit -w- Uu:heidi, g=sys
permit rw- u:matt

deny -w- u:holly, g=faculty

7

i ACL Modification

= Who can do this?

= Creator is (typically) given own right that
allows this
= System R provides a grant modifier (like a
copy flag) allowing a right to be
transferred, so ownership not needed
« Transferring right to another modifies ACL




i Privileged Users

= Do ACLs apply to privileged users (root
in UNIX or administrator in Windows)?

= Solaris UNIX: abbreviated lists are ignored
for root subjects, but full-blown ACL entries
are not

= Other vendors: varies

i ACLs and Groups and Wildcards

= Classic form: neither; in practice, usually
= AIX: base perms gave group sys read only

permit -w- u:heidi, g=sys
line adds write permission for heidi when in that
group
= UNICOS:

= holly : gleep : r

user holly in group gleep can read file
= holly : * :r

user holly in any group can read file
= *:gleep:r

any user in group gleep can read file

10




Conflicts: three possibilities

= Allow access if any entry would allow access

= Deny access if any entry would deny access

= AIX: if any entry denies access, regardless of
where the entry is, access is denied

= Apply first entry matching subject

= Cisco routers: run packet through access control
rules (ACL entries) in order; on a match, stop, and
forward the packet; if no matches, deny

= Note default is deny so honors principle of fail-safe
defaults

11

i Revocation Question

= How do you remove subject’s rights to
a file?
= Owner deletes subject’s entries from ACL,
or rights from subject’s entry in ACL

= What if ownership not involved?
= Depends on system

= System R: restore protection state to what
it was before right was given
= May mean deleting descendent rights too ...

12




i Windows NT ACLs

ACL for files on NTFS patrtition
Different sets of rights

Basic: read, write, execute, delete, change
permission, take ownership

= grouped for files into sets called:

Generic: no access, read (read/execute), change
(read/write/execute/delete), full control (all), special
access (assign any of the basics)

= And for directories into sets called

Directory: no access, read (read/execute files in
directory), list, add, add and read, change (create,
add, read, execute, write files; delete subdirectories),
full control, special access 13

i Accessing Files in WindowsNT

1.

User not in file’s ACL nor in any group
named in file’'s ACL: deny access

ACL entry denies user access: deny
access (overrides grants)

If user is present, take union of rights
of all ACL entries giving user access:
user has this set of rights over file

14




i Capabillity Lists

= Rows of access control matrix

| file1 file2 file3
—Andy | % r Wo.
- Betty . r >
T e — EEE——
__Charlie rx rwo w_ |
C-Lists:

= Andy: { (filel, rx) (file2, r) (file3, rwo) }
= Betty: { (filel, rwxo) (file2, r) }
= Charlie: { (filel, rx) (file2, rwo) (file3, w) }

15

i Semantics

= Like a bus ticket
= Mere possession indicates rights that subject has over
object
= Object identified by capability (as part of the token)
= Name may be a reference, location, or something else
= Architectural construct in capability-based addressing;
this just focuses on protection aspects
= ACL controlled by OS, capabilities in part by
process

= Must prevent process from altering capabilities

= Otherwise subject could change rights encoded in capability

or object to which they refer
16




Implementation

Three mechanisms to protect capabilities

= Tagged architecture
= Bits protect individual words (only read or change too)

= Paging/segmentation protections

= Like tags, but put capabilities in a read-only
segment or page
= Programs must refer to them by pointers

= Otherwise, program could use a copy of the capability—
which it could modify

17

Implementation (cont.)

= Cryptography
= Associate with each capability a cryptographic checksum
enciphered using a key known to OS
= When process presents capability, OS validates checksum
= Example: Amoeba, a distributed capability-based system

= Capability is (name, creating_server, rights, check_field) and is
given to owner of object

= check fieldis 48-bit random number; also stored in table
corresponding to creating_server

= To validate, system compares check_field of capability with
that stored in creating_server table

= Makes forging a capability difficult
= Wulnerable if capability disclosed to another process

18




i Revocation

= Scan all C-lists, remove relevant capabilities
= Far too expensive!

= Use indirection
= Each object has entry in a global object table
= Names in capabilities name the entry, not the object
= To revoke, invalidate the entry in the table

= Can have multiple entries for a single object to allow control of
different sets of rights and/or groups of users for each object

19

i ACLs vs. Capabillities

= Theoretically equivalent; consider 2 questions
1. Given a subject, what objects can it access, and how?

». Given an object, what subjects can access it, and
how?

= ACLs answer second easily; C-Lists, first

= Probably the second question has been of most
interest in the past, hence ACL-based systems
more common than capability-based systems

= As first question becomes more important (in incident
response, for example), this may change

20

10



i Locks and Keys

= Associate /ock with object and key with subject
= Latter controls what the subject can access and how
= Subject presents key; if it corresponds to any of the locks on

the object, access granted
N
D N
D N

= This is more flexible
=

= Change either locks or keys
ACL C-List Locks/Keys o1

B E S
it
H E &3
HE DB

i Cryptographic Implementation

= Enciphering key is lock; deciphering key is key
= Encipher object o; store £,(0)
= Use subject’s key k”to compute D, (£,(0))
= Any of 77 subjects can access o0 (OR-access): store
0'= (£(0), ..., EL0))
= Requires consent of all /7to access o (AND-access):
store

0'= (E,(Ex(ELD))...))

22

11



i Type Checking

= Lock is type, key is operation

= Example: UNIX system call write cannot work on
directory object but does work on file

= Example: distinguish Instruction and Data spaces
of PDP-11
= execute only on instructions,
= read/write only on data

= Example: countering buffer overflow attacks on
the stack by putting stack on non-executable
pages/segments
= Then code uploaded to buffer will not execute
= Does not stop other forms of this attack, though ...
23

i Sharing Secrets

Related to locks and keys: How to construct a
control to allow certain subsets of subjects to
access an object

= Implements separation of privilege
» Use (t, n)-threshold scheme

= Data divided into 7 parts
= Any ¢ parts sufficient to derive original data

= Cryptographic approaches are a common way
to implement it

24

12



i Shamir’s Scheme

= Goal: use (¢ n)-threshold scheme to share
cryptographic key encoding data
= Based on Lagrange polynomials

= ldea: take polynomial p(x) of degree #1, set
constant term (p(0)) to key

= Compute value of p at n points, excluding x = 0

= By algebra, need values of p at any #distinct
points to derive polynomial, and hence constant

term (key)

25

i Key Points

= Access control mechanisms provide
controls for users accessing files
= Many different forms

= ACLs, capabilities, locks and keys
= Type checking too

= Ring-based -mechanisms-(Mandatory)
= PACLs (ORCON)

26

13



