
1

1

Security Policies
Overview
The nature of policies

What they cover
Policy languages

The nature of mechanisms
Types
Secure vs. precise

Underlying both
Trust

2

Security Policy
Policy partitions system states into:

Authorized (secure)
These are states the system can enter

Unauthorized (non-secure)
If the system enters any of these states, a 
breach of security has occurred

Secure system
Starts in an authorized state
Never enters an unauthorized state



2

3

Question
Policy disallows cheating

Includes copying homework, with or without 
permission

CS class has students do homework on 
department computer
Anne forgets to read-protect her homework file
Bill notices this and copies it
Who cheated?

Anne, Bill, or both?

4

Answer Part 1

Bill cheated
Policy forbids copying homework assignment
Bill did it
System entered unauthorized state (Bill having a 
copy of Anne’s assignment)

Department’s responsibility?
If not explicit in computer security policy, certainly 
implicit
Not credible that a unit of the university allows 
something that the university as a whole forbids, 
unless the unit explicitly says so



3

5

Answer Part 2

Anne did not protect her homework
Not required by security policy

She did not breach security
If policy said students had to read-
protect homework files, then Anne did 
breach security

Because she did not do this

6

Mechanisms

Entity or procedure that enforces some 
part of the security policy

Access controls (set to prevent someone 
from reading a homework file)
Disallowing people from bringing CDs and 
floppy disks into a computer facility to 
control what is placed on systems



4

7

Policy Models

Abstract description of a policy or class of policies
Focus on points of interest in policies

Confidentiality Policies
Security levels in multilevel security models
Prohibit direct or indirect information flow

Integrity Policies
Separation of duty in Clark-Wilson model
Restrict who/how data can be modified
Conflict of interest in Chinese Wall model (both conf./int.)

Availability Policies
describe what type/level of service must be provided

8

Integrity and Transactions

Some integrity policies use notion of transaction
Begin in consistent state

“Consistent” defined by specification (e.g., database)
Perform series of actions (transaction)

Actions cannot be interrupted
If actions complete, system in consistent state
If actions do not complete, system reverts to 
beginning (consistent) state
Note: two-phase commitment is not a security 
mechanism



5

9

(some) Types of Access Control

Discretionary Access Control (DAC, IBAC)
individual user sets access control mechanism to allow 
or deny access to an object; based on identity

Mandatory Access Control (MAC)
system mechanism controls access to object, and 
individual cannot alter that access

Originator Controlled Access Control (ORCON)
originator (creator) of information controls who can 
access information
Own right not enough to control rights

10

Policy Languages
Express security policies in a precise way
High-level languages

Policy constraints expressed abstractly

Low-level languages
Policy constraints expressed in terms of 
program options, input, or specific 
characteristics of entities on system



6

11

High-Level Policy Languages
Constraints expressed independently of 
enforcement mechanism
Constraints restrict actions and entities
Constraints expressed unambiguously

Requires a precise language, usually a 
mathematical, logical, or programming-like 
language; English typically not precise 
enough

12

Example: Web Browser

Goal: restrict actions of Java programs that 
are downloaded and executed under control 
of web browser
Language specific to Java programs
Expresses constraints as conditions restricting 
creation of classes and invocation of entities
Independent of enforcement mechanism



7

13

Expressing Constraints
Entities are classes, methods

Class: set of objects that an access constraint 
constrains (e.g., file, socket)
Method: set of ways an operation can be invoked 
(e.g., file.read() )

Operations
Instantiation: s creates instance of class c: s –| c
Invocation: s1 executes object s2: s1 |→ s2

Access constraints
deny(s op x) when b
While b is true, subject s cannot perform op on 
(subject or class) x; empty s means all subjects

14

Sample Constraints
Downloaded program cannot access password file on 
UNIX system

Program’s class and methods for files:
class File {
public file(String name);
public String getfilename();
public char read();

Constraint:
deny( |-> file.read) when

(file.getfilename() == “/etc/passwd”)

Program cannot open network connection when 100 
connections already exist

Constraint:
deny( |- socket) when (network.numconns >= 100)



8

15

Low-Level Policy Languages

Set of inputs or arguments to 
commands to check or set constraints 
on system
Low level of abstraction

Need details of system, commands

16

Example: X Window System

UNIX-based X11 Windowing System
Access to X11 display controlled by list

List says what hosts allowed, disallowed 
access

xhost +groucho -chico

Connections from host groucho allowed
Connections from host chico not allowed



9

17

Types of Mechanisms

secure precise broad

set of reachable states set of secure states

18

Secure, Precise Mechanisms
Can one devise a procedure for developing a 
mechanism that is both secure and precise?

Consider confidentiality policies only here
Integrity policies produce same result

Program = function with multiple inputs and 
one output

a function p: I1 × ... × In → R is a program with n
inputs ik ∈ Ik, 1 ≤ k ≤ n, and one output r ∈ R



10

19

Programs and Postulates
Observability Postulate: the output of a function 
encodes all available information about its inputs

Shared resources could be monitored
Covert channels considered part of the output

Example: authentication function
Inputs name, password; output Good or Bad
If name invalid, immediately print Bad; else access 
database
If time output of Bad, can determine if name valid
This means timing is part of output

20

Protection Mechanism

For a function p : I1 × ... × In → R, a protection 
mechanism is a function m : I1 × ... × In → R ∪E
for which, when ik ∈ Ik, 1 ≤ k ≤ n, either

m(i1, ..., in) = p(i1, ..., in) or
m(i1, ..., in) ∈ E.

E is set of outputs that indicate error/abnormal 
result

In above example, E = { “Password Database Missing”, 
“Password Database Locked” }



11

21

Confidentiality Policy

Confidentiality policy c for program p says 
which inputs can be revealed

Formally, for p : I1 × ... × In → R, it defines a set
A ⊆ I1 × ... × In of inputs available to observer

Protection mechanism is function 
m: I1 × ... × In → R ∪E

m is secure iff ∃ m´: A → R ∪ E such that, for all 
ik ∈ Ik, 1 ≤ k ≤ n, m(i1, ..., in) = m´(a) for some   
a ∈ A

22

Precision
Security policy may be over-restrictive

Precision measures how over-restrictive

m1, m2 distinct protection mechanisms for program 
p under policy c
m1 is as precise as m2 (m2 ≤ m1) if, for all inputs i1, …, in,
m2(i1, …, in) = p(i1, …, in) ⇒ m1(i1, …, in) = p(i1, …, in)
m1 more precise than m2 (m1 > m2) if in addition there is 
an input (i1´, …, in´) such that m1(i1´, …, in´) = p(i1´, …, 
in´) and m2(i1´, …, in´) ≠ p(i1´, …, in´).



12

23

Combining Mechanisms

m1, m2 protection mechanisms
m3 = m1 ∪ m2

For inputs on which m1 or m2 returns same value 
as p, m3 does also; otherwise, m3 returns value of  
m1

Theorem: if m1, m2 secure, then m3 secure
Also, m1 ≤ m3 and m2 ≤ m3

Follows from definitions of secure, precise, and m3

24

Existence Theorem

For any program p and security policy c, 
there exists a precise, secure 
mechanism m* such that, for all secure 
mechanisms m associated with p and c, 
m ≤ m*

Maximally precise mechanism
Ensures security
Minimizes number of denials of legitimate 
actions



13

25

Lack of Effective Procedure
There is no effective procedure that 
determines a maximally precise, secure 
mechanism for any policy and program.


