
1

Secure Systems Design Principles

2

Secure Systems Design
Principles

According to Saltzer and Schroeder – 1975
http://web.mit.edu/Saltzer/www/publications/protection/index.html

Overview
Principles

Least Privilege
Fail-Safe Defaults
Economy of Mechanism
Complete Mediation
Open Design
Separation of Privilege
Least Common Mechanism
Psychological Acceptability

According to Saltzer and Schroeder – 1975
http://web.mit.edu/Saltzer/www/publications/protection/index.html

Overview
Principles

Least Privilege
Fail-Safe Defaults
Economy of Mechanism
Complete Mediation
Open Design
Separation of Privilege
Least Common Mechanism
Psychological Acceptability

2

3

Overview
Simplicity

Less to go wrong, less to check
Fewer possible inconsistencies
Easy to understand

Restriction
Minimize access/interactions
Inhibit communication

4

1. Least Privilege
A subject/program should be given only the minimum
set of privileges necessary to complete its task

Function, not identity, determines controls
Rights added as needed, discarded after use

Examples:
System operator should not perform security
administration functions
Execution of an operating system utility by
application program only performs at privilege
level of application program.
UNIX network server to access port <1024 needs
root; if no longer needed (SMTP server), drop

3

5

Compartmentalization
Weakness of some Microsoft Applications: IIS 5 runs
under the Local System account, equivalent to root
privileges. Apache may run as “nobody” under UNIX;
under Windows the equivalent procedure is possible
but convoluted (and rarely done).

Technique to separate the code in different parts, so
that each part runs with least privilege.

if a part is compromised, others are still OK
Example: Separating a user interface from the
program running with special privileges (e.g., root)

6

2. Fail-Safe (permission based)
Defaults
"Unless a subject is given explicit access to
an object, it should be denied access to
that object"
Basic access decisions are made on
permissions rather than exclusion.
Default action is to deny, not grant, access
If action fails, system as secure as when
action began

4

7

Fail-Safe Defaults cont.
Examples:

Omitting a parameter from a system call
should result in less permission
New file is accessible only to its creator -
not world

Apache access control through
.htaccess: first (default) rule: deny
from all, allow from ...

8

3. Economy of Mechanism
“Security mechanisms should be as simple as
possible”
Complex mechanisms may not be correctly:

understood
modeled
configured
implemented
used

Simpler means less can go wrong
when errors occur, easier to understand and fix

5

9

Economy of Mechanism cont.
Keep the design, implementation, operation,
interaction with other components as simple as
possible, so that it can be analyzed, verified,
tested, etc.

KISS Principle
Examples:

Program flaws are easier to detect with small
modules of code.
The security Kernel can be validated if kept small
(formal validation)
(negative) IPSEC

10

4. Complete Mediation
“All accesses to objects must be checked
to ensure that they are allowed”
Performance vs. security issue

Results of access check are often cached
What if permissions have changed since the last
check?
Mechanisms to invalidate or flush caches after a
change are often missing

Architecture issue
Capability granting and management

How did a capability given to Alice end up in Malory's
hands?

6

11

Complete Mediation cont.
Every access to every object must be validated. No
path may violate this. Usually done once, on first action

UNIX: access checked on open, not checked thereafter
If permissions change after, may get unauthorized access

Decision procedure: whether access should be granted
using a Reference monitor:

considers requests, grant some, deny some

Reference
Monitor

Reference
Monitor

Subject
request

Grant
Request

Request
denied

12

5. Open Design
“The security of a mechanism should not
depend on the secrecy of its design or
implementation.”
If the details of the mechanism leaks (through
reverse engineering, dumpster diving or social
engineering), then it is a catastrophic failure
for all the users at once.
If the secrets are abstracted from the
mechanism, e.g., inside a key, then leakage of a
key only affects one user.

7

13

Open Design cont.
Security should not depend on secrecy
of design or implementation

Popularly misunderstood to mean that
source code should be public
“Security through obscurity”: correct
operation is not related to secrecy of
design
Does not apply to information such as
passwords or cryptographic keys, where
secrecy is needed

14

6. Separation of Privilege
“A system should not grant permission
based on a single condition.”
Removes a single point of failure
Require multiple conditions to grant
privilege and two or more system
components work together to enforce
security

Defense in depth
Example: two-factor authentication

Requiring both biometric and token recognition
systems reduces risks

8

15

Separation of Privilege cont.

Analogous to the separation of duty:
By requiring multiple factors, collusion
becomes necessary, and risks due to
bribery (compromise of one factor) are
reduced
Dual-signature checks

If one component is defeated, system
is not completely compromised

16

7. Least Common Mechanism
“Mechanisms used to access resources
should not be shared”
Concept: You have two different services,
of different priorities and value, provided
to two different sets of users. The more
resources they share, the more likely one
can influence the other in order to:

Transmit forbidden data (covert channels issue)
Limit availability (denial of service, FTP and
Web services on the same computer share a
common thread pool)

9

17

Least Common Mechanism cont.
Mechanisms should not be shared

Information can flow along shared channels that
may become covert channels
To send a 1 bit, first process uses 75% of the
CPU; to send a 0 bit, it uses 25%. The other
process sees how much CPU it can get and
deduce what the first process uses, and hence
is sending.

Isolation
Virtual machines
Sandboxes

18

8. Psychological Acceptability
Security mechanisms should not make the
resource more difficult to access than if the
security mechanism were not present.
Example: Commercial where users have
become bald and lost (all?) their hair in order
to comply with a biometric authentication
mechanism requesting hair samples.
Problem: Users looks for ways to defeat the
mechanisms and “prop the doors open”
In practice, difficulty proportionate to the
value of the protected asset is accepted

10

19

Psychological Acceptability cont.
Examples:

Users write down passwords which are too
difficult to remember
.rhosts mechanism bypasses password security
check

Security mechanisms should not add to
difficulty of accessing resource

Hide complexity introduced by security
mechanisms
Ease of installation, configuration, use
Human factors critical here

20

Key Points

Principles of secure design underlie
all security-related mechanisms
Require:

Good understanding of goal of
mechanism and environment in which it is
to be used
Careful analysis and design
Careful implementation

