
© F.Parisi-Presicce

RACES and LINKS

Simple Race Condition
Process 1 Process 2

1 X := 0 ; X := 0 ;

2 Do something… Do something…

3 X := X + 1 ; X := X – 1 ;

4 Print x Print x

© F.Parisi-Presicce

Requirements for race condition

Two or more processes have access
to the same object
Algorithm used by processes does not
properly enforce an access order
At least one process modifies the
object

Simple Java servlet
import java.io.*;
import javax.servlet.*;

import javax.servlet.http.*;

public class Counter extends HttpServlet {
int count = 0;

public void doGet(HttpServletRequest in, HttpServletResponse out)

throws ServletException, IOException {

out.setContentType("text/plain");
Printwriter p = out.getWriter();

count++;

p.println(count + " hits so far!");
}

}

© F.Parisi-Presicce

Modification to Java servlet
import java.io.*;
import javax.servlet.*;

import javax.servlet.http.*;

public class Counter extends HttpServlet {
int count = 0;

public void doGet(HttpServletRequest in, HttpServletResponse out)

throws ServletException, IOException {

out.setContentType("text/plain");
Printwriter p = out.getWriter();

p.println(++count + " hits so far!");

}

}

Race Conditions
In a pre-emptively multi-tasked
environment, anything can happen in-
between the execution of two statements

Check if something is OK to do
Do it (perhaps the conditions have changed?)

Semaphores and locks are mechanisms that
prevent concurrent access to, or
modification of, an object by different
processes

© F.Parisi-Presicce

To fix race conditions
Race condition occurs when a certain
condition assumed true does not hold
Window of vulnerability: interval of time
when violation of assumption leads to
incorrect behavior
Reduce window to zero: make relevant
code atomic
An operation that cannot be interrupted
with regards to an object is called
"atomic"

Java synchronized
The synchronized keyword ensures that
only a single thread will execute a
statement or block at a time

Prevents thread from observing object in
inconsistent state
Enforces appropriate sequencing of state
transitions

The JVM implementation is responsible
for enforcing it
It can have a significant impact on
efficiency

© F.Parisi-Presicce

Revised Java servlet
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class Counter extends HttpServlet {

int count = 0;
public synchronized void

doGet(HttpServletRequest in, HttpServletResponse out)
throws ServletException, IOException {

out.setContentType("text/plain");
Printwriter p = out.getWriter();
count++;
p.println(count + " hits so far!");

}
}

The keyword synchronized prevents multiple threads from running code in the same object.

Improved Java servlet

public class Counter extends HttpServlet {
int count = 0;
public void doGet(HttpServletRequest in, HttpServletResponse out)

throws ServletException, IOException {
int my_count;
out.setContentType("text/plain");
Printwriter p = out.getWriter();
synchronized(this) {

my_count = ++count;
}
p.println(my_count + " hits so far!");

}
}

The keyword synchronized is limited to as small a block of code as possible.

© F.Parisi-Presicce

Other Example Race Condition
User 1 creates a file with world-
writable permissions
User 1 wants to change the permissions
to exclude others with "chmod 700
filename"
User 2 tries to overwrite the file in-
between
Will user 1 or user 2 succeed?

User 1 should have set the umask correctly!

Database Race Condition

If (condition for field 1)
then do something to field 2

However process 2 changes field 1 in-
between...
Result: invalid combination of values
(e.g., bank account balance)

© F.Parisi-Presicce

Effects of Race Conditions
Normally:

race conditions show up as periodic errors
frequency of the error will depend upon how likely the
'bad' order is to occur
it is often hard to get race condition errors to repeat

When exploited:
crackers can attempt to force the particular conditions
that will produce a flaw
depending upon the exact form of the flaw, it may be
produced with high probability
most common (mis)use: modify the value of some shared

object

Types of modifications:

Change owner or other attribute of a
file
Change file read/written to
Modify data in file
Add information to file

© F.Parisi-Presicce

Example: mkdir.
mkdir is actually a fairly complex sequence of
actions. Here are some of the actions
triggered by mkdir dir under an early
implementation for a Unix system:

Superuser creates a directory object dir
Permissions are set to 777.
Superuser does a chown to change the ownership
of the directory to the calling user.
Modify permissions via umask(2) to match the

environment umask value.
Can you spot the problem??

One difficulty ...
From the man pages:

The mkdir command creates specified directories in
mode 777. The directories are then modified by
umask(2), according to how you have set up umask.

Patient crackers can automate a process to
exploit this race condition to obtain ownership
of file. Here is a well-known method:

Find a writable directory
Start a scanning program that will look for creation
of /tmp/junk
Start up mkdir /tmp/junk and use nice to cause
it to run slowly in the background. Move scanner to
foreground.

© F.Parisi-Presicce

Flaw continued ...
When the scanner spots the new
directory:

1. Remove the original /tmp/junk
2. Create a link from the secret file you

want to /tmp/junk
Suppose the scanner's link in (2) beat
the mkdir's chown. Now mkdir will
change the ownership of the secret
file to cracker.

Why do these problems
arise?

Problem: there are many of these race
conditions in operating systems. Many occur in
common system utilities.

It is a lot of trouble to identify and then fix them.
Often the fix will cause systems to run slower, since
it is necessary to coordinate access. Most sites do
not have anyone with the time or ability to do so
properly.

The above explains why it is important that all
users of a system be trustworthy.

© F.Parisi-Presicce

Another example
Aside: not all race conditions are in

software. Here is an old hardware
problem mentioned on alt.hacker:
The vending machines at school allows you to charge snacks

to your student ID. First, you run your ID through a
magnetic scanner and then the machine connects to a
server (through a phone jack in the back) and checks to
see if you have any credit. Once your ID clears, you
simply unplug the jack, click on Snickers, and un/re-plug
the machine.

Obviously, this just another way to
shoplift :(

Yet another example
Using same buffer for plaintext and ciphertext

Load buffer with plaintext
Encrypt buffer
Send buffer contents to recipient

Looks harmless, until in multithreaded application,
last two steps swapped and plaintext is sent
Impossible? Not for Internet Information Server 4
when using SSL (occasional unencrypted packet sent)

www.microsoft.com/technet/security/bulletin/MS99-053.asp
Use two buffers, zeroing out the ciphertext buffer
across calls

© F.Parisi-Presicce

File System Vulnerabilities
Most common attack vectors:

Symlink attacks (234 entries as of April 2004)
Directory traversal attacks (252 entries)

Other attack vectors:
Information leakage

Recycled disk space and buffers
File descriptors

Insecure file permissions (configuration issue)
File system "mounting" issues (OS issue)

Symlink Attacks: Outline
Symbolic links and hard links
Basic symlink attack

Known or predictable file name
Defense: Randomness

Symlink attacks on insecure
temporary files

Race conditions (148 entries in ICAT)
Defense: Atomic operations

© F.Parisi-Presicce

File System Links
To create a link:

ln [-fhns] source_file [target_file]
Two types of links:

Hard links
Symbolic links

What is the difference?

File System Links
Hard links

Windows: CreateHardLink
UNIX: ln

Symbolic links
UNIX:

ln -s
Windows:

a.k.a. "directory junctions" in NTFS

© F.Parisi-Presicce

Hard Links
Indistinguishable from original entry
May not refer to directories or span file
systems
Created link is subject to the same, normal
file access permissions.
Deleting a hard link does not delete the file
unless all references to the file have been
deleted
A reference is either a hard link or an open
file descriptor

Example
% ls -al .localized
-rw-r--r-- root meuser .localized
% ln .localized pascal/hard.loc
% ls -al pascal/hard.loc
-rw-r--r-- root meuser hard.loc
% rm pascal/hard.loc
override rw-r--r-- root/meuser for
pascal/hard.loc? Yes
% ls -al .localized
-rw-r--r-- root meuser .localized
Note that the hard link showed the same permissions
Note that deleting the hard link did not delete the
file (the reference count was not zero)

© F.Parisi-Presicce

Symbolic Links
Windows:

Directory junctions apply to directories only
Can refer to directories on different computers

Jargon: "File system reparse points"
Contain parameters resolved at access time
Several operations, complex setup (see
http://www.sysinternals.com/ntw2k/source/misc
.shtml#junction)

UNIX:
Contain a path, which is resolved at access time
May refer to directories and files
May span file systems
Permissions appear different from the original

Symbolic Link Example
Using the same starting file as for the hard
link example:
% ln -s .localized pascal/sym.loc
% ll pascal/sym.loc
lrwxr-xr-x 1 pascal staff pascal/sym.loc
-> .localized

Note:
The “->”
The permissions (see the “l”?)
The owner and group are different (they were root/meuser
for ".localized")
Deleting the symlink doesn't delete the file

© F.Parisi-Presicce

Power of Symbolic Links
You can create links to files that don’t exist yet
Symlinks continue to exist after the files they
point to have been renamed, moved or deleted

They are not updated
You can create links to arbitrary files, even in file
systems you cannot see
Symlinks can link to files located across partition
and disk boundaries
Example:

You can change the version of an application in use, or
even an entire web site, just by changing a symlink

Basic Attack
Trick a process (with higher privileges) to operate on a
file different from the one it thinks it is.
Example:

Create the link "temp -> /etc/password"
A privileged process executes

truncate(“temp”, 0)
The "truncate" call follows symlinks
Changes the length of the file "temp" to 0

But truncated /etc/password instead!
Note that the contents are deleted, not the file

Can be used for write or read operations
Or deletion if the symlink is in the path and not the end point

© F.Parisi-Presicce

Conditions of Vulnerability
If you are operating in a secured directory, you do
not need to worry about symlink attacks
A secured directory is one with permissions of all
the directories, from the root of the file system to
your directory, set so that only you (or root) can
make changes in your secured directory

Example: /home/me (user home directories are
usually set by default with secure permissions)

You are at risk if you operate
In a shared directory such as /tmp
In someone else's directory, especially with
elevated privileges

Example: an anti-virus program running as administrator

Suggested Workarounds
1) Store the file in a secured directory

It was stored in a shared directory
2) Relinquish root privileges before doing file

operations (if not needed)
3) Use a random name (!)
4) Create files with "umask 077"

New files with no permissions to groups and
others

What about third-party components that
you utilize?

© F.Parisi-Presicce

Best Defenses
If you are operating:

In someone else's directory, relinquish elevated
privileges

If you are root (or administrator), set your effective user
ID to that of the directory's owner for file operations in
that directory

assuming that the directory is secured for that user;
otherwise, you may endanger that user's files

If you are not root, you may be at risk of attacks against
files you own elsewhere

Do not operate on files in other user's directories
In a shared directory such as /tmp, consider using
instead

A temporary directory inside your home directory
A secured directory for root or administrator temporary
files

UNIX Filenames vs File
Descriptors

Filenames and directory structure are
changeable
Open file descriptors are fixed

System calls that use a file descriptor are to be
used whenever possible instead of the equivalent
functionality using paths

fchmod(int fd, mode_t mode);
fchown(int fd, uid_t owner, gid_t group);
fchdir(int fd);
fstat(int fd, struct stat *sb);

File descriptors specify an inode (see next slide)

© F.Parisi-Presicce

inodes
An inode is a data structure containing user, group and
access control information (and more)
The inode specifies the location of the file on the disk
Hard links associate a name to an inode

Several hard links can point to a single inode
There is no difference between the "first" hard link and
other ones

Inodes are deleted only when all references have been
deleted

Open file descriptors and hard links count as
references
Directories also have inodes

Hard Links in UNIX
By creating hard links, an attacker could make
you:

Change the permissions of an unintended file
Change the contents of an unintended file

Defenses:
Manipulate files inside safe directories (with
correctly set permissions)
Do not open and manipulate files as root if you don't
need to
Do not re-open temporary files in shared directories
(more on this later)

© F.Parisi-Presicce

Deleting a UNIX File
unlink(char *path);

Deletes a hard link
File (and inode) is actually deleted when the
link count reaches zero
Unlink (the file deletion call) follows symlinks!

Safely deleting a file is difficult if not done in a
secured directory

Deletes a symbolic link if the link is the last
component of the path

Does not affect intermediate symlinks!

Safely Deleting a File
Issue: A file you want to delete is not deleted if
someone else made a hard link to it
Scenario:

You have learned that a setuid program is
vulnerable, so you want to delete it (and perhaps
install a new version)
An attacker could still exploit it by making a hard
link to it

Safe Delete:
Remove the setuid/setgid bits
Unlink it (rm)
Reboot

© F.Parisi-Presicce

lstat
lstat(char *path, struct stat *sb);

lstat returns information on symbolic links
lstat takes a path, which may contain symbolic
links before the last item!
The struct contains file information

inode
file type "S_IFLNK" indicates that the last part of
the path is a symlink

Using lstat before deleting a file sounds
interesting

Deleting a File
Given the following pseudo-code:

lstat (intermediate_directory, sb);

if (sb says it's not a symlink) {
unlink("intermediate_directory/myfile");
}

What can happen?

© F.Parisi-Presicce

Answer
Race conditions between lstat and other
operations are possible
Someone may replace a file (or directory)
with a symlink in between (depending on
access permissions)

If you are root and manipulating someone else's
files, they may do this!

Chroot may help limit which files may be
affected, but does not prevent the problem
(there may still be interesting files to
target inside the chroot jail)

To open arbitrary files
lstat() the file before opening it, saving
the stat structure
Perform open()
fstat() the file descriptor returned by
open()
Compare fields in two stat structures

st_mode
st_ino
st_dev

If comparisons successful, lstat() called on
the opened file

