
Secure Software

Software is secure if it can handle intentionally
malformed input; attacker picks (the probability
distribution of) the inputs.
Secure software: Protect integrity of runtime
system.
Secure software ≠ software with security
features.
Networking software is a popular target:

Intended to receive external input.
May construct instructions dynamically from
input.
May involve low level manipulations of buffers.

Security & Reliability

In security, defender moves first; attacker
picks inputs to exploit weak defences.
To make software more secure, tested
against “untypical” usage patterns (but
there are typical attack patterns).
On PC, in control of software components
sending inputs to each other.
On the Internet, hostile parties can provide
input: Do not “trust” your inputs.

Abstraction

When writing code, programmers use elementary
concepts like character, variable, array, integer, data
and program, address (resource locator), atomic
transaction, …
These concepts have abstract meanings.
For example, integers are an infinite set with
operations ‘add’, ‘multiply’, ‘less or equal’, …
To execute a program, we need concrete
implementations of these concepts.

Benefits and Dangers of
Abstraction

Abstraction (hiding ‘unnecessary’ detail) helps in
understanding complex systems.
No need for the inner details of a computer to be able to
use it: we can write software using high level languages and
graphical methods.
Software security problems typically arise when concrete
implementation and the abstract do not match:

Address (location)
Character
Integer
Variable (buffer overflows)
Double-linked list
Atomic transaction

Input Validation

Application wants to give users access only to files
in directory A/B/C/.
Users enter filename as input; full file name
constructed as A/B/C/input.
Attack: use ../ a few times to step up to root
directory first; e.g. get password file with input
/../../../../etc/passwd.
Countermeasure: input validation, filter out ../
(not that easy).
Do not trust any input.

Unix rlogin

Unix login command:
login [[-p] [-h<host>] [[-f]<user>]
-f option “forces” log in: user is not asked for password

Unix rlogin command for remote login:
rlogin [-l<user>] <machine>
The rlogin daemon sends a login request for <user> to
<machine>

Attack (some versions of Linux, AIX):
% rlogin -l -froot <machine>

Results in forced login as root at the designated
machine

% login -froot <machine>

Unix rlogin

Problem: Composition of two commands.
Each command on its own is not vulnerable.
However, rlogin does not check whether the
“username” has special properties when passed to
login.

What will happen here?

int i = 1;
while (i > 0)
{
i = i * 2;
}

NOT the apparent infinite loop
because of the finite
representation of integers

Programming with Integers

In mathematics, integers form an infinite set.
On computer systems, integers are represented in binary.
representation of integer is a binary string of fixed length
(precision), so only a finite number of “integers”.
Programming languages: signed and unsigned integers, short and
long integers, …
Unsigned 8-bit integers

255 + 1 = 0 16 ∗ 17 = 16 0 – 1 = 255
Signed 8-bit integers

127 + 1 = -128 -128/-1 = -1
In mathematics: a + b ≥ a for b ≥ 0 but in programming no
longer true.

Code Example

OS kernel system-call handler; checks string
lengths to defend against buffer overruns.

char buf[128];
combine(char *s1, size_t len1,

char *s2, size_t len2)
{
if (len1 + len2 + 1 <= sizeof(buf)) {
strncpy(buf, s1, len1);
strncat(buf, s2, len2);
}
}

len1 < sizeof(buf)

len2 = 0xffffffff

len2 + 1 = 232-1 + 1
= 0 mod 232strncat will be executed

Memory configuration

Stack: contains return address,
local variables and function
arguments; relatively easy to decide
in advance where particular buffer
placed on the stack.

Heap: dynamically allocated
memory; more difficult but not
impossible to decide in advance
where a particular buffer placed on
the heap.

stack

heap

memory

0000

FFFF

Variables

Buffer: concrete implementation of a variable.
If value assigned to variable exceeds size of
allocated buffer, memory locations not allocated
to this variable are overwritten.
If memory location overwritten allocated to other
variable, value of other variable changed.
Depending on circumstances, attacker can change
value of sensitive variable A by assigning
deliberately malformed value to other variable B.

Buffer Overruns

Unintentional buffer overruns crash software (focus
for reliability testing)
Intentional buffer overruns problematic if attacker
can modify security relevant data.
Attractive targets: return addresses (to next piece of
code to be executed) and security settings.
In languages like C the programmer allocates and de-
allocates memory.
Type-safe languages like Java guarantee that memory
management is ‘error-free’.

System Stack

Function call: stack frame (activation record)
containing function arguments, return address and
statically allocated buffers pushed on the stack.
When call ends, execution continues at return
address specified.
Stack usually starts at top of memory and grows
downwards.
Layout of stack frames reasonably predictable.

Stack Frame – Layout

argument n
...

argument 1

local
variables

saved EBP
saved EIP

extended instruction
pointer (return address)

extended base pointer
(reference point for
relative addressing)
a.k.a. frame pointer

Stack-based Overflows

Find buffer on runtime stack of privileged
program to overflow return address.
Overwrite return address with start address
of code to execute (now privileged too).

value1

my_address
value2

return
address

buffer for
variable A

write to A:

value1|
value2|
my_address

Code Example

Declare local short string variable
char buffer[80];

use standard C library routine call
gets(buffer);

to read single text line from standard input to save into
buffer.
it corrupts stack if input longer than 79 characters.
Attacker loads malicious code into buffer and redirects
return address to start of attack code.

Shellcode

Overwrite return address so that execution jumps to
attack code (‘shellcode’).
Where to put the shellcode?
Shellcode on the stack as part of the malicious input;
a.k.a. argv[]-method.

To guess location, guess distance between return address
and address of input containing shellcode.

Details e.g. in Smashing the Stack for Fun and Profit.
return-to-libc method: attack calls system library;
change to control flow, but no shellcode inserted.

Race Conditions

Multiple computations access shared data
so that results depend on sequence of
accesses.

Multiple processes accessing same variable.
Multiple threads in multi-threaded processes
(as in Java servlets).

An attacker try to change value after
checked but before used.
TOCTOU (time-to-check-to-time-of use) is
a well-known security issue.

Prevention

Hardware features can stop buffer overflow attacks from
overwrite control information; Separate register for the return
address in Intel’s Itanium processor
no need to rewrite or recompile programs; only some processor
instructions modified.
Drawback: existing software that uses multi-threading may no
longer work.
Non-executable stacks stops attack code from being executed from
the stack.
Memory management unit configured to disable code execution on
the stack.
Not trivial to implement if existing O/S routines are executing code
on the stack, and problems with backwards compatibility
Attackers may find ways of circumventing this protection
mechanism

Prevention – Safer Functions

C is infamous for its unsafe string handling functions:
strcpy, sprintf, gets, …
Example: strcpy
char *strcpy(char *strDest, const char *strSource);

Replace unsafe string functions by functions where
number of bytes/characters to be handled are specified
(but not easy to compute correctly):

strncpy, _snprintf, fgets, …

Example: strncpy
char *strncpy(char *strDest, const char *strSource,
size_t count);

Prevention – Filtering

Filtering inputs recommended defence several times:
Whitelisting: Specify legal inputs; accept legal inputs,
block anything else.

Conservative, but if forget some specific legal inputs, legitimate
action might be blocked.

Blacklisting: Specify forbidden inputs; block forbidden
inputs, accept anything else.

if forget some specific dangerous input, attack may get through.
Taint analysis: Mark input from untrusted sources as
tainted, stop execution if security critical function
receives tainted input; sanitizing functions produce clean
output from tainted input.

Summary

Many of the problems listed may look trivial.
other ones not mentioned: scripting languages, XSS, SQL
and code injection, format strings ...

There is no silver bullet:
Code-inspection: better at catching known problems, may
raise false alarms.
Black-box testing: better at catching known problems.
Type safety: guarantees from an abstract (partial) model
need not carry over to the real system.

Experience in high-level programming languages may
be a disadvantage when writing low level network
routines.

Authentication & Authorization

principal

s o

reference
monitor

objectaccess
request

authentication authorization
ACL

Identity-based Access Control

Access control based on user identities.

The kind of access control familiar from operating
systems like Unix or Windows.

Do not confuse the ‘identity’ of a person with a
user identity (uid) in an operating systems; a uid is
just a unique identifier that need not correspond
to a real person (e.g. ‘root’).

RBAC = IBAC + roles.

IBAC

This model originated in ‘closed’ organisations
(‘enterprises’) like universities, research labs.
Organisation has authority over its members.
Members (users) can be physically located.
Access control policies refer naturally to user
identities.
Audit logs point to users who can be held
accountable.
Access control seems to require by definition
that identities of persons are verified.
Biometrics: strong identity-based access control?

Other Aspects

Access rules are local: no need to search for the
rule that should be applied; the rule is stored as an
ACL with the object.
Enforcement of rules is centralized: reference
monitor does not consult other parties when making
a decision.
Simple access operations: read, write, execute;
single subject per rule; no rules based on object
content.
Homogeneity: the same organisation defines
organizational and automated security policy.

Changes in the 1990s

Internet connections to parties never met before:
‘identity’ cannot be in our access rules.
not always able to hold them accountable.

Java sandbox: it is not necessary to refer to users
when describing or enforcing access control.
Access controlled at the level of applets, not at
the granularity of read/write/execute.
Instead of asking who made the request, ask what
to do with it.

Access Control in an ‘open’ World

authorization

Verify
evidence
providedCode id, session id,

privileges, location,
sender id, …

evidence Associate local
evidence (security
context) with request

Find relevant
policy, evaluate
whether there is
sufficient evidence
to grant request

authentication

reference
monitor

access
request

What changed with the web?

Separation of program and data is blurred;
executable content (applets, scripts) embedded in
interactive web pages that can process user input.
Computation moved to the client who needs
protection from rogue content providers.

Lesson of the early PC age: floppy disks from arbitrary
sources were the route for computer virus infections.

Client asked to make decisions on security policy
and on enforcing security; end user becomes
system administrator and policy maker.
Browser becomes part of the TCB.

Changes in the Environment

When organisations collaborate, access control can
be based on more than one policy.
Potential conflicts between policies have to be
addressed.
How to export security identifiers from one
system into another system?
Decisions on access requests may be made by an
entity other than the one enforcing the decision.
How does a user know which credentials to
present?

Code-based Access Control

If not possible to rely on principal who requests an
access control decisions, look at the request itself.
Requests can be programs, rather than elementary
read/write instructions.
Code-based access control: access control where
permissions are assigned to code.
Major examples: Java security model, .NET
security framework (code access control).

Access Control Parameters

Security attributes of code could be:
Site of code origin: local or remote?
URL of code origin: intranet or Internet?
Code signature: signed by trusted author?
Code identity: approved (‘trusted’) code?
Code proof: code author provides proof of
security properties;
Identity of sender: principal the code comes
from;
…

Call Chains

In code-based access control, when a process calls
another function, access decisions refer to access
rights assigned to that function.
Should the calling process also ‘delegate’ some of
its access rights to the process executing the
function being called?
Should the calling process limit the access rights of
the function executing the program being called?
These questions central in code-based access
control.

Call Chains

Which privileges should be valid when one function
calls another function?
Example: function A has access right to resource R,
B does not; A calls B, B requests access to R:
Should access be granted?
The conservative answer is ‘no’, but A could
explicitly delegate the access right to B.

A B R

Call Chains

Example: function A has access right to resource R,
B does not; B calls A, A requests access to R:
Should access be granted?
The conservative answer is ‘no’, but A could
explicitly assert its access right.

B A R

Enforcing Policies

How to compute current permissions granted to
code?
Access decisions should know about entire call
chain.
Information about callers maintained on call stack
used by Java VM for managing executions.
Design decision: re-use call stack for policy
evaluation.
Lazy evaluation: evaluate granted permissions just
when a permission is required to access a resource.

Dynamic Stack Inspection

Record for each stack frame the security
permissions of the function.
Rights of final caller are computed as the
intersection of the permissions for all entries on
the call stack.

B
A

effective rights =
rights(B) ∩ rights(A) ∩ …

Limits of Stack Inspection

Access control explained in terms of the runtime
stack for implementation reasons (lazy evaluation).

Performance? Common optimizations are disabled.
Security: What is guaranteed by stack inspection?
Hard to relate to high-level security policies.

Two concerns for developers:
Untrusted component may take advantage of my code.
Permissions may be missing when running my code.

Stack inspection is blind to many control and data
flows:

Parameters, results, mutable data, objects, inheritance,
callbacks, events, exceptions, concurrency…

Each case requires a specific discipline or mechanism.

Java Security

Java: strongly typed, object-oriented general
purpose programming language.
Java is type safe; the type of a Java object is
indicated by the class tag stored with the object
Static (and dynamic) type checking to examine
whether the arguments received during execution
are always of the correct type.
Security advantage: no pointers arithmetic; memory
access through pointers is one of the main causes
for security flaws in C or C++.

Java – Overview

Java source code translated into machine
independent byte code (similar to an assembly
language) and stored in class files.
Platform specific virtual machine interprets the
byte code translating it into machine specific
instructions.
When running a program, a Class Loader loads any
additional classes required.
Security Manager enforces the given security
policy.

Java Execution Model

Java
Source Code

Compiler Java
Byte Code

Java Runtime

Security
Manager

Class Loader

Byte Code
Verifier

executable

JDK 1.1 Security Model

system resources

Security Manager

full access
to resources

Sandbox
restricted access

local code remote code (applet)

trusted (signed) code (added in version 1.1)

Discussion

Basic policy is quite inflexible:
Local/signed code is unrestricted.
Applet/unsigned code is restricted to sandbox.

No intermediate level:
How to give some privileges to a home banking application?

Local/remote is not a precise security indicator:
Parts of the local file system could reside on other machines;
Downloaded software becomes “trusted” once it is cached or
installed on the local system.

For more flexible security policies a customized
security manager needed to be implemented.

Requires security AND programming skills.

Java 2 Security Model

Java 2 security model no longer based on the
distinction between local code and applets.
Applets and applications controlled by the same
mechanisms.
Reference monitor of the Java security model
performs fine-grained access control based on security
policies and permissions.
Policy definition separated from policy enforcement.
Single method checkPermissions() handles all security
checks.

Byte Code Verifier

Analyzes Java class files: performs syntactic
checks, uses theorem-provers and data flow
analysis for static type checking.
There is still dynamic type checking at run time
Verification guarantees properties like:

Class file is in the proper format.
Stacks will not overflow.
All operands have arguments of the correct type.
There will be no data conversion between types.
All references to other classes are legal.

Class Loaders

Protect integrity of the run time environment;
applets not allowed to create their own Class
Loaders and to interfere with each other.

Vulnerabilities in a class loader are particularly
security critical (if exploited by attacker to insert
rogue code).

Each Class Loader has own name space; each class
labeled with Class Loader that has installed it.

Security Policies

Security policy: maps a set of properties that
characterizes running code to a set of access
permissions granted to the code.
Code characterized by CodeSource:

origin (URL)
digital certificates

Permissions contain target name and set of actions.
Level of indirection: permissions granted to
protection domains:

Classes and objects belong to protection domains and
‘inherit’ the granted permissions.
Each class belongs to one and only one domain.

Security Manager

Security Manager: reference monitor in the JVM;
security checks defined in AccessController class.

Uniform access decision algorithm for all permissions.
Access (normally) only granted if all methods in
the current sequence of invocations have the
required permissions (‘stack walk’).
Controlled invocation: privileged operations;
doPrivileged() tells the Java runtime to ignore the
status of the caller.

Summary

Java 2 security model is flexible and feature-rich;
it gives a framework but does not prescribe a
fixed security policy.
JAAS (Java Authentication and Authorization
Service) adds user-centric access control.
Sandbox enforces security at the service layer;
security can be undermined by access to the layer
below:

users running applications other than the web browser.
attacks by breaking the type system.

