
1

Top 25 Most Dangerous
Software Errors

SANS Institute 2011

Out of more than 700 …
the most widespread and critical errors

that can lead to serious
vulnerabilities in software. They are
often easy to find, and easy to
exploit. They are dangerous because
they will frequently allow attackers
to completely take over the software,
steal data, or prevent the software
from working at all.

2

25th place
Use of a One-Way Hash without a Salt

Salt might not be good for your diet, but it can be
good for your password security. Instead of storing
passwords in plain text, a common practice is to apply a
one-way hash, which effectively randomizes the output
and can make it more difficult if (or when?) attackers
gain access to your password database.

24th place
Integer Overflow or Wraparound

In the real world, 255+1=256. But to a computer
program, sometimes 255+1=0, or 0-1=65535

3

23rd place
Uncontrolled Format String

The mantra is that successful relationships depend on
communicating clearly, and this applies to software,
too. Format strings are often used to send or receive
well-formed data. By controlling a format string, the
attacker can control the input or output in unexpected
ways

22nd place
URL Redirection to Untrusted Site

Many web applications have implemented redirect
features that allow attackers to specify an arbitrary
URL to link to, and the web client does this
automatically
First, the victim could be automatically redirected to a
malicious site that tries to attack the victim through
the web browser. Alternately, a phishing attack could
be conducted, which tricks victims into visiting
malicious sites that are posing as legitimate sites.
Either way, an uncontrolled redirect will send your
users someplace that they don't want to go.

4

21st place
Improper Restriction of Excessive
Authentication Attempts

An often-used phrase is "If at first you don't
succeed, try, try again." Attackers may try to
break into your account by writing programs
that repeatedly guess different passwords.

20th place
Incorrect Calculation of Buffer Size

In languages such as C, where memory management is
the programmer's responsibility, there are many
opportunities for error. If the programmer does not
properly calculate the size of a buffer, then the
buffer may be too small to contain the data that the
programmer plans to write - even if the input was
properly validated.

5

19th place
Use of a Broken or Risky Cryptographic
Algorithm

You may be tempted to develop your own encryption
scheme in the hopes of making it difficult for
attackers to crack. This kind of grow-your-own
cryptography is a welcome sight to attackers.

18th place
Use of Potentially Dangerous Function

The programmer's toolbox is chock full of power tools,
including library or API functions that make
assumptions about how they will be used, with no
guarantees of safety if they are abused.

6

17th place
Incorrect Permission Assignment for
Critical Resource

It's rude to take something without asking permission
first, but impolite users (i.e., attackers) are willing to
spend a little time to see what they can get away with.
If you have critical programs, data stores, or
configuration files with permissions that make your
resources readable or writable by the world - well,
that's just what they'll become.

16th place
Inclusion of Functionality from Untrusted
Control Sphere

The idea seems simple enough (not to mention cool
enough): you can make a lot of smaller parts of a
document (or program), then combine them all together
into one big document (or program) by "including" or
"requiring" those smaller pieces. This is a common
enough way to build programs. Combine this with the
common tendency to allow attackers to influence the
location of some of these pieces - perhaps even from
the attacker's own server - then suddenly you're
importing somebody else's code.

7

15th place
Incorrect Authorization

While the lack of authorization is more dangerous (see
elsewhere in the Top 25), incorrect authorization can
be just as problematic. Developers may attempt to
control access to certain resources, but implement it in
a way that can be bypassed. For example, once a person
has logged in to a web application, the developer may
store the permissions in a cookie. By modifying the
cookie, the attacker can access other resources.

14th place
Download of Code Without Integrity
Check

if you download code and execute it, you're trusting
that the source of that code isn't malicious. Maybe you
only access a download site that you trust, but
attackers can perform all sorts of tricks to modify
that code before it reaches you. They can hack the
download site, impersonate it with DNS spoofing or
cache poisoning, convince the system to redirect to a
different site, or even modify the code in transit as it
crosses the network.

8

13th place
Improper Limitation of a Pathname to a

Restricted Directory ('Path Traversal')

When you use an outsider's input while constructing a
filename, the resulting path could point outside of the
intended directory. An attacker could combine multiple
"..“ or similar sequences to cause the operating system
to navigate out of the restricted directory, and into the
rest of the system.

12th place
Cross-Site Request Forgery (CSRF)

In cross-site request forgery, the attacker tricks a
user into activating a request that goes to your site.
Thanks to scripting and the way the web works in
general, the user might not even be aware that the
request is being sent. But once the request gets to
your server, it looks as if it came from the user, not
the attacker, whohas essentially masqueraded as a
legitimate user and gained all the potential access that
the user has. This is especially handy when the user
has administrator privileges, resulting in a complete
compromise of your application's functionality.

9

11th place
Execution with Unnecessary Privileges

Your software may need special privileges to
perform certain operations, but wielding those
privileges longer than necessary can be
extremely risky. When running with extra
privileges, your application has access to
resources that the application's user can't
directly reach.

10th place
Reliance on Untrusted Inputs in a
Security Decision

Software developers often rely on untrusted inputs
and when these inputs are used to decide whether to
grant access to restricted resources, trouble is just
around the corner.

For any security checks that are performed on the client side,
ensure that these checks are duplicated on the server side,

10

9th place
Unrestricted Upload of File with
Dangerous Type

You may think you're allowing uploads of innocent
images (rather, images that won't damage your system
- the Interweb's not so innocent in some places). But
the name of the uploaded file could contain a
dangerous extension such as .php instead of .gif, or
other information (such as content type) may cause
your server to treat the image like a big honkin'
program.

8th place
Missing Encryption of Sensitive Data

If your software stores sensitive information on a local
file or database, there are ways for attackers to get
at the file. They may benefit from lax permissions,
exploitation of another vulnerability, or physical theft
of the disk. You know those massive credit card thefts
you keep hearing about? Many of them are due to
unencrypted storage.

11

7th place
Use of Hard-coded Credentials

Hard-coding a secret password or cryptograpic
key into your program is bad manners, even
though it makes it extremely convenient - for
skilled reverse engineers. While it might shrink
your testing and support budgets, it can reduce
the security of your customers to dust.

6th place
Missing Authorization

Software faces similar authorization problems that
could lead to more dire consequences. If you don't
ensure that your software's users are only doing what
they're allowed to, then attackers will try to exploit
your improper authorization and exercise unauthorized
functionality that you only intended for restricted
users.

12

5th place
Missing Authentication for Critical
Function

Software may expose certain critical functionality with
the assumption that nobody would think of trying to do
anything but break in through the front door. But
attackers know how to case a joint and figure out
alternate ways of getting into a system.

4th place
Improper Neutralization of Input During Web

Page Generation ('Cross-site Scripting')

Cross-site scripting (XSS) is one of the most prevalent, obstinate,
and dangerous vulnerabilities in web applications. It's pretty much
inevitable when you combine the stateless nature of HTTP, the
mixture of data and script in HTML, lots of data passing between
web sites, diverse encoding schemes, and feature-rich web
browsers. If you're not careful, attackers can inject Javascript
or other browser-executable content into a web page that your
application generates. Your web page is then accessed by other
users, whose browsers execute that malicious script as if it came
from you (because, after all, it *did* come from you). Suddenly,
your web site is serving code that you didn't write.

13

Medal Round

Now the top three among
Most Dangerous Software Errors

Stay tuned: they could move up or down when
we rank them again …

3rd place
Buffer Copy without Checking Size of Input

('Classic Buffer Overflow')

Buffer overflows are Mother Nature's little reminder
of that law of physics that says: if you try to put more
stuff into a container than it can hold, you're going to
make a mess. The scourge of C applications for
decades, buffer overflows have been resistant to
elimination. However, copying an untrusted input
without checking the size of that input is the simplest
error to make in a time when there are much more
interesting mistakes to avoid.

14

2nd place
Improper Neutralization of Special
Elements used in an OS Command ('OS
Command Injection')

Your software is often the bridge between an outsider
on the network and the internals of your operating
system. When you invoke another program on the
operating system, but you allow untrusted inputs to be
fed into the command string that you generate for
executing that program, then you are inviting attackers
to cross that bridge by executing their own commands
instead of yours.

1st place
Improper Neutralization of Special
Elements used in an SQL Command
('SQL Injection')

These days, it seems as if software is all about the data: getting
it into the database, pulling it from the database, massaging it
into information, and sending it elsewhere for fun and profit. If
attackers can influence the SQL that you use to communicate
with your database, then suddenly all your fun and profit belongs
to them. If you use SQL queries in security controls such as
authentication, attackers could alter the logic of those queries to
bypass security. They could modify the queries to steal, corrupt,
or otherwise change your underlying data.

