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Chapter 11CHAPTER 11

Random Numbers

Security-critical applications often require well-chosen random numbers, for pur-
poses ranging from cryptographic key generation to shuffling a virtual deck of cards.
Even though problems with random numbers seem as if they should be few and far
between, such problems are disturbingly common. Part of the problem is that com-
puters are fundamentally deterministic and therefore are not very good at doing any-
thing unpredictable. However, input from a user can introduce real randomness into
a system.

This chapter discusses how to get secure random numbers for your application. We
describe how to take a single, secure, random number (a seed), and stretch it into a
big stream of random numbers using a secure pseudo-random number generator.
We talk about how to get random data in lots of different representations (e.g., an
integer in a particular range or a printable string). We also discuss how to get real
randomness in an environment that is fundamentally deterministic, and we give
advice on figuring out how to estimate how much randomness exists in a piece of
data.

11.1 Determining What Kind of Random
Numbers to Use

Problem
Your application has a need for random numbers. You must figure out what you
need to do to get adequate randomness as cheaply as possible, yet still meet your
security properties. To do that, you need to understand what kinds of options are
available to you and what the trade-offs are.
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Solution
There are essentially three classes of solutions:

Insecure random number generators
More properly, these are noncryptographic pseudo-random number generators.
You should generally assume that an attacker could predict the output of such a
generator.

Cryptographic pseudo-random number generators (PRNGs)
These take a single secure seed and produce as many unguessable random num-
bers from that seed as necessary. Such a solution should be secure for most uses
as long as a few reasonable conditions are met (the most important being that
they are securely seeded).

Entropy harvesters
These are sometimes “true” random number generators—although they really
just try to gather entropy from other sources and present it directly. They are
expected to be secure under most circumstances, but are generally incredibly
slow to produce data.

For general-purpose use, the second solution is excellent. Typically, you will need
entropy (i.e., truly random data) to seed a cryptographic pseudo-random number
generator and will not need it otherwise, except in a few specific circumstances, such
as when generating long-term keys.

You should generally avoid the first solution, as the second is worthwhile even when
security is not an issue (particularly because we’ve seen numerous systems where
people assumed that the security of their random numbers wasn’t an issue when it
actually turned out to be).

Entropy is highly useful in several situations. First, there’s the case of seeding a ran-
dom number generator, where it is critical. Second, any time where you would like
information-theoretic levels of security (i.e., absolutely provable secrecy, such as is
theoretically possible with a one-time pad), then cryptographic randomness will not
do. Third, there are situations where a PRNG cannot provide the security level
required by a system. For example, if you want to use 256-bit keys throughout your
system, you will need to have 256 bits of entropy on hand to make it a full-strength
system. If you try to leverage an OS-level PRNG (e.g., /dev/random on Unix sys-
tems), you will not get the desired security level, because such generators currently
never produce data with more than 160 bits of security (many have a 128-bit ceiling).

In addition, a combination of the second and third class of solution is often a good
practical compromise. For example, you might want to use entropy if it is available,
but if it is not, fall back on a cryptographic solution. Alternatively, you might want to
use a cryptographic solution that occasionally gets its seed changed to minimize the
chance of a compromise of the internal state of the generator.
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Note that cryptographic pseudo-random number generators always produce an iden-
tical stream of output when identically seeded. If you wish to repeat a stream of
numbers, you should avoid reseeding the generator (or you need to do the exact
same reseeding at the exact right time).

Discussion
Most common “random number generators,” which we will call noncryptographic
pseudo-random number generators, are not secure. They start with a seed (which
needs to be random in and of itself to have any chance of security) and use that seed
to produce a stream of numbers that look random from the point of view of a statisti-
cian who needs random-looking but reproducible streams of data.

From the point of view of a good cryptographer, though, the numbers produced by
such a generator are not secure. Generally, noncryptographic generators leak infor-
mation about their internal state with each output, meaning that a good cryptogra-
pher can start predicting outputs with high accuracy after seeing a few random
numbers. In a real system, you generally do not even need to see the outputs directly,
instead inferring information about the outputs from the behavior of the program
(which is generally made even easier with a bit of reverse engineering of the pro-
gram).

Traditional noncryptographic pseudo-random number generators include the rand( )

and random( ) functions you’d expect to see in most libraries (so-called linear congru-
ential generators). Other noncryptographic generators include the “Mersenne
Twister” and linear feedback shift registers. If a random number generator is not
advertised as a cryptographic random number generator, and it does not output
high-entropy data (i.e., if it stretches out a seed instead of harvesting randomness
from some external input to the machine), do not use it.

Cryptographic pseudo-random number generators are still predictable if you some-
how know their internal state. The difference is that, assuming the generator was
seeded with sufficient entropy and assuming the cryptographic algorithms have the
security properties they are expected to have, cryptographic generators do not
quickly reveal significant amounts of their internal state. Such generators are capable
of producing a lot of output before you need to start worrying about attacks.

In the context of random number generation, entropy refers to the inherent
“unknowability” of inputs to external observers. As we discuss in Recipe 11.19, it is
essentially impossible to determine how unknowable something is. The best we can
do is to establish conservative upper limits, which is, in and of itself, quite difficult.

If a byte of data is truly random, then each of the 28 (256) possibilities are equally
likely, and an attacker would be expected to make 27 guesses before correctly identi-
fying the value. In this case, the byte is said to contain 8 bits of entropy (it can con-
tain no more than that). If, on the other hand, the attacker somehow discovered that
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the byte is even, he reduces the number of guesses necessary to 27 (128), in which
case the byte has only 7 bits of entropy.

We can have fractional bits of entropy. If we have one bit, and it has a 25% chance of
being a 0 and a 75% chance of being a 1, the attacker can do 50% better at guessing
it than if the bit were fully entropic. Therefore, there is half the amount of entropy in
that bit.

In public key cryptography, n-bit keys contain far fewer than n bits of
entropy. That is because there are not 2n possible keys. For example,
in RSA, we are more or less limited by the number of primes that are n
bits in size.

Random numbers with lots of entropy are difficult to come by, especially on a deter-
ministic computer. Therefore, it is generally far more practical to gather enough
entropy to securely seed a cryptographic pseudo-random number generator. Several
issues arise in doing so.

First, how much entropy do you need to seed a cryptographic generator securely?
The short answer is that you should try to give as much entropy as the random num-
ber generator can accept. The entropy you get sets the maximum security level of
your data protected with that entropy, directly or indirectly. For example, suppose
you use 256-bit AES keys, but chose your key with a PRNG seeded with 56 bits of
entropy. Any data encrypted with the 256-bit AES key would then be no more secure
than it would have been had the data been encrypted with a 56-bit DES key.

Then again, it’s incredibly hard to figure out how much entropy a piece of data con-
tains, and often, estimates that people believe to be conservative are actually large
overestimates. For example, the digits of π appear to be a completely random
sequence that should pass any statistical test for randomness with flying colors. Yet
they are also completely predictable.

We recommend that if you have done a lot of work to figure out how much entropy
is in a piece of data and you honestly think you have 160 bits there, you still might
want to divide your estimate by a factor of 4 to 8 to be conservative.

Because entropy is so easy to overestimate, you should generally cryptographically
postprocess any entropy collected (a process known as whitening) before using it. We
discuss whitening in Recipe 11.16.

Second, most cryptographic pseudo-random number generators take a fixed-size
seed, and you want to maximize the entropy in that seed. However, when collecting
entropy, it is usually distributed sparsely through a large amount of data. We dis-
cuss methods for turning data with entropy into a seed in Recipe 11.16. If you have
an entropy source that is supposed to produce good random numbers (such as a
hardware generator), you should test the data as discussed in Recipe 11.18.
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Finally, you need to realize that even properly used cryptographic pseudo-random
number generators are only good for a certain number of bytes of output, though
usually that’s a pretty large number of bytes. For example, AES in counter (CTR)
mode (when used as a cryptographic pseudo-random number generator) is only
good for about 264 bytes before reseeding is necessary (granted, this is a very large
number).

There are situations where you may want to use entropy directly, instead of seeding a
cryptographic pseudo-random number generator, particularly when you have data
that needs to be independently secured. For example, suppose you are generating a
set of ten keys that are all very important. If we use a PRNG, the maximum security
of all the keys combined is directly related to the amount of entropy used to seed the
PRNG. In addition, the security decreases as a potential attacker obtains more keys.
If a break in the underlying PRNG algorithm were to be found, it might be possible
to compromise all keys that have ever been issued at once!

Therefore, if you are generating very important data, such as long-term crypto-
graphic keys, generate those keys by taking data directly from an entropy source if
possible.

Tips on Collecting Entropy
Follow these guidelines when collecting entropy:

• Make sure that any data coming from an entropy-producing source is postpro-
cessed with cryptography to remove any lingering statistical bias and to help
ensure that your data has at least as many bits of entropy input as bits you want
to output. (See Recipe 11.16.)

• Make sure you use enough entropy to seed any pseudo-random number genera-
tor securely. Try not to use less than 128 bits.

• When choosing a pseudo-random number generator, make sure to pick one that
explicitly advertises that it is cryptographically strong. If you do not see the word
“cryptographic” anywhere in association with the algorithm, it is probably not
good for security purposes, only for statistical purposes.

• When selecting a PRNG, prefer solutions with a refereed proof of security
bounds. Counter mode, in particular, comes with such a proof, saying that if
you use a block cipher bit with 128-bit keys and 128-bit blocks seeded with 128
bits of pure entropy, and if the cipher is a pseudo-random permutation, the gen-
erator should lose a bit of entropy after 264 blocks of output.

• Use postprocessed entropy for seeding pseudo-random number generators or, if
available, for picking highly important cryptographic keys. For everything else,
use pseudo-randomness, as it is much, much faster.
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See Also
Recipes 11.16, 11.18, 11.19

11.2 Using a Generic API for Randomness and
Entropy

Problem
You would like to have a standard API for getting cryptographic randomness or
entropy, which you can then bind to any underlying implementation. Many recipes
in this book rely on random numbers and use the API in this recipe without concern
for what implementation is behind it.

Solution
The API in this recipe is exactly what you need. In this recipe, we show the API and
how to use it. In the next few recipes, we discuss how to bind it to third-party ran-
domness infrastructures.

Discussion
At an API level, this recipe is only going to look at how to fill a buffer with random
bytes. To get random values for other data types, see Recipes 11.10 through 11.14.

Here we are going to build a random number generation API where there is only a
single generator per application, or perhaps even a single generator for the entire
machine. Either way, we expect that the application will have to initialize the API.
Note that the initialization may need to seed a cryptographic pseudo-random num-
ber generator, so the initialization part might hang. If that is a problem, launch a
thread to call the initialization routine, but be aware that asking for any cryptograph-
ically strong pseudo-random numbers at all will cause your program to abort if the
system has not been initialized. The initialization routine is simply:

void spc_rand_init(void);

Because we know well that people will often forget to perform initialization, imple-
mentations of this API should automatically check to see if this routine has been
called when using other API calls, and call it at that point if not.

After initialization, we will provide two universally available options for reading
data, as well as a third option that will not always be available:

• Get cryptographically strong random numbers, as generated from a well-seeded
pseudo-random number generator.
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• Get entropy if it is available, and if it is not, fall back on cryptographically strong
random numbers (using any available entropy).

• Get data that should be highly entropic that has never passed through a pseudo-
random number generator. Note that this function is not always available and
that it will hang until enough entropy is available.

The first function, which always produces cryptographically strong randomness, has
the following signature:

unsigned char *spc_rand(unsigned char *buf, size_t b);

It places b bytes into memory, starting at the location buf, and returns buf (this is
done to minimize the chance of someone misusing the API). This function always
returns unless it causes your program to abort, which it does only if spc_rand_init( )
has never successfully returned.

The second function, which returns entropy if it is available, and otherwise produces
cryptographically strong randomness, has the following signature:

unsigned char *spc_keygen(unsigned char *buf, size_t b);

The arguments are the same as for spc_rand( ). The name change reflects the fact
that this is meant to be the function you will generally use for generating long-term
key material, unless you want to insist that key material come directly from entropy,
in which case you should use the spc_entropy( ) function. For all other uses, we rec-
ommend using spc_rand( ).

The spc_entropy( ) function mimics the first two functions:

unsigned char *spc_entropy(unsigned char *buf, size_t b);

However, note that this function will block until it has enough entropy collected to
fill the buffer. For Windows, this function is only usable using the code in this book
if you use EGADS, as discussed in Recipe 11.8.

The functions spc_keygen( ) and spc_entropy( ) should cryptographi-
cally postprocess (whiten) any entropy they use before outputting it, if
that’s not already done by the underlying entropy sources. Often, it
will be done for you, but it will not hurt to do it again if you are not
sure. (See Recipe 11.16 for how to do it.)

See Also
Recipes 11.8, 11.10, 11.11, 11.12, 11.13, 11.14, 11.16
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11.3 Using the Standard Unix Randomness
Infrastructure

Problem
You want to use random numbers on a modern-day Unix machine.

Solution
On most modern Unix systems, there are two devices from which you can read: /dev/
random, which is expected to produce entropy, and /dev/urandom, which is expected
to provide cryptographically secure pseudo-random values. In reality, these expecta-
tions may not always be met, but in practice, it seems reasonably safe to assume that
they are.

We strongly recommend accessing these devices through the API we present in Rec-
ipe 11.2.

Discussion

If you need a cryptographically strong random number source that is
nonetheless reproducible, /dev/random will not suit your purposes.
Use one of the other PRNGs discussed in this chapter.

Most modern Unix operating systems have two devices that produce random num-
bers: /dev/random and /dev/urandom. In theory, /dev/random may block and should
produce data that is statistically close to pure entropy, while /dev/urandom should
return immediately, providing only cryptographic randomness.

The real world is somewhat messy, though. First, your application may need to run
on a system that does not have these devices. (In that case, see Recipe 11.19, where
we discuss solutions to this problem.*) Any reasonable version of Linux, FreeBSD,
OpenBSD, or NetBSD will have these devices. They are also present on Mac OS X
10.1 or later, Solaris 9 or later, AIX 5.2 or later, HP-UX 11i or later, and IRIX 6.5.19
or later. As of this writing, only dead or officially “about to die” Unix variants, such
as Tru64 and Ultrix, lack these devices. Note that each operating system tends to
have its own implementation of these devices. We haven’t looked at them all, so we
cannot, in general, vouch for how strong and efficient these generators are, but we

* If you want to interoperate with such platforms (there are still plenty of systems without /dev/random and
/dev/urandom), that reinforces the utility of using our API; simply link against code that implements our API
using the solution from Recipe 11.8 instead of the solution from this recipe.
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don’t think you should worry about this issue in practice. (There are almost always
bigger fish to fry.)

Second, depending on the operating system, the entropy produced by /dev/random
may be reused by /dev/urandom. While few (if any) Unix platforms try to guarantee a
clean separation of entropy, this is more of a theoretical problem than a practical
problem; it is not something about which we personally would worry. Conversely,
depending on the operating system, use of /dev/urandom can drain entropy, denying
service to the /dev/random device.

Finally, most operating systems do not actually guarantee that /dev/urandom is prop-
erly seeded. To understand why, you need to know something about what generally
goes on under the hood. Basically, the randomness infrastructure tries to cull ran-
domness from user input. For example, tiny bits of entropy can be derived from the
time between console keystrokes. Unfortunately, the system may start up with very
little entropy, particularly if the system boots without user intervention.

To avoid this problem, most cryptographic pseudo-random number generators
stash away output before the system shuts down, which is used as a seed for the
pseudo-random number generator when it starts back up. If the system can reboot
without the seed being compromised (a reasonable assumption unless physical
attacks are in your threat model, in which case you have to mitigate risk at the phys-
ical level), /dev/urandom will produce good results.

The only time to get really paranoid about a lack of entropy is before you are sure the
infrastructure has been seeded well. In particular, a freshly installed system may not
have any entropy at all. Many people choose to ignore such a threat, and it is reason-
able to do so because it is a problem that the operating system should be responsible
for fixing.

However, if you want to deal with this problem yourself, be aware that all of the
operating systems that have a /dev/random device (as far as we can determine) moni-
tor all keyboard events, adding those events to their internal collection of entropy.
Therefore, you can use code such as that presented in Recipe 11.20 to gather suffi-
cient entropy from the keyboard, then immediately throw it away (because the oper-
ating system will also be collecting it). Alternatively, you can collect entropy yourself
using the techniques discussed in Recipes 11.22 and 11.23, then run your own cryp-
tographic pseudo-random number generator (see Recipe 11.5).

The /dev/random and /dev/urandom devices behave just like files. You should read
from these devices by opening the files and reading data from them. There are a few
common “gotchas” when using that approach, however. First, the call to read data
may fail. If you do not check for failure, you may think you got a random number
when, in reality, you did not.

Second, people will occasionally use the API functions improperly. In particular, we
have seen people who assume that the read( ) or fread( ) functions return a value or
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a pointer to data. Instead, they return –1 on failure, and otherwise return the num-
ber of bytes read.

When using standard C runtime functions, we recommend using read( ). If you are
reading from /dev/urandom, read( ) will successfully return unless a signal is deliv-
ered during the call (in which case the call should be made again), the operating sys-
tem is misconfigured, or there is some other catastrophic error. Therefore, if read( )
is unsuccessful, retry when the value of errno is EINTR, and fail unconditionally other-
wise. You should also check that the return value is equal to the number of bytes you
requested to read, because some implementations may limit the amount of data you
can read at once from this device. If you get a short read, merely continue to read
until you collect enough data.

When using /dev/random, things are the same if you are performing regular blocking
reads. Of course, if not enough entropy is available, the call will hang until the
requested data is available or until a signal interrupts the call.

If you don’t like that behavior, you can make the file descriptor nonblocking, mean-
ing that the function will return an error and set errno to EAGAIN if there isn’t enough
data to complete the entire read. Note that if some (but not all) of the requested data
is ready, it will be returned instead of giving an error. In that case, the return value of
read( ) will be smaller than the requested amount.

Given an integer file descriptor, the following code makes the associated descriptor
nonblocking:

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

void spc_make_fd_nonblocking(int fd) {

  int flags;

  flags = fcntl(fd, F_GETFL);  /* Get flags associated with the descriptor. */

  if (flags = = -1) {

    perror("spc_make_fd_nonblocking failed on F_GETFL");

    exit(-1);

  }

  flags |= O_NONBLOCK;

  /* Now the flags will be the same as before, except with O_NONBLOCK set.

   */

  if (fcntl(fd, F_SETFL, flags) = = -1) {

    perror("spc_make_fd_nonblocking failed on F_SETFL");

    exit(-1);

  }

}

Here, we will demonstrate how to use /dev/random and /dev/urandom properly by
binding them to the API we developed in Recipe 11.2. We will implement spc_

entropy( ) by reading from /dev/random in nonblocking mode. We will implement
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spc_rand( ) by reading from /dev/urandom. Finally, we will implement spc_keygen( )

by reading as much data as possible from /dev/random in a nonblocking fashion, then
falling back to /dev/urandom when /dev/random is dry.

Note that we need to open /dev/random on two file descriptors, one blocking and
one not, so that we may avoid race conditions where spc_keygen( ) expects a func-
tion to be nonblocking but spc_entropy( ) has set the descriptor to blocking in
another thread.

In addition, we assume that the system has sufficient entropy to seed /dev/urandom
properly and /dev/random’s entropy is not reused by /dev/urandom. If you are wor-
ried about either of these assumptions, see the recipes suggested earlier for remedies.

Note that you can expect that /dev/random output is properly postprocessed (whit-
ened) to remove any patterns that might facilitate analysis in the case that the data
contains less entropy than expected.

This code depends on the spc_make_fd_nonblocking( ) function presented earlier.

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <fcntl.h>

#include <errno.h>

static int spc_devrand_fd           = -1,

           spc_devrand_fd_noblock =   -1,

           spc_devurand_fd          = -1;

void spc_rand_init(void) {

  spc_devrand_fd         = open("/dev/random",  O_RDONLY);

  spc_devrand_fd_noblock = open("/dev/random",  O_RDONLY);

  spc_devurand_fd        = open("/dev/urandom", O_RDONLY);

  if (spc_devrand_fd = = -1 || spc_devrand_fd_noblock = = -1) {

    perror("spc_rand_init failed to open /dev/random");

    exit(-1);

  }

  if (spc_devurand_fd = = -1) {

    perror("spc_rand_init failed to open /dev/urandom");

    exit(-1);

  }

  spc_make_fd_nonblocking(spc_devrand_fd_noblock);

}

unsigned char *spc_rand(unsigned char *buf, size_t nbytes) {

  ssize_t       r;

  unsigned char *where = buf;

  if (spc_devrand_fd = = -1 && spc_devrand_fd_noblock = = -1 && spc_devurand_fd = = -1)

    spc_rand_init( );

  while (nbytes) {

    if ((r = read(spc_devurand_fd, where, nbytes)) = = -1) {
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      if (errno = = EINTR) continue;

      perror("spc_rand could not read from /dev/urandom");

      exit(-1);

    }

    where  += r;

    nbytes -= r;

  }

  return buf;

}

unsigned char *spc_keygen(unsigned char *buf, size_t nbytes) {

  ssize_t       r;

  unsigned char *where = buf;

  if (spc_devrand_fd = = -1 && spc_devrand_fd_noblock = = -1 && spc_devurand_fd = = -1)

    spc_rand_init( );

  while (nbytes) {

    if ((r = read(spc_devrand_fd_noblock, where, nbytes)) = = -1) {

      if (errno = = EINTR) continue;

      if (errno = = EAGAIN) break;

      perror("spc_rand could not read from /dev/random");

      exit(-1);

    }

    where  += r;

    nbytes -= r;

  }

  spc_rand(where, nbytes);

  return buf;

}

unsigned char *spc_entropy(unsigned char *buf, size_t nbytes) {

  ssize_t       r;

  unsigned char *where = buf;

  if (spc_devrand_fd = = -1 && spc_devrand_fd_noblock = = -1 && spc_devurand_fd = = -1)

    spc_rand_init( );

  while (nbytes) {

    if ((r = read(spc_devrand_fd, (void *)where, nbytes)) = = -1) {

      if (errno = = EINTR) continue;

      perror("spc_rand could not read from /dev/random");

      exit(-1);

    }

    where  += r;

    nbytes -= r;

  }

  return buf;

}

See Also
Recipes 11.2, 11.5, 11.8, 11.19, 11.20, 11.22, 11.23
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11.4 Using the Standard Windows Randomness
Infrastructure

Problem
You want to use random numbers on a Windows system.

Solution
Use CryptGenRandom( ) unless you absolutely need entropy, in which case see Recipe
11.8 and Recipes 11.20 through 11.23.

Discussion
Microsoft allows you to get cryptographically strong pseudo-random numbers using
the CryptoAPI function CryptGenRandom( ). Unfortunately, there is no provision for
any way to get entropy. The system does collect entropy behind the scenes, which it
uses to improve the quality of the cryptographically strong pseudo-random numbers
it gets.

Therefore, if this interface is being used to bind to the API we describe in Recipe
11.2, we can only implement spc_rand( ) and spc_keygen( ), both of which will be
exactly the same. If you want to try to get actual entropy on Windows, the only
solution as of this writing is to use EGADS, which we discuss in Recipe 11.8. Alter-
natively, you can collect it yourself, as discussed in Recipes 11.20 through 11.23.

To use CryptGenRand( ), you must first acquire an HCRYPTPROV context. To do this, use
the function CryptAcquireContext( ), which we discuss in some detail in Recipe 5.25.
With an HCRYPTPROV context in hand, you can call CryptGenRandom( ), which will
return TRUE if it is successful; otherwise, it will return FALSE, but it should never fail.
CryptGenRandom( ) has the following signature:

BOOL CryptGenRandom(HCRYPTPROV *hProv, DWORD dwLen, BYTE *pbBuffer);

This function has the following arguments:

hProv

Handle to a cryptographic service provider obtained via CryptAcquireContext( ).

dwLen

Number of bytes of random data required. The output buffer must be at least
this large.

pbBuffer

Buffer into which the random data will be written.
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Here we show how to use this function by binding it to the API from Recipe 11.2:

#include <windows.h>

#include <wincrypt.h>

static HCRYPTPROV hProvider;

void spc_rand_init(void) {

  if (!CryptAcquireContext(&hProvider, 0, 0, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT))

    ExitProcess((UINT)-1);  /* Feel free to properly signal an error instead. */

}

unsigned char *spc_rand(unsigned char *pbBuffer, size_t cbBuffer) {

  if (!hProvider) spc_rand_init( );

  if (!CryptGenRandom(hProvider, cbBuffer, pbBuffer))

    ExitProcess((UINT)-1); /* Feel free to properly signal an error instead. */

  return pbBuffer;

}

unsigned char *spc_keygen(unsigned char *pbBuffer, size_t cbBuffer) {

  if (!hProvider) spc_rand_init( );

  if (!CryptGenRandom(hProvider, cbBuffer, pbBuffer))

    ExitProcess((UINT)-1);

  return pbBuffer;

}

See Also
Recipes 5.25, 11.2, 11.8, 11.20, 11.21, 11.22, 11.23

11.5 Using an Application-Level Generator

Problem
You are in an environment where you do not have access to a built-in, cryptographi-
cally strong pseudo-random number generator. You have obtained enough entropy
to seed a pseudo-random generator, but you lack a generator.

Solution
For general-purpose use, we recommend a pseudo-random number generator based
on the AES encryption algorithm run in counter (CTR) mode (see Recipe 5.9). This
generator has the best theoretical security assurance, assuming that the underlying
cryptographic primitive is secure. If you would prefer a generator based on a hash
function, you can run HMAC-SHA1 (see Recipe 6.10) in counter mode.

In addition, the keystream of a secure stream cipher can be used as a pseudo-ran-
dom number generator.
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Discussion
Stream ciphers are actually cryptographic pseudo-random number generators. One
major practical differentiator between the two terms is whether you are using the
output of the generator to perform encryption. If you are, it is a stream cipher; other-
wise, it is a cryptographic pseudo-random number generator.

Another difference is that, when you are using a stream cipher to encrypt data, you
need to be able to reproduce the same stream of output to decrypt the encrypted
data. With a cryptographic PRNG, there is generally no need to be able to reproduce
a data stream. Therefore, the generator can be reseeded at any time to help protect
against internal state guessing attacks, which is analogous to rekeying a stream
cipher.

The primary concern with a good cryptographic PRNG at the application level is
internal state compromise, which would allow an attacker to predict its output. As
long as the cryptographic algorithms used by a PRNG are not broken and the genera-
tor is not used to produce more output than it is designed to support, state compro-
mise is generally not feasible by simply looking at the generator’s output. The
number of outputs supported by a generator varies based on the best attacks possi-
ble for whatever cryptographic algorithms are in use.

The risk of state compromise is generally not a big deal when dealing with some-
thing like /dev/random, where the generator is in the kernel. The only way to com-
promise the state is to be inside the kernel. If that’s possible, there are much bigger
problems than /dev/urandom or CryptGenRandom( ) producing data that an attacker
can guess.

In the user space, state compromise may be more of an issue, though. You need to
work through the threats about which you are worried. Threats are likely to come
only from code on the local machine, but what code? Are you worried about mali-
cious applications running with the same permissions being able to somehow peer
inside the current process to get the internal state? If so, perhaps you should have a
separate process that only provides entropy and runs with a set of permissions where
only itself and the superuser would be a concern (this is the recommended approach
for using the EGADS package discussed in Recipe 11.8).

If state compromise is a potential issue, you might have to worry about more than an
attacker guessing future outputs. You might also have to worry about an attacker
backtracking, which means compromising previous outputs the generator made.
Reseeding the generator periodically, as discussed in Recipe 11.6, can solve this
problem. At best, an attacker should only be able to backtrack to the last reseeding
(you can reseed without new entropy to mix in).

In practice, few people should have to worry very much about state compromise of
their cryptographic PRNG. As was the case at the operating system level, if such
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attacks are a realistic threat, you will usually have far bigger threats, and mitigating
those threats will help mitigate this one as well.

There is a lot that can go wrong when using a pseudo-random number generator.
Coming up with a good construct turns out to be the easy part. Here are some things
you should closely consider:

• Pseudo-random number generators need to be seeded with an adequate amount
of entropy; otherwise, they are still potentially predictable. We recommend at
least 80 bits. See the various recipes elsewhere in this chapter for information on
collecting entropy.

• Be careful to pay attention to the maximum number of outputs a generator can
produce before it will need to be reseeded with new entropy. At some point, gen-
erators start to leak information and will generally fall into a cycle. Note,
though, that for the configurations we present, you will probably never need to
worry about the limit in practice. For example, the generator based on AES-128
leaks a bit of information after 264 16-byte blocks of output, and cycles after 2128

such blocks.

• When adding entropy to a system, it is best to collect a lot of entropy and seed
all at once, instead of seeding a little bit at a time. We will illustrate why by
example. Suppose that you seed a generator with one bit of entropy. An attacker
has only one bit to guess, which can be done accurately after two outputs. If the
attacker completely compromises the state after two outputs, and we then add
another bit of entropy, he can once again guess the state easily. If we add one bit
128 times, there is still very little security overall if the generator state is compro-
mised. However, if you add 128 bits of entropy to the generator all at once, an
attack should essentially be infeasible.

• If an attacker can somehow compromise the internal state of a pseudo-random
number generator, then it might be possible to launch a backtracking attack,
where old generator outputs can be recovered. Such attacks are easy to thwart;
see Recipe 11.6.

In the following three subsections, we will look at three different techniques for
pseudo-random number generators: using a block cipher such as AES, using a stream
cipher directly, and using a cryptographic hash function such as SHA1.

Using generators based on block ciphers

If you are in an environment where you have use of a good block cipher such as AES,
you have the makings of a cryptographically strong pseudo-random number genera-
tor. Many of the encryption modes for turning a block cipher into a stream cipher are
useful for this task, but CTR mode has the nicest properties. Essentially, you create
random outputs one block at a time by encrypting a counter that is incremented after
every encryption operation.
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The seed should be at least as large as the key size of the cipher, because it will be
used to key a block cipher. In addition, it is useful to have additional seed data that
sets the first plaintext (counter) value.

Our implementation is based on the code in Recipe 5.5 and has two exported rou-
tines. The first initializes a random number generator:

void spc_bcprng_init(SPC_BCPRNG_CTX *prng, unsigned char *key, int kl,

                     unsigned char *x, int xl);

This function has the following arguments:

prng

Pointer to a context object that holds the state for a block cipher–based PRNG.
The caller may allocate the context object either dynamically or statically; this
function will initialize it.

key

Buffer that should contain entropic data. This data is used to key the block
cipher, and it is the required portion of the seed to the generator.

kl

Length of the key buffer in bytes; must be a valid value for the algorithm in use.

x

Buffer that may contain extra seed data, which we recommend you use if you have
available entropy. If the specified size of this buffer is zero, this argument will be
ignored. Note that if the buffer is larger than SPC_BLOCK_LEN (see Recipe 5.5) any
additional data in the buffer will be ignored. Therefore, if you have sparse
amounts of entropy, compress it to the right length before calling this function, as
discussed in Recipe 11.16.

xl

Length of the extra seed buffer in bytes. It may be specified as zero to indicate
that there is no extra seed data.

Once you have an instantiated generator, you can get cryptographically strong
pseudo-random data from it with the following function:

unsigned char *spc_bcprng_rand(SPC_BCPRNG_CTX *prng, unsigned char *buf, size_t l);

This function has the following arguments:

prng

Pointer to the generator’s context object.

buf

Buffer into which the random data will be written.

l

Number of bytes that should be placed into the output buffer.
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This function never fails (save for a catastrophic error in encryption), and it returns
the address of the output buffer.

Here is an implementation of this generator API, which makes use of the block
cipher interface we developed in Recipe 5.5:

/* NOTE: This code should be augmented to reseed after each request

/* for pseudo-random data, as discussed in Recipe 11.6

/*

#ifndef WIN32

#include <string.h>

#include <pthread.h>

#else

#include <windows.h>

#endif

/* if encryption operations fail, you passed in a bad key size or are using a

 * hardware API that failed.  In that case, be sure to perform error checking.

*/

typedef struct {

  SPC_KEY_SCHED ks;

  unsigned char ctr[SPC_BLOCK_SZ];

  unsigned char lo[SPC_BLOCK_SZ]; /* Leftover block of output */

  int           ix;               /* index into lo */

  int           kl;               /* The length of key used to key the cipher */

} SPC_BCPRNG_CTX;

#ifndef WIN32

static pthread_mutex_t spc_bcprng_mutex = PTHREAD_MUTEX_INITIALIZER;

#define SPC_BCPRNG_LOCK( )   pthread_mutex_lock(&spc_bcprng_mutex);

#define SPC_BCPRNG_UNLOCK( ) pthread_mutex_unlock(&spc_bcprng_mutex);

#else

static HANDLE hSpcBCPRNGMutex;

#define SPC_BCPRNG_LOCK( )   WaitForSingleObject(hSpcBCPRNGMutex, INFINITE)

#define SPC_BCPRNG_UNLOCK( ) ReleaseMutex(hSpcBCPRNGMutex)

#endif

static void spc_increment_counter(SPC_BCPRNG_CTX *prng) {

  int i = SPC_BLOCK_SZ;

  while (i--)

    if (++prng->ctr[i]) return;

}

void spc_bcprng_init(SPC_BCPRNG_CTX *prng, unsigned char *key, int kl,

                     unsigned char *x, int xl) {

  int i = 0;

  SPC_BCPRNG_LOCK( );

  SPC_ENCRYPT_INIT(&(prng->ks), key, kl);

  memset(prng->ctr, 0, SPC_BLOCK_SZ);
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  while (xl-- && i < SPC_BLOCK_SZ)

    prng->ctr[i++] = *x++;

  prng->ix = 0;

  prng->kl = kl;

  SPC_BCPRNG_UNLOCK( );

}

unsigned char *spc_bcprng_rand(SPC_BCPRNG_CTX *prng, unsigned char *buf, size_t l) {

  unsigned char *p;

  SPC_BCPRNG_LOCK( );

  for (p = buf;  prng->ix && l;  l--) {

    *p++ = prng->lo[prng->ix++];

    prng->ix %= SPC_BLOCK_SZ;

  }

  while (l >= SPC_BLOCK_SZ) {

    SPC_DO_ENCRYPT(&(prng->ks), prng->ctr, p);

    spc_increment_counter(prng);

    p += SPC_BLOCK_SZ;

    l -= SPC_BLOCK_SZ;

  }

  if (l) {

    SPC_DO_ENCRYPT(&(prng->ks), prng->ctr, prng->lo);

    spc_increment_counter(prng);

    prng->ix = l;

    while (l--) p[l] = prng->lo[l];

  }

  SPC_BCPRNG_UNLOCK( );

  return buf;

}

If your block cipher has 64-bit blocks and has no practical weaknesses, do not use
this generator for more than 235 bytes of output (232 block cipher calls). If the cipher
has 128-bit blocks, do not exceed 268 bytes of output (264 block cipher calls). If using
a 128-bit block cipher, it is generally acceptable not to check for this condition, as
you generally would not reasonably expect to ever use that many bytes of output.

To bind this cryptographic PRNG to the API in Recipe 11.2, you can use a single glo-
bal generator context that you seed in spc_rand_init( ), requiring you to get a secure
seed. Once that’s done (assuming the generator variable is a statically allocated glo-
bal variable named spc_prng), you can simply implement spc_rand( ) as follows:

unsigned char *spc_rand(unsigned char *buf, size_t l) {

  return spc_bcprng_rand(&spc_prng, buf, l);

}

Note that you should probably be sure to check that the generator is seeded before
calling spc_bcprng_rand( ).
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Using a stream cipher as a generator

As we mentioned, stream ciphers are themselves pseudo-random number genera-
tors, where the key (and the initialization vector, if appropriate) constitutes the seed.
If you are planning to use such a cipher, we strongly recommend the SNOW 2.0
cipher, discussed in Recipe 5.2.

Because of the popularity of the RC4 cipher, we expect that people will prefer to use
RC4, even though it does not look as good as SNOW. The RC4 stream cipher does
make an acceptable pseudo-random number generator, and it is incredibly fast if you
do not rekey frequently (that is particularly useful if you expect to need a heck of a
lot of numbers). If you do rekey frequently to avoid backtracking attacks, a block
cipher–based approach may be faster; time it to make sure.

RC4 requires a little bit of work to use properly, given a standard API. First, most
APIs want you to pass in data to encrypt. Because you want only the raw keystream,
you must always pass in zeros. Second, be sure to use RC4 in a secure manner, as
discussed in Recipe 5.23.

If your RC4 implementation has the API discussed in Recipe 5.23, seeding it as a
pseudo-random number generator is the same as keying the algorithm. RC4 can
accept keys up to 256 bytes in length.

Because of limitations in RC4, you should throw away the first 256
bytes of RC4 output, as discussed in Recipe 5.23.

After encrypting 256 bytes and throwing the results away, you can then, given an
RC4 context, get random data by encrypting zeros. Assuming the RC4 API from Rec-
ipe 5.23 and assuming you have a context statically allocated in a global variable
named spc_prng, here’s a binding of RC4 to the spc_rand( ) function that we intro-
duced in Recipe 11.2:

/* NOTE: This code should be augmented to reseed after each request

/* for pseudo-random data, as discussed in Recipe 11.6

/*

#ifndef WIN32

#include <pthread.h>

static pthread_mutex_t spc_rc4rng_mutex = PTHREAD_MUTEX_INITIALIZER;

#define SPC_RC4RNG_LOCK( )   pthread_mutex_lock(&spc_rc4rng_mutex)

#define SPC_RC4RNG_UNLOCK( ) pthread_mutex_unlock(&spc_rc4rng_mutex)

#else

#include <windows.h>

static HANDLE hSpcRC4RNGMutex;

#define SPC_RC4RNG_LOCK( )   WaitForSingleObject(hSpcRC4RNGMutex, INFINITE)
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#define SPC_RC4RNG_UNLOCK( ) ReleaseMutex(hSpcRC4RNGMutex)

#endif

#define SPC_ARBITRARY_SIZE 16

unsigned char *spc_rand(unsigned char *buf, size_t l) {

  static unsigned char zeros[SPC_ARBITRARY_SIZE] = {0,};

  unsigned char       *p = buf;

#ifdef WIN32

  if (!hSpcRC4RNGMutex) hSpcRC4RNGMutex = CreateMutex(0, FALSE, 0);

#endif

  SPC_RC4RNG_LOCK( );

  while (l >= SPC_ARBITRARY_SIZE) {

    RC4(&spc_prng, SPC_ARBITRARY_SIZE, zeros, p);

    l -= SPC_ARBITRARY_SIZE;

    p += SPC_ARBITRARY_SIZE;

  }

  if (l) RC4(&spc_prng, l, zeros, p);

  SPC_RC4RNG_UNLOCK( );

  return buf;

}

Note that, although we don’t show it in this code, you should ensure that the genera-
tor is initialized before giving output.

Because using this RC4 API requires encrypting zero bytes to get the keystream out-
put, in order to be able to generate data of arbitrary sizes, you must either dynami-
cally allocate and zero out memory every time or iteratively call RC4 in chunks of up
to a fixed size using a static buffer filled with zeros. We opt for the latter approach.

RC4 is only believed to be a strong source of random numbers for
about 230 outputs. After that, we strongly recommend that you reseed
it with new entropy. If your application would not conceivably use
that many outputs, it should generally be okay not to check that con-
dition.

Using a generator based on a cryptographic hash function

The most common mistake made when trying to use a hash function as a crypto-
graphic pseudo-random number generator is to continually hash a piece of data.
Such an approach gives away the generator’s internal state with every output. For
example, suppose that your internal state is some value X, and you generate and out-
put Y by hashing X. The next time you need random data, rehashing X will give the
same results, and any attacker who knows the last outputs from the generator can
figure out the next outputs if you generate them by hashing Y.
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One very safe way to use a cryptographic hash function in a cryptographic pseudo-
random number generator is to use HMAC in counter mode, as discussed in Recipe
6.10. Here we implement a generator based on the HMAC-SHA1 implementation
from Recipe 6.10. You should be able to adapt this code easily to any HMAC imple-
mentation you want to use.

/* NOTE: This code should be augmented to reseed after each request

/* for pseudo-random data, as discussed in Recipe 11.6

/*

#ifndef WIN32

#include <string.h>

#include <pthread.h>

#else

#include <windows.h>

#endif

/* If MAC operations fail, you passed in a bad key size or you are using a hardware

 * API that failed.  In that case, be sure to perform error checking.

 */

#define MAC_OUT_SZ 20

typedef struct {

  SPC_HMAC_CTX      ctx;

  unsigned char ctr[MAC_OUT_SZ];

  unsigned char lo[MAC_OUT_SZ];   /* Leftover block of output */

  int           ix;               /* index into lo. */

} SPC_MPRNG_CTX;

#ifndef WIN32

static pthread_mutex_t spc_mprng_mutex = PTHREAD_MUTEX_INITIALIZER;

#define SPC_MPRNG_LOCK( )   pthread_mutex_lock(&spc_mprng_mutex)

#define SPC_MPRNG_UNLOCK( ) pthread_mutex_unlock(&spc_mprng_mutex)

#else

static HANDLE hSpcMPRNGMutex;

#define SPC_MPRNG_LOCK( )   WaitForSingleObject(hSpcMPRNGMutex, INFINITE)

#define SPC_MPRNG_UNLOCK( ) ReleaseMutex(hSpcMPRNGMutex)

#endif

static void spc_increment_mcounter(SPC_MPRNG_CTX *prng) {

  int i = MAC_OUT_SZ;

  while (i--)

    if (++prng->ctr[i])

      return;

}

void spc_mprng_init(SPC_MPRNG_CTX *prng, unsigned char *seed, int l) {

  SPC_MPRNG_LOCK( );

  SPC_HMAC_Init(&(prng->ctx), seed, l);

  memset(prng->ctr, 0, MAC_OUT_SZ);

  prng->ix = 0;
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  SPC_MPRNG_UNLOCK( );

}

unsigned char *spc_mprng_rand(SPC_MPRNG_CTX *prng, unsigned char *buf, size_t l) {

  unsigned char *p;

  SPC_MPRNG_LOCK( );

  for (p = buf;  prng->ix && l;  l--) {

    *p++ = prng->lo[prng->ix++];

    prng->ix %= MAC_OUT_SZ;

  }

  while (l >= MAC_OUT_SZ) {

    SPC_HMAC_Reset(&(prng->ctx));

    SPC_HMAC_Update(&(prng->ctx), prng->ctr, sizeof(prng->ctr));

    SPC_HMAC_Final(p, &(prng->ctx));

    spc_increment_mcounter(prng);

    p += MAC_OUT_SZ;

    l -= MAC_OUT_SZ;

  }

  if (l) {

    SPC_HMAC_Reset(&(prng->ctx));

    SPC_HMAC_Update(&(prng->ctx), prng->ctr, sizeof(prng->ctr));

    SPC_HMAC_Final(prng->lo, &(prng->ctx));

    spc_increment_mcounter(prng);

    prng->ix = l;

    while (l--) p[l] = prng->lo[l];

  }

  SPC_MPRNG_UNLOCK( );

  return buf;

}

This implementation has two publicly exported functions. The first initializes the
generator:

void spc_mprng_init(SPC_MPRNG_CTX *prng, unsigned char *seed, int l);

This function has the following arguments:

prng

Context object used to hold the state for a MAC-based PRNG.

seed

Buffer containing data that should be filled with entropy (the seed). This data is
used to key the MAC.

l

Length of the seed buffer in bytes.

The second function actually produces random data:

unsigned char *spc_mprng_rand(SPC_MPRNG_CTX *prng, unsigned char *buf, size_t l);

This function has the following arguments:

prng

Context object used to hold the state for a MAC-based PRNG.
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out

Buffer into which the random data will be placed.

l

Number of random bytes to be placed into the output buffer.

If your hash function produces n-bit outputs and has no practical weaknesses, do not
use the generator after you run the MAC more than 2n/2 times. For example, with
SHA1, this generator should be not be a problem for at least 280 × 20 bytes. In prac-
tice, you probably will not have to worry about this issue.

To bind this cryptographic pseudo-random number generator to the API in Rec-
ipe 11.2, you can use a single global generator context that you seed in spc_rand_

init( ), requiring you to get a secure seed. Once that is done (assuming the gener-
ator variable is a statically allocated global variable named spc_prng), you can sim-
ply implement spc_rand( ) as follows:

unsigned char *spc_rand(unsigned char *buf, size_t l) {

  return spc_bcprng_rand(&spc_prng, buf, l);

}

Note that, although we don’t show it in the previous code, you should ensure that
the generator is initialized before giving output.

See Also
Recipes 5.2, 5.5, 5.9, 5.23, 6.10, 11.2, 11.6, 11.8, 11.16

11.6 Reseeding a Pseudo-Random Number
Generator

Problem
You have an application-level pseudo-random number generator such as the ones
presented in Recipe 11.5, and you want to reseed it, either because you have new
entropy to mix in or because you would like to prevent against backtracking attacks.

Solution
Create a new seed by getting a sufficient number of bytes from the generator to seed
the generator. If mixing in entropy, compress the entropy down to the seed size if
necessary, as discussed in Recipe 11.16, then XOR the compressed seed with the
generator output. Finally, reseed the generator with the resulting value.
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Discussion
There are two common reasons why you may want to reseed a PRNG. First, your
threat model may include the possibility of the internal state of your PRNG being
compromised, and you want to prevent against an attacker’s being able to figure out
numbers that were output before the state compromise. Reseeding, if done right,
essentially transforms the internal state in a way that preserves entropy while mak-
ing it essentially impossible to backtrack. Protecting against backtracking attacks can
be done cheaply enough, so there is no excuse for not doing it.

Second, you may want to add entropy into the state. This could serve a number of
purposes. For example, you might want to add entropy to the system. Remember,
however, that cryptographic generators have a maximum amount of entropy they
can contain, so adding entropy to a generator state can look unnecessary.

When available, however, reseeding with entropy is a good conservative measure, for
several reasons. For one reason, if you have underestimated the amount of entropy
that a generator has, adding entropy is a good thing. For another, if the generator has
lost any entropy, new entropy can help replenish it. Such entropy loss is natural
because cryptographic algorithms are not as good as their theoretical ideals. In addi-
tion, because we generally do not know the exact strength of our algorithms, it is
hard to determine how quickly entropy gets lost. (Note, however, that if the algo-
rithms are as strong as believed, it should be quite slowly.)

While a generator based on AES or HMAC-SHA1, implemented as discussed in
Recipe 11.5, probably never loses more than a miniscule amount of entropy before
264 outputs, it is always good to be conservative and assume that it drains quickly,
particularly if you have entropy to spare.

When adding entropy to a system, it is best to collect a lot of entropy
and seed all at once, instead of seeding a little bit at a time. We will
illustrate why by example. Suppose you seed a generator with one bit
of entropy. An attacker has only one bit to guess, which can be done
accurately after two outputs. If the attacker completely compromises
the state after two outputs, and we then add another bit of entropy, he
can once again guess the state easily.

If we add one bit 128 times, there is still very little security overall if
the generator state is compromised. However, if you add 128 bits of
entropy to the generator all at once, an attack should essentially be
infeasible.

The actions you should take to reseed a generator are different depending on
whether you are actually adding entropy to the state of the generator or just trying to
thwart a backtracking attack. However, the first step is the same in both cases.
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1. Figure out how big a seed you need. At the very least, you need a seed that is as
many bits in length as bits of entropy you think are in the generator. Generally,
this will be at least as large as the key size of the underlying primitive (or the out-
put size when using a one-way hash function instead of a cipher).

2. If you need to introduce new entropy, properly compress the data containing
entropy. In particular, you must transform the data into a seed of the proper
size, with minimal loss of entropy. One easy way to do that is to process the
string with a cryptographic hash function (truncating the hash output to the
desired length, if necessary). Then XOR the compressed entropy with the seed
output by the generator.

3. Take the value and use it to reseed the generator. If you are using a counter-
based generator, you can either reset the counter or choose not to do so. In fact,
it is preferable to take a bit of extra output from the generator so that the
counter can be set to a random value.

For example, using the block cipher–based PRNG from Recipe 11.5, here is a func-
tion that reseeds the generator, given new, uncompressed data containing entropy:

void spc_bcprng_reseed(SPC_BCPRNG_CTX *prng, unsigned char *new_data, size_t l) {

  size_t        i;

  unsigned char m[SPC_MAX_KEYLEN + SPC_BLOCK_SZ];

  SPC_BCPRNG_LOCK( );

  if (prng->kl > SPC_MAX_KEYLEN) prng->kl = SPC_MAX_KEYLEN;

  spc_bcprng_rand(prng, m, prng->kl + SPC_BLOCK_SZ);

  while (l > prng->kl) {

    for (i = 0;  i < prng->kl;  i++) m[i] ^= *new_data++;

    l -= prng->kl;

    spc_bcprng_init(prng, m, prng->kl, m + prng->kl, SPC_BLOCK_SZ);

    spc_bcprng_rand(prng, m, prng->kl + SPC_BLOCK_SZ);

  }

  for (i = 0;  i <l;  i++) m[i] ^= *new_data++;

  spc_bcprng_init(prng, m, prng->kl, m + prng->kl, SPC_BLOCK_SZ);

  SPC_BCPRNG_UNLOCK( );

}

To handle compression of the data that contains entropy, we avoid using a hash
function. Instead, we break the data up into chunks no larger than the required seed
size, and reseed multiple times until we have run out of data. This is an entropy-pre-
serving way of processing the data that does not require the use of a cryptographic
hash function.

See Also
Recipes 11.5, 11.16
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11.7 Using an Entropy Gathering
Daemon–Compatible Solution

Problem
Your application needs randomness, and you want it to be able to run on Unix-based
platforms that lack the /dev/random and /dev/urandom devices discussed in Recipe
11.3—for example, machines that need to support legacy operating systems.

Solution
Use a third-party software package that gathers and outputs entropy, such as the
Entropy Gathering and Distribution System (EGADS). Then use the Entropy Gather-
ing Daemon (EGD) interface to read entropy. EGD is a tool for entropy harvesting
and was the first tool to export this API.

When implementing our randomness API from Recipe 11.2, use entropy gathered
over the EGD interface in places where entropy is needed; then, to implement the
rest of the API, use data from that interface to seed an application-level crypto-
graphic pseudo-random number generator (see Recipe 11.5).

Discussion
A few entropy collection systems exist as processes outside the kernel and distribute
entropy through the EGD socket interface. Such systems set up a server process, lis-
tening on a Unix domain socket. To read entropy, you communicate over that inter-
face using a simple protocol.

One such system is EGADS (described in the next recipe and available from http://
www.securesoftware.com/egads). Another system is EGD itself, which we do not rec-
ommend as of this writing for several reasons, primarily because we think its entropy
estimates are too liberal.

Such entropy collection systems usually are slow to collect good entropy. If you can
interactively collect input from a user, you might want to use one of the techniques
in Recipe 11.19 instead to force the user to add entropy to the system herself. That
approach will avoid arbitrary hangs as you wait for crucial entropy from an EGD-
compatible system.

The EGD interface is more complex than the standard file interface you get when
dealing with the /dev/random device. Traditionally, you would just read the data
needed. With EGD, however, you must first write one of five commands to the
socket. Each command is a single byte of data:
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0x00

Query the amount of entropy believed to be available. This information is not at
all useful, particularly because you cannot use it in any decision to read data
without causing a race condition.

0x01

Read data if available. This command takes a single-byte argument specifying
how many bytes of data should be read, if that much data is available. If not
enough entropy is available, any available entropy may be immediately returned.
The first byte of the result is the number of bytes being returned, so do not treat
this information as entropy. Note that you can never request or receive more
than 255 bytes of entropy at a time.

0x02

Read data when available. This command takes the same argument as the previ-
ous command. However, if not enough entropy is available, this command will
block until the request can be fulfilled. In addition, the response for the com-
mand is simply the requested bytes; the initial byte is not the number of bytes
being returned.

0x03

Write entropy to the internal collector. This command takes three arguments.
The first is a two-byte value (most significant byte first) specifying how many
bits of entropy are believed to be in the data. The second is a one-byte value
specifying how many bytes of data are to be written. The third is the entropic
data itself.

0x04

Get the process identifier of the EGD process. This returns a byte-long header
that specifies how long the result is in bytes, followed by the actual process iden-
tifier, most significant byte first.

In this recipe, we implement the randomness interface from Recipe 11.2. In addi-
tion, we provide a function called spc_rand_add_entropy( ), which provides an inter-
face to the command for providing the server with entropy. That function does not
allow the caller to specify an entropy estimate. We believe that user-level processes
should be allowed to contribute data to be put into the mix but shouldn’t be trusted
to estimate entropy, primarily because you may have just cause not to trust the esti-
mates of other processes running on the same machine that might be adding entropy.
That is, if you are using an entropy server that gathers entropy slowly, you do not
want an attacker from another process adding a big known value to the entropy sys-
tem and claiming that it has 1,000 bits of entropy.

In part because untrusted programs can add bad entropy to the mix, we recommend
using a highly conservative solution where such an attack is not likely to be effective.
That means staying away from EGD, which will use estimates from any untrusted
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process. While EGADS implements the EGD interface, it ignores the entropy esti-
mate supplied by the user. It does mix the entropy into its state, but it assumes that it
contains no entropy.

The following code implements the spc_entropy( ) and spc_keygen( ) functions
from Recipe 11.2 using the EGD interface. We omit spc_rand( ) but assume that it
exists (it is called by spc_keygen( ) when appropriate). To implement spc_rand( ),
see Recipe 11.5.

When implementing spc_entropy( ) and spc_keygen( ), we do not cryptographically
postprocess the entropy to thwart statistical analysis if we do not have as much
entropy as estimated, as you can generally expect servers implementing the EGD
interface to do this (EGADS certainly does). If you want to be absolutely sure, you
can do your own cryptographic postprocessing, as shown in Recipe 11.16.

Note that the following code requires you to know in advance the file on the filesys-
tem that implements the EGD interface. There is no standard place to look for EGD
sockets, so you could either make the location of the socket something the user can
configure, or require the user to run the collector in such a way that the socket lives
in a particular place on the filesystem.

Of course, the socket should live in a “safe” directory, where only the user running
the entropy system can write files (see Recipe 2.4). Clearly, any user who needs to be
able to use the server must have read access to the socket.

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/un.h>

#include <sys/uio.h>

#include <unistd.h>

#include <string.h>

#include <errno.h>

#include <stdio.h>

#define EGD_SOCKET_PATH "/home/egd/socket"

/* NOTE: this needs to be augmented with whatever you need to do in order to seed

 * your application-level generator.  Clearly, seed that generator after you've

 * initialized the connection with the entropy server.

 */

static int spc_egd_fd = -1;

void spc_rand_init(void) {

  struct sockaddr_un a;

  if ((spc_egd_fd = socket(PF_UNIX, SOCK_STREAM, 0)) = = -1) {

    perror("Entropy server connection failed");

    exit(-1);

  }

  a.sun_len    = sizeof(a);

  a.sun_family = AF_UNIX;
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  strncpy(a.sun_path, EGD_SOCKET_PATH, sizeof(a.sun_path));

  a.sun_path[sizeof(a.sun_path) - 1] = 0;

  if (connect(spc_egd_fd, (struct sockaddr *)&a, sizeof(a))) {

    perror("Entropy server connection failed");

    exit(-1);

  }

}

unsigned char *spc_keygen(unsigned char *buf, size_t l) {

  ssize_t              nb;

  unsigned char        nbytes, *p, tbytes;

  static unsigned char cmd[2] = {0x01,};

  if (spc_egd_fd = = -1) spc_rand_init( );

  for (p = buf;  l;  l -= tbytes) {

    /* Build and send the request command to the EGD server */

    cmd[1] = (l > 255 ? 255 : l);

    do {

      if ((nb = write(spc_egd_fd, cmd, sizeof(cmd))) = = -1 && errno != EINTR) {

        perror("Communication with entropy server failed");

        exit(-1);

      }

    } while (nb = = -1);

    /* Get the number of bytes in the result */

    do {

      if ((nb = read(spc_egd_fd, &nbytes, 1)) = = -1 && errno != EINTR) {

        perror("Communication with entropy server failed");

        exit(-1);

      }

    } while (nb = = -1);

    tbytes = nbytes;

    /* Get all of the data from the result */

    while (nbytes) {

      do {

        if ((nb = read(spc_egd_fd, p, nbytes)) = = -1) {

          if (errno = = -1) continue;

          perror("Communication with entropy server failed");

          exit(-1);

        }

      } while (nb = = -1);

      p      += nb;

      nbytes -= nb;

    }

    /* If we didn't get as much entropy as we asked for, the server has no more

     * left, so we must fall back on the application-level generator to avoid

     * blocking.

     */

    if (tbytes != cmd[l]) {

      spc_rand(p, l);

      break;

    }
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  }

  return buf;

}

unsigned char *spc_entropy(unsigned char *buf, size_t l) {

  ssize_t              nb;

  unsigned char        *p;

  static unsigned char cmd = 0x02;

  if (spc_egd_fd = = -1) spc_rand_init( );

  /* Send the request command to the EGD server */

  do {

    if ((nb = write(spc_egd_fd, &cmd, sizeof(cmd))) = = -1 && errno != EINTR) {

      perror("Communcation with entropy server failed");

      exit(-1);

    }

  } while (nb = = -1);

  for (p = buf;  l;  p += nb, l -= nb) {

    do {

      if ((nb = read(spc_egd_fd, p, l)) = = -1) {

        if (errno = = -1) continue;

        perror("Communication with entropy server failed");

        exit(-1);

      }

    } while (nb = = -1);

  }

  return buf;

}

void spc_egd_write_entropy(unsigned char *data, size_t l) {

  ssize_t              nb;

  unsigned char        *buf, nbytes, *p;

  static unsigned char cmd[4] = { 0x03, 0, 0, 0 };

  for (buf = data;  l;  l -= cmd[3]) {

    cmd[3] = (l > 255 ? 255 : l);

    for (nbytes = 0, p = cmd;  nbytes < sizeof(cmd);  nbytes += nb) {

      do {

        if ((nb = write(spc_egd_fd, cmd, sizeof(cmd) - nbytes)) = = -1) {

          if (errno != EINTR) continue;

          perror("Communication with entropy server failed");

          exit(-1);

        }

      } while (nb = = -1);

    }

    for (nbytes = 0;  nbytes < cmd[3];  nbytes += nb, buf += nb) {

      do {

        if ((nb = write(spc_egd_fd, data, cmd[3] - nbytes)) = = -1) {

          if (errno != EINTR) continue;

          perror("Communication with entropy server failed");

          exit(-1);
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        }

      } while (nb = = -1);

    }

  }

}

See Also
• EGADS by Secure Software, Inc.: http://www.securesoftware.com/egads

• Recipes 2.4, 11.2, 11.3, 11.5, 11.16, 11.19

11.8 Getting Entropy or Pseudo-Randomness
Using EGADS

Problem
You want to use a library-level interface to EGADS for gathering entropy or getting
cryptographically strong pseudo-random data. For example, you may need entropy
on a system such as Microsoft Windows, where there is no built-in API for getting it.

Solution
Use the EGADS API as described in the following “Discussion” section.

Discussion
EGADS, the Entropy Gathering and Distribution System, is capable of performing
many functions related to random numbers. First, it provides a high-level interface
for getting random values, such as integers, numbers in a particular range, and so on.
Second, EGADS does its own entropy collection, and has a library-level API for
accessing the collector, making it a simple API to use for any of your randomness
needs.

EGADS supports a variety of Unix variants, including Darwin, FreeBSD, Linux,
OpenBSD, and Solaris. In addition, it supports Windows NT 4.0, Windows 2000,
and Windows XP. Unfortunately, EGADS does not support Windows 95, Windows
98, or Windows ME because it runs as a service (which is a subsystem that does not
exist on these versions of Windows). EGADS is available from http://www.securesoft-
ware.com/egads.

EGADS is a good solution for the security-minded because it is conservative. It con-
tains a conservative entropy collector and a conservative pseudo-random number
generator. Both of these components have provable security properties that rely only
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on the strength of the AES cryptographic algorithm. EGADS does a good job of pro-
tecting against compromised entropy sources, which other PRNGs tend not to do. It
also provides a good amount of protection against backtracking attacks, meaning
that if the internal generator state does get compromised, few if any of the previous
generator outputs will be recoverable.

To use EGADS, you must install the package, start up the server that comes with it,
include egads.h, and link against the correct library, which will typically be libegads.so
on Unix (libegads.dyld on Darwin) and egads.lib on Windows.

Before you can use any of the functions in the EGADS package, you must first initial-
ize a PRNG context by calling egads_init( ):

void egads_init(prngctx_t *ctx, char *sockname, char *rfile, int *err);

This function has the following arguments:

ctx

PRNG context object that is to be initialized. The caller should allocate the
object either statically or dynamically.

sockname

If not specified as NULL, this is the address of the server. On Unix, this is the
name of the Unix domain socket created by the EGADS server. On Windows,
this is the name of the mailslot object created by the EGADS service. If specified
as NULL, which is normally how it should be specified, the compiled-in default
will be used.

rfile

Name of a file from which entropy can be read. On Unix, this defaults to /dev/
random if it is specified as NULL. This argument is always ignored on Windows.

err

If any error occurs, an error code will be stored in this argument. A value of 0
indicates that no error occurred; otherwise, one of the RERR_* constants defined
in egads.h will be returned. NULL may not be specified here.

The function egads_entropy( ) establishes a connection to the entropy gateway and
obtains the requested number of bytes of raw entropy. If not enough entropy is cur-
rently available to satisfy the request, this function will block until there is. Its signa-
ture nearly matches that of spc_entropy( ) from Recipe 11.2:

void egads_entropy(prngctx_t *ctx, char *buf, int nbytes, int *err);

This function has the following arguments:

ctx

PRNG context object that has been initialized.

out

Buffer into which the entropy data will be placed.
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nbytes

Number of bytes of entropy that should be written into the output buffer. You
must be sure that the output buffer is sufficiently large to hold the requested
data.

err

If any error occurs, an error code will be stored in this argument. A value of 0
indicates that no error occurred; otherwise, one of the RERR_* constants defined
in egads.h will be returned. NULL may be not be specified here.

The function PRNG_output( ) allows you to get byte strings of cryptographically ran-
dom data. Its signature nearly matches that of spc_rand( ) from Recipe 11.2:

void PRNG_output(prng_ctx *ctx, char *buf, int64 nbytes);

This function has the following arguments:

ctx

PRNG context object that has been initialized.

buf

Buffer into which the entropy data will be placed.

nbytes

Number of bytes of random data that should be written into the output buffer.
You must be sure that the output buffer is sufficiently large to hold the requested
data.

The function egads_destroy( ) resets a PRNG context object. Before the memory for
the context object is freed or goes out of scope (because it is statically allocated on
the stack), egads_destroy( ) must be called on a successfully initialized context
object. This ensures that the connection to the EGADS server or service is broken,
and that any other memory or state maintained by EGADS that is associated with the
context object is cleaned up.

void egads_destroy(prngctx_t *ctx);

This ctx argument is the successfully initialized PRNG context that is to be
destroyed. It is the caller’s responsibility to free any memory used to allocate the
object

The rest of the EGADS API allows you to retrieve pseudo-random values of particu-
lar data types. All functions in this API take a final argument that, on completion of
the call, contains the success or failure status. On failure, the error argument con-
tains an integer error code. On success, it will be 0.

void egads_randlong(prngctx_t *ctx, long *out, int *error);

void egads_randulong(prngctx_t *ctx, unsigned long *out, int *error);

void egads_randint(prngctx_t *ctx, int *out, int *error);

void egads_randuint(prngctx_t *ctx, unsigned int *out, int *error);

void egads_randrange(prngctx_t *ctx, int *out, int min, int max, int *error);
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The egads_randlong( ) function gets a pseudo-random long value, whereas egads_

randulong( ) gets a pseudo-random unsigned long value from 0 to ULONG_MAX inclu-
sive. The functions egads_randint( ) and egads_randuint( ) do the same things, but
on integer types instead of longs. To get a random integer in a specified range, use
the function egads_randrange( ). The min and max arguments are both inclusive,
meaning that they are both values that can possibly be returned.

void egads_randreal(prngctx_t * ctx, double *out, int *error);

void egads_randuniform(prngctx_t *ctx, double *out, double min, double max,

                       int *error);

void egads_gauss(prngctx_t *ctx, double *out, double mu, double sigma,

                 int *error);

void egads_normalvariate(prngctx_t *ctx, double *out, double mu, double sigma,

                        int *error);

void egads_lognormalvariate(prngctx_t *ctx, double *out, double mu, double sigma,

                           int *error);

void egads_paretovariate(prngctx_t *ctx, double *out, double alpha, int *error);

void egads_weibullvariate(prngctx_t *ctx, double *out, double alpha, double beta,

                          int *error);

void egads_expovariate(prngctx_t *ctx, double *out, double lambda, int *error);

void egads_betavariate(prngctx_t *ctx, double *out, double alpha, double beta,

                       int *error);

void egads_cunifvariate(prngctx_t *ctx, double *out, double mean, double arc,

                       int *error);

The egads_randreal( ) function produces a real number between 0 and 1 (inclusive)
that is uniformly distributed across that space. To get a real number in a particular
range, use the function egads_randuniform( ). For those needing random data in a
nonuniform distribution, there are numerous functions in the previous API to pro-
duce random floats in various common distributions. The semantics for these func-
tions should be obvious to anyone who is already familiar with the particular
distribution.

void egads_randstring(prngctx_t *ctx, char *out, int len, int *error);

The function egads_randstring( ) generates a random string that can contain any
printable character. That is, it produces characters between ASCII 33 and ASCII 126
(inclusive) and thus contains no whitespace characters. The output buffer must be
allocated by the caller, and it must be at least as long as the specified length plus an
additional byte to accommodate the terminating zero that the function will write to
the buffer.

void egads_randfname(prngctx_t *ctx, char *out, int len, int *error);

The function egads_randfname( ) produces a random string suitable for use as a file-
name. Generally, you are expected to concatenate the generated string with a base
path. This function expects the destination buffer to be allocated already, and to be
allocated with enough space to hold the string plus a terminating NULL, which this
function will add.
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See Also
• EGADS by Secure Software, Inc.: http://www.securesoftware.com/egads

• Recipe 11.2

11.9 Using the OpenSSL Random Number API

Problem
Many functions in the OpenSSL library require the use of the OpenSSL pseudo-ran-
dom number generator. Even if you use something like /dev/urandom yourself,
OpenSSL will use its own API under the hood and thus must be seeded properly.

Unfortunately, some platforms and some older versions of OpenSSL require the user
to provide a secure seed. Even modern implementations of OpenSSL merely read a
seed from /dev/urandom when it is available; a paranoid user may wish to do better.

When using OpenSSL, you may want to use the provided PRNG for other needs, just
for the sake of consistency.

Solution
OpenSSL exports its own API for manipulating random numbers, which we discuss
in the next section. It has its own cryptographic PRNG, which must be securely
seeded.

To use the OpenSSL randomness API, you must include openssl/rand.h in your code
and link against the OpenSSL crypto library.

Discussion

Be sure to check all return values for the functions below; they may
return errors.

With OpenSSL, you get a cryptographic PRNG but no entropy gateway. Recent ver-
sions of OpenSSL try to seed its PRNG using /dev/random, /dev/urandom, and EGD,
trying several well-known EGD socket locations. However, OpenSSL does not try to
estimate how much entropy its PRNG has. It is up to you to ensure that it has
enough before the PRNG is used.

On Windows systems, a variety of sources are used to attempt to gather entropy,
although none of them actually provides much real entropy. If an insufficient
amount of entropy is available, OpenSSL will issue a warning, but it will keep going
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anyway. You can use any of the sources we have discussed elsewhere in this chapter
for seeding the OpenSSL PRNG. Multiple API functions are available that allow seed
information to be passed to the PRNG.

One such function is RAND_seed( ), which allows you to pass in arbitrary data that
should be completely full of entropy. It has the following signature:

void RAND_seed(const void *buf, int num);

This function has the following arguments:

buf

Buffer containing the entropy to seed the PRNG.

num

Length of the seed buffer in bytes.

If you have data that you believe contains entropy but does not come close to one bit
of entropy per bit of data, you can call RAND_add( ), which is similar to RAND_seed( )

except that it allows you to provide an indication of how many bits of entropy the
data has:

void RAND_add(const void *buf, int num, double entropy);

If you want to seed from a device or some other file (usually, you only want to use a
stored seed), you can use the function RAND_load_file( ), which will read the
requested number of bytes from the file. Because there is no way to determine how
much entropy is contained in the data, OpenSSL assumes that the data it reads from
the file is purely entropic.

int RAND_load_file(const char *filename, long max_bytes);

If –1 is specified as the length parameter to this function, it reads the entire file. This
function returns the number of bytes read. The function can be used to read from the
/dev/random and /dev/urandom devices on Unix systems that have them, but you
must make sure that you don’t specify –1 for the number of bytes to read from these
files; otherwise, the function will never return!

To implement PRNG state saving with OpenSSL, you can use RAND_write_file( ),
which writes out a representation of the PRNG’s internal state that can be used to
reseed the PRNG when needed (e.g., after a reboot):

int RAND_write_file(const char *filename);

If there is any sort of error, RAND_write_file( ) will return –1. Note that the system
may write a seed file without enough entropy, in which case it will also return –1.
Otherwise, this function returns the number of bytes written to the seed file.

To obtain pseudo-random data from the PRNG, use the function RAND_bytes( ):

int RAND_bytes(unsigned char *buf, int num);
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If the generator is not seeded with enough entropy, this function could produce out-
put that may be insecure. In such a case, the function will return 0. Make sure that
you always check for this condition!

Do not, under any circumstances, use the API function, RAND_pseudo_
bytes( ). It is not a cryptographically strong PRNG and therefore is
not worth using for anything that has even a remote possibility of
being security-relevant.

You can implement spc_rand( ), the cryptographic pseudo-randomness function
from Recipe 11.2, by simply calling RAND_bytes( ) and aborting if that function
returns 0.

#include <stdio.h>

#include <stdlib.h>

#include <openssl/rand.h>

unsigned char *spc_rand(unsigned char *buf, size_t l) {

  if (!RAND_bytes(buf, l)) {

    fprintf(stderr, "The PRNG is not seeded!\n");

    abort( );

  }

  return buf;

}

See Also
Recipe 11.2

11.10 Getting Random Integers

Problem
Given a pseudo-random number generation interface that returns an array of bytes,
you need to get random values in the various integer data types.

Solution
For dealing with an integer that can contain any value, you may simply write bytes
directly into every byte of the integer.
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Discussion

Do not use this solution for getting random floating-point values; it
will not produce numbers in a uniform distribution because of the
mechanics of floating-point formats.

To get a random integer value, all you need to do is fill the bytes of the integer with
random data. You can do this by casting a pointer to an integer to a binary string,
then passing it on to a function that fills a buffer with random bytes. For example,
use the following function to get a random unsigned integer, using the spc_rand( )

interface defined in Recipe 11.2:

unsigned int spc_rand_uint(void) {

  unsigned int res;

  spc_rand((unsigned char *)&res, sizeof(unsigned int));

  return res;

}

This solution can easily be adapted to other integer data types simply by changing all
the instances of unsigned int to the appropriate type.

See Also
Recipe 11.2

11.11 Getting a Random Integer in a Range

Problem
You want to choose a number in a particular range, with each possible value equally
likely. For example, you may be simulating dice rolling and do not want any number
to be more likely to come up than any other. You want all numbers in the range to be
possible values, including both endpoints. That is, if you ask for a number between 1
and 6, you’d like both 1 and 6 to be as likely as 2, 3, 4, or 5.

Solution
There are multiple ways to handle this problem. The most common is the least cor-
rect, and that is to simply reduce a random integer (see Recipe 11.10) modulo the
size of the range and add to the minimum possible value. This can lead to slight
biases in your random numbers, which can sometimes lead to practical attacks,
because it means that some outputs are more likely than others.

We discuss more exact solutions in the next section.
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Discussion
In all cases, you will start with a function that gives you a random unsigned number
that can be any value, such as spc_rand_uint( ) from Recipe 11.10. You will mold
numbers returned from this function into numbers in a specific range.

If you need random numbers in a particular range, the general approach is to get a
number between zero and one less than the number of values in the range, then add
the result to the smallest possible value in the range.

Ideally, when picking a random number in a range, you would like every possible
value to be equally likely. However, if you map from an arbitrary unsigned integer
into a range, where the range does not divide evenly into the number of possible inte-
gers, you are going to run into problems.

Suppose you want to create a random number in a range using an unsigned 8-bit
type. When you get a random unsigned 8-bit value, it can take on 256 possible val-
ues, from 0 to 255. If you are asking for a number between 0 and 9 inclusive, you
could simply take a random value and reduce it modulo 10.

The problem is that the numbers 0 through 5 are more likely values than are 6
through 9. 26 possible values will reduce to each number between 0 and 5, but only
25 values will yield 6 through 9.

In this example, the best way to solve this problem is to discard any random numbers
that fall in the range 250-255. In such a case, simply get another random value and try
again. We took this approach in implementing the function spc_rand_range(). The
result will be a number greater than or equal to a minimum value and less than or
equal to maximum value.

Some programmers may expect this function to exclude the upper
limit as a possible value; however, we implement this function in such
a way that it is not excluded.

#include <limits.h>

#include <stdlib.h>

int spc_rand_range(int min, int max) {

  unsigned int rado;

  int          range = max - min + 1;

  if (max < min) abort( ); /* Do your own error handling if appropriate.*/

  do {

    rado = spc_rand_uint( );

  } while (rado > UINT_MAX - (UINT_MAX % range));

  return min + (rado % range);

}
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You might worry about a situation where performance suffers because this code has
to retry too many times. The worst case for this solution is when the size of the range
is UINT_MAX / 2 + 1. Even in such a case, you would not expect to call spc_rand_
uint( ) very many times. The average number of times it would be called here would
be slightly less than two. While the worst-case performance is theoretically
unbounded, the chances of calling spc_rand_uint( ) more than a dozen times are
essentially zero. Therefore, this technique will not have a significant performance
impact for most applications.

If you are okay with some items being slightly more likely than others, there are two
different things you can do, both of which are fairly easy. First, you can perform a
modulo operation and an addition to get the integer in the right range, and just not
worry about the fact that some values are more likely than others:

#include <stdlib.h>

int spc_rand_range(int min, int max) {

  if (max < min) abort( );

  return min + (spc_rand_uint( ) % (max - min + 1));

}

Of course, this solution clumps together all the values that are more likely to be cho-
sen, which is somewhat undesirable. As an alternative, you can spread them out by
using division and rounding down, instead of a simple modulus:

#include <limits.h>

int spc_rand_range(int min, int max) {

  if (max < min) abort( );

  return min + (int)((double)spc_rand_uint( ) *

                     (max - min + 1) / (double)UINT_MAX) % (max - min);

}

Note the modulo operation in this solution. That is to prevent getting a value that is
out of range in the very rare occasion that spc_rand_uint( ) returns UINT_MAX.

See Also
Recipe 11.10

11.12 Getting a Random Floating-Point Value
with Uniform Distribution

Problem
When looking for a random floating-point number, we usually want a value between
0 and 1 that is just as likely to be between 0 and 0.1 as it is to be between 0.9 and 1.
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Solution
Because of the way that floating-point numbers are stored, simply casting bits to a
float will make the distribution nonuniform. Instead, get a random unsigned integer,
and divide.

Discussion
Because integer values are uniformly distributed, you can get a random integer and
divide so that it is a value between 0 and 1:

#include <limits.h>

double spc_rand_real(void) {

  return ((double)spc_rand_uint( )) / (double)UINT_MAX;

}

Note that to get a random number between 0 and n, you can multiply the result of
spc_rand_real( ) by n. To get a real number within a range inclusive of the range’s
bounds, do this:

#include <stdlib.h>

double spc_rand_real_range(double min, double max) {

  if (max < min) abort( );

  return spc_rand_real( ) * (max - min) + min;

}

11.13 Getting Floating-Point Values with
Nonuniform Distributions

Problem
You want to select random real numbers in a nonuniform distribution.

Solution
The exact solution varies depending on the distribution. We provide implementa-
tions for many common distributions in this recipe.

Discussion
Do not worry if you do not know what a particular distribution is; if you have never
seen it before, you really should not need to know what it is. A uniform distribution
(as discussed in Recipe 11.12) is far more useful in most cases.
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In all cases, we start with a number with uniform distribution using the API from
Recipe 11.12.

Note that these functions use math operations defined in the standard math library.
On many platforms, you will have to link against the appropriate library (usually by
adding -lm to your link line).

#include <math.h>

#define NVCONST 1.7155277699141

double spc_rand_normalvariate(double mu, double sigma) {

  double myr1, myr2, t1, t2;

  do {

    myr1 = spc_rand_real( );

    myr2 = spc_rand_real( );

    t1 = NVCONST * (myr1 - 0.5) / myr2;

    t2 = t1 * t1 / 4.0;

  } while (t2 > -log(myr2));

  return mu + t1 * sigma;

}

double spc_rand_lognormalvariate(double mu, double sigma) {

  return exp(spc_rand_normalvariate(mu, sigma));

}

double spc_rand_paretovariate(double alpha) {

  return 1.0 / pow(spc_rand_real( ), 1.0 / alpha);

}

double spc_rand_weibullvariate(double alpha, double beta) {

  return alpha * pow(-log(spc_rand_real( )), 1.0 / beta);

}

double spc_rand_expovariate(double lambda) {

  double myr = spc_rand_real( );

  while (myr <= 1e-7)

    myr = spc_rand_real( );

  return -log(myr) / lambda;

}

double spc_rand_betavariate(double alpha, double beta) {

  double myr1, myr2;

  myr1 = spc_rand_expovariate(alpha);

  myr2 = spc_rand_expovariate(1.0 / beta);

  return myr2 / (myr1 + myr2);

}

#define SPC_PI 3.1415926535
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double spc_rand_cunifvariate(double mean, double arc) {

  return (mean + arc * (spc_rand_real( ) - 0.5)) / SPC_PI;

}

See Also
Recipe 11.12

11.14 Getting a Random Printable ASCII String

Problem
You want to get a random printable ASCII string.

Solution
If you do not want whitespace characters, the printable ASCII characters have values
from 33 to 126, inclusive. Simply get a random number in that range for each charac-
ter.

If you want to choose from a different character set (such as the base64 character
set), map each character to a specific numeric value between 0 and the number of
characters you have. Select a random number in that range, and map the number
back to the corresponding character.

Discussion
The code presented in this section returns a random ASCII string of a specified
length, where the specified length includes a terminating NULL byte. We use the print-
able ASCII characters, meaning that we never output whitespace or control charac-
ters.

Assuming a good underlying infrastructure for randomness, each character should be
equally likely. However, the ease with which an attacker can guess a single random
string is related not only to the entropy in the generator, but also to the length of the
output. If you use a single character, there are only 94 possible values, and a guess
will be right with a probability of 1/94 (not having entropy can give the attacker an
even greater advantage).

As a result, your random strings should use no fewer than 10 random characters (not
including the terminating NULL byte), which gives you about 54 bits of security. For a
more conservative security margin, you should go for 15 to 20 characters.

#include <stdlib.h>

char *spc_rand_ascii(char *buf, size_t len) {
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 char *p = buf;

  while (--len)

    *p++ = (char)spc_rand_range(33, 126);

  *p = 0;

  return buf;

}

11.15 Shuffling Fairly

Problem
You have an ordered list of items that you would like to shuffle randomly, then visit
one at a time. You would like to do so securely and without biasing any element.

Solution
For each index, swap the item at that index with the item at a random index that has
not been fully processed, including the current index.

Discussion
Performing a statistically fair shuffle is actually not easy to do right. Many develop-
ers who implement a shuffle that seems right to them off the top of their heads get it
wrong.

We present code to shuffle an array of integers here. We perform a statistically fair
shuffle, using the spc_rand_range( ) function from Recipe 11.11.

#include <stdlib.h>

void spc_shuffle(int *items, size_t numitems) {

  int    tmp;

  size_t swapwith;

  while (--numitems) {

    /* Remember, it must be possible for a value to swap with itself */

    swapwith = spc_rand_range(0, numitems);

    tmp = items[swapwith];

    items[swapwith] = items[numitems];

    items[numitems] = tmp;

  }

}

If you need to shuffle an array of objects, you can use this function to first permute
an array of integers, then use that permutation to reorder the elements in your array.
That is, if you have three database records, and you shuffle the list [1, 2, 3], getting
[3, 1, 2], you would build a new array consisting of the records in the listed order.
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See Also
Recipe 11.11

11.16 Compressing Data with Entropy into a
Fixed-Size Seed

Problem
You are collecting data that may contain entropy, and you will need to output a
fixed-size seed that is smaller than the input. That is, you have a lot of data that has a
little bit of entropy, yet you need to produce a fixed-size seed for a pseudo-random
number generator. At the same time, you would like to remove any statistical biases
(patterns) that may be lingering in the data, to the extent possible.

Alternatively, you have data that you believe contains one bit of entropy per bit of
data (which is generally a bad assumption to make, even if it comes from a hardware
generator; see Recipe 11.19), but you’d like to remove any patterns in the data that
could facilitate analysis if you’re wrong about how much entropy is there. The pro-
cess of removing patterns is called whitening.

Solution
You can use a cryptographic hash function such as SHA1 to process data into a
fixed-size seed. It is generally a good idea to process data incrementally, so that you
do not need to buffer potentially arbitrary amounts of data with entropy.

Discussion

Be sure to estimate entropy conservatively. ( See Recipe 11.19.)

It is a good idea to use a cryptographic algorithm to compress the data from the
entropy source into a seed of the right size. This helps preserve entropy in the data,
up to the output size of the message digest function. If you need fewer bytes for a
seed than the digest function produces, you can always truncate the output. In addi-
tion, cryptographic processing effectively removes any patterns in the data (assum-
ing that the hash function is a pseudo-random function). Patterns in the data can
help facilitate breaking an entropy source (in part or in full), particularly when that
source does not actually produce as much entropy as was believed.
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Most simpler compression methods are not going to do as good a job at preserving
entropy. For example, suppose that your compression function is simply XOR. More
concretely, suppose you need a 128-bit seed, and you XOR data in 16-byte chunks
into a single buffer. Suppose also that you believe you have collected 128 bits of
entropy from numerous calls to a 128-bit timestamp operation.

In any particular timestamp function, all of the entropy is going to live in a few of the
least significant bits. Now suppose that only two or three of those bits are likely to
contain any entropy. The XOR-everything strategy will leave well over 120 bits of the
result trivial to guess. The remaining eight bits can be attacked via brute force.
Therefore, even if the input had 128 bits of entropy, the XOR-based compression
algorithm destroyed most of the entropy.

SHA1 is good for these purposes. See Recipe 6.5 for how to use SHA1.

See Also
Recipes 6.5, 11.19

11.17 Getting Entropy at Startup

Problem
You want to be able to seed a cryptographic pseudo-random number generator
securely as soon as a machine boots, without having to wait for interaction from the
user or other typical sources of entropy.

Solution
If you have never been able to seed the generator securely, prompt for entropy on
install or first use (see Recipes 11.20 and 11.21).

Otherwise, before shutting down the generator, have it output enough material to
reseed itself to a file located in a secure part of the filesystem. The next time the gen-
erator starts, read the seed file and use the data to reseed, as discussed in Recipe 11.6.

Discussion
It can take a noticeable amount of time for a PRNG to gather enough entropy that it
is safe to begin outputting random data. On some systems with /dev/random as the
entropy source, users could be forced to sit around indefinitely, not knowing how to
get more entropy into the system.
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It would be nice if you did not have to collect entropy every time a program starts up
or the machine reboots. You should need to get entropy only once per application,
then be able to store that entropy until the next time you need it.

If you have sufficient trust in the local filesystem, you can certainly do this by writ-
ing out a seed to a file, which you can later use to initialize the generator when it
starts back up. Of course, you need to make sure that there are no possible security
issues in file access. In particular, the location you use for saving seed files needs to
be a secure location (see Recipe 2.4 for more on how to ensure this programmati-
cally). In addition, you should be sure not to store a seed on a potentially untrusted
filesystem, such as an NFS mount, and you should probably use advisory file locking
in an attempt to defeat any accidental race conditions on the seed file.

You should also consider the threat of an insider with physical access to the machine
compromising the seed file. For that reason, you should always strive to add new
entropy to a generator after every startup as soon as enough bits can be collected.
Using a seed file should be considered a stopgap measure to prevent stalling on star-
tup.

See Also
Recipes 2.4, 11.6, 11.20, 11.21

11.18 Statistically Testing Random Numbers

Problem
You are using a hardware random number generator or some other entropy source
that hasn’t been cryptographically postprocessed, and you would like to determine
whether it ever stops producing quality data. Alternatively, you want to have your
generator be FIPS 140 compliant (perhaps for FIPS certification purposes).

Solution
FIPS 140-2 tests, which are ongoing throughout the life of the generator, are neces-
sary for FIPS 140 compliance. For actual statistical tests of data produced by a
source, the full set of tests provided by FIPS 140-1 are much more useful, even
though they are now irrelevant to the FIPS certification process.
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Discussion

FIPS 140 tests are useful for proving that a stream of random numbers
are weak, but the tests don’t demonstrate at all when the numbers are
good. In particular, it is incredibly easy to have a weak generator yet
still pass FIPS tests by processing data with a cryptographic primitive
like SHA1 before running the tests. FIPS 140 is only useful as a safety
net, for when an entropy source you think is strong turns out not to be.

FIPS 140 is a standard authored by the U.S. National Institute of Standards and
Technology (NIST; see http://csrc.nist.gov/cryptval/). The standard details general
security requirements for cryptographic software deployed in government systems
(primarily cryptographic “providers”). There are many aspects to the FIPS 140 stan-
dard, one of which is a set of tests that all entropy harvesters and pseudo-random
number generators must be able to run to achieve certification.

FIPS 140-1 was the original standard and had several tests for random number
sources; most of these occurred on startup, but one occurred continuously. Those
tests only needed to be implemented for the two highest levels of FIPS compliance
(Levels 3 and 4), which few applications sought.

In FIPS 140-2, only a single test from FIPS 140-1 remains. This test is mandatory any
time a random number generator or entropy source is used.

Although the FIPS 140-1 standard is being obsoleted by 140-2, it is important to note
that a module can routinely fail the FIPS 140-1 tests and still be FIPS 140-1 compli-
ant. For Level 3 compliance, the user must be able to run the tests on command, and
if the tests fail, the module must go into an error state. For Level 4 compliance, the
module must comply with the requirements of Level 3, plus the tests must be run at
“power-up.” A weak random number generator, such as the one implemented by the
standard C library function rand( ), should be able to get Level 3 certification easily.

FIPS 140-1 testing is a reasonable tool for ensuring that entropy sources are produc-
ing quality data, if those entropy sources are not using any cryptographic operations
internally. If they are, the entropy source will almost certainly pass these tests, even if
it is a very poor entropy source. For the same reason, this set of tests is not good for
testing cryptographic PRNGs, because all such generators will pass these tests with
ease, even if they are poor. For example, simply hashing an incrementing counter
that starts at zero using MD5 will produce a data stream that passes these tests, even
though the data in that stream is easily predictable.

FIPS 140-2 testing generally is not very effective unless a failed hardware device starts
producing a repeating pattern (e.g., a string of zero bits). The FIPS 140-2 test con-
sists of comparing consecutive generator outputs (on a large boundary size; see the
next section). If your “random number generator” consists only of an ever-incre-
menting 128-bit counter, you will never fail this test.
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For this reason, we think the full suite of FIPS 140-1 tests is the way to go any time
you really want to test whether an entropy source is producing good data, and it is a
good idea to run these tests on startup, and then periodically, when feasible. You
should always support the continuous test that FIPS 140-2 mandates whenever you
are using hardware random number generators that could possibly be prone to disas-
trous failure, because it might help you detect such a failure.

FIPS 140-1 power-up and on-demand tests

The FIPS 140-1 standard specifies four statistical tests that operate on 20,000 consec-
utive bits of output (2,500 bytes).

In the first test, the “Monobit” test, the number of bits set to 1 are counted. The test
passes if the number of bits set to 1 is within a reasonable proximity to 10,000. The
function spc_fips_monobit( ), implemented as follows, performs this test, returning 1
on success, and 0 on failure.

#define FIPS_NUMBYTES     2500

#define FIPS_MONO_LOBOUND 9654

#define FIPS_MONO_HIBOUND 10346

/* For each of the 256 possible bit values, how many 1 bits are set? */

static char nb_tbl[256] = {

  0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3,

  4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4,

  4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2,

  3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5,

  4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 1, 2, 2, 3, 2, 3, 3,

  4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3,

  3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5,

  6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6,

  4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5,

  6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8

};

int spc_fips_monobit(unsigned char data[FIPS_NUMBYTES]) {

  int i, result;

  for (i = result = 0;  i < FIPS_NUMBYTES;  i++)

    result += nb_tbl[data[i]];

  return (result > FIPS_MONO_LOBOUND && result < FIPS_MONO_HIBOUND);

}

The second test is the “Poker” test, in which the data is broken down into consecutive
4-bit values to determine how many times each of the 16 possible 4-bit values appears.
The square of each result is then added together and scaled to see whether the result
falls in a particular range. If so, the test passes. The function spc_fips_poker(), imple-
mented as follows, performs this test, returning 1 on success and 0 on failure:

#define FIPS_NUMBYTES      2500

#define FIPS_POKER_LOBOUND 1.03
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#define FIPS_POKER_HIBOUND 57.4

int spc_fips_poker(unsigned char data[FIPS_NUMBYTES]) {

  int    i;

  long   counts[16] = {0,}, sum = 0;

  double result;

  for (i = 0;  i < FIPS_NUMBYTES;  i++) {

    counts[data[i] & 0xf]++;

    counts[data[i] >> 4]++;

  }

  for (i = 0;  i < 16;  i++)

    sum += (counts[i] * counts[i]);

  result = (16.0 / 5000) * (double)sum - 5000.0;

  return (result > FIPS_POKER_LOBOUND && result < FIPS_POKER_HIBOUND);

}

The third and fourth FIPS 140-1 statistical tests are implemented as follows to run in
parallel in a single routine. The third test, the “Runs” test, goes through the data
stream and finds all the “runs” of consecutive bits that are identical. The test then
counts the maximum length of each run. That is, if there are three consecutive zeros
starting at the first position, that’s one run of length three, but it doesn’t count as
any runs of length two or any runs of length one. Runs that are longer than six bits
are counted as a six-bit run. At the end, for each length of run, the count for consec-
utive zeros of that run length and the count for consecutive ones are examined. If
either fails to fall within a specified range, the test fails. If all of the results are in an
appropriate range for the run length in question, the test passes.

The fourth test, the “Long Runs” test, also calculates runs of bits. The test looks for
runs of 34 bits or longer. Any such runs cause the test to fail; otherwise, it succeeds.

#define FIPS_NUMBYTES  2500

#define FIPS_LONGRUN   34

#define FIPS_RUNS_1_LO 2267

#define FIPS_RUNS_1_HI 2733

#define FIPS_RUNS_2_LO 1079

#define FIPS_RUNS_2_HI 1421

#define FIPS_RUNS_3_LO 502

#define FIPS_RUNS_3_HI 748

#define FIPS_RUNS_4_LO 223

#define FIPS_RUNS_4_HI 402

#define FIPS_RUNS_5_LO 90

#define FIPS_RUNS_5_HI 223

#define FIPS_RUNS_6_LO 90

#define FIPS_RUNS_6_HI 223

/* Perform both the "Runs" test and the "Long Run" test */

int spc_fips_runs(unsigned char data[FIPS_NUMBYTES]) {

  /* We allow a zero-length run size, mainly just to keep the array indexing less

   * confusing.  It also allows us to set cur_val arbitrarily below (if the first

   * bit of the stream is a 1, then runs[0] will be 1; otherwise, it will be 0).

   */

  int           runs[2][7] = {{0,},{0,}};
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  int           cur_val, i, j, runsz;

  unsigned char curr;

  for (cur_val = i = runsz = 0;  i < FIPS_NUMBYTES;  i++) {

    curr = data[i];

    for (j = 0;  j < 8;  j++) {

      /* Check to see if the current bit is the same as the last one */

      if ((curr & 0x01) ^ cur_val) {

        /* The bits are different. A run is over, and a new run of 1 has begun */

        if (runsz >= FIPS_LONGRUN) return 0;

        if (runsz > 6) runsz = 6;

        runs[cur_val][runsz]++;

        runsz = 1;

        cur_val = (cur_val + 1) & 1; /* Switch the value. */

      } else runsz++;

      curr >>= 1;

    }

  }

  return (runs[0][1] > FIPS_RUNS_1_LO && runs[0][1] < FIPS_RUNS_1_HI &&

          runs[0][2] > FIPS_RUNS_2_LO && runs[0][2] < FIPS_RUNS_2_HI &&

          runs[0][3] > FIPS_RUNS_3_LO && runs[0][3] < FIPS_RUNS_3_HI &&

          runs[0][4] > FIPS_RUNS_4_LO && runs[0][4] < FIPS_RUNS_4_HI &&

          runs[0][5] > FIPS_RUNS_5_LO && runs[0][5] < FIPS_RUNS_5_HI &&

          runs[0][6] > FIPS_RUNS_6_LO && runs[0][6] < FIPS_RUNS_6_HI &&

          runs[1][1] > FIPS_RUNS_1_LO && runs[1][1] < FIPS_RUNS_1_HI &&

          runs[1][2] > FIPS_RUNS_2_LO && runs[1][2] < FIPS_RUNS_2_HI &&

          runs[1][3] > FIPS_RUNS_3_LO && runs[1][3] < FIPS_RUNS_3_HI &&

          runs[1][4] > FIPS_RUNS_4_LO && runs[1][4] < FIPS_RUNS_4_HI &&

          runs[1][5] > FIPS_RUNS_5_LO && runs[1][5] < FIPS_RUNS_5_HI &&

          runs[1][6] > FIPS_RUNS_6_LO && runs[1][6] < FIPS_RUNS_6_HI);

}

The FIPS continuous output test

The FIPS continuous output test requires that random number generators (which
would include both entropy sources and PRNGs) have the data they are going to
produce broken up into “blocks” of at least 16 bytes. If the generator has a “natu-
ral” block size of greater than 16 bytes, that should always get used. Otherwise,
any size 16 bytes or greater can be used. We recommend never using blocks larger
than 16 bytes (unless required) because the underlying generator uses larger blocks
naturally.*

This test collects the first block of output and never gives it to anyone. Instead, it is
compared against the second block of output and thrown away. The second block
may be output if it is not identical to the first block; otherwise, the system must fail.

* Usually, entropy sources do not have a natural block size that large, if they have one at all (there is usually a
somewhat artificial block size, such as the width of the memory you read to query the source).
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The second output is also saved and is then compared to the third block. This pro-
cess continues for all generator outputs.

The following (non-thread-safe) code adds a FIPS-compliant wrapper to the spc_

entropy( ) function from Recipe 11.2 (note that this assumes that spc_entropy( )

does not cryptographically postprocess its data, because otherwise the test is all but
worthless).

#include <stdlib.h>

#include <string.h>

#define RNG_BLOCK_SZ 16

char *spc_fips_entropy(char *outbuf, int n) {

  static int  i, bufsz = -1;

  static char b1[RNG_BLOCK_SZ], b2[RNG_BLOCK_SZ];

  static char *last = b1, *next = b2;

  char        *p = outbuf;

  if (bufsz = = -1) {

    spc_entropy(next, RNG_BLOCK_SZ);

    bufsz = 0;

  }

  while (bufsz && n--)

    *p++ = last[RNG_BLOCK_SZ - bufsz--];

  while (n >= RNG_BLOCK_SZ) {

    /* Old next becomes last here */

    *next ^= *last;

    *last ^= *next;

    *next ^= *last;

    spc_entropy(next, RNG_BLOCK_SZ);

    for (i = 0;  i < RNG_BLOCK_SZ;  i++)

      if (next[i] != last[i]) goto okay;

    abort( );

okay:

    memcpy(p, next, RNG_BLOCK_SZ);

    p += RNG_BLOCK_SZ;

    n -= RNG_BLOCK_SZ;

  }

  if (n) {

    *next ^= *last;

    *last ^= *next;

    *next ^= *last;

    spc_entropy(next, RNG_BLOCK_SZ);

    for (i = 0;  i < RNG_BLOCK_SZ;  i++)

      if (next[i] != last[i])

         goto okay2;

    abort( );

okay2:

    memcpy(p, next, n);

    bufsz = RNG_BLOCK_SZ - n;

  }

  return outbuf;

}
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See Also
• NIST Cryptographic Module Validation Program home page: http://csrc.nist.gov/

cryptval/

• Recipe 11.2

11.19 Performing Entropy Estimation and
Management

Problem
You are collecting your own entropy, and you need to determine when you have col-
lected enough data to use the entropy.

Solution
At the highest level, the solution is to be incredibly conservative in entropy estima-
tion. In the discussion, we will examine general practices and guidelines for particu-
lar sources.

Discussion
Fundamentally, the practical way to look at entropy is as a measurement of how
much information in a piece of “random” data an attacker can glean about your ran-
domness infrastructure. For example, if you have a trusted channel where you get
128 bits of data, the question we are really asking is this: how much of that data is
provided to an attacker through whatever data channels are available to him? The
complexity of an attack is based on how much data an attacker has to guess.

Clearly, in the practical sense, a single piece of data can have different amounts of
entropy for different people. For example, suppose that we use the machine boot
time to the nearest second as a source of entropy. An attacker who has information
about the system startup time narrowing it down to the nearest week still has a much
harder problem than an attacker who can narrow it down to a 10-second period. The
second attacker can try all 10 possible starting values and see if he gets the correct
value. The first has far, far more values to try before finding the original value.

In practice, it turns out that boot time is often an even more horrible source of
entropy than we have already suggested. The nmap tool can often give the system
uptime of a remote host with little effort, although this depends on the operating sys-
tem and the firewall configuration of the host being targeted.

The basic lesson here is that, before you decide how to estimate entropy, you should
figure out what your threat model is. That is, what kinds of attacks are you worried
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about? For example, it is possible to monitor electromagnetic signals coming from a
computer to capture every signal coming from that machine. The CIA has been
known to do this with great success. In such a case, there may be absolutely no
entropy at all without some sort of measures to prevent against such attacks.

Most people are not worried about such a threat model because the attack requires a
high degree of skill. In addition, it generally requires placing another machine in
close proximity to the machine being targeted. A more realistic assumption, is that
someone with a local (nonroot) account on the machine will try to launch an attack.
Quite a bit of the entropy an interactive Unix system typically gathers can be
observed by such an attacker, either directly or indirectly.

If you are not worried about people with access to the local system, we believe you
should at least assume that attackers will somehow find their way onto the same net-
work segment as the machine that’s collecting entropy. You should therefore assume
that there is little entropy to be had in network traffic that the machine receives,
because other machines on the network may be able to see the same traffic, and even
inject new traffic.

Another threat you might want to consider is the possibility of an attacker’s finding a
way to pollute or destroy one or more entropy sources. For example, suppose you
are using a hardware random number generator. The attacker may not have local
account access and may not have the resources or know-how for an electromagnetic
signal capture attack. However, there may be an easy way to break the physical ran-
dom number generator and get it to produce a big string of zeros.

Certainly, you can use FIPS 140 testing as a preventive measure here, as discussed in
Recipe 11.18. However, those tests are not very reliable. You might still want to
assume that entropy sources may not provide any entropy at all.

Such attacks are probably worst-case in most practical systems. You can prevent
against tainted entropy sources by using multiple entropy sources, under the
assumption (which is probably pretty reasonable in practice) that an attacker will not
have the resources to effectively taint more than one source at once.

With such an assumption, you can estimate entropy as if such attacks are not possi-
ble, then subtract out the entropy estimate for the most plentiful entropy source. For
example, suppose that you want to collect a 128-bit seed, and you read keyboard
input and also read separately from a fast hardware random number generator. With
such a metric, you would assume that the hardware source (very likely to be the most
plentiful) is providing no entropy. Therefore, you refuse to believe that you have
enough entropy until your entropy estimate for the keyboard is 128 bits.

You can come up with more liberal metrics. For example, suppose you are collecting
a 128-bit seed. You could have a metric that says you will believe you really have 128
bits of entropy when you have collected at least 160 bits total, where at least 80 of
those bits are from sources other than the fastest source. This is a reasonable metric,
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because even if a source does fail completely, you should end up with 80 bits of secu-
rity on a 128-bit value, which is generally considered impractical to attack. (Thus,
80-bit symmetric keys are often considered more than good enough for all current
security needs.)

One thing you should do to avoid introducing security problems by
underestimating entropy is aggregate each entropy source indepen-
dently, then mash everything together once you have met your output
metric. One big advantage of such a technique is that it simplifies anal-
ysis that can lead to cryptographic assurance. To do this, you can have
a collector for each entropy source. When you need an output, take
the state of each entropy source and combine them somehow.

More concretely, you could use a SHA1 context for each entropy
source. When an output is needed and the metrics are met, you can
get the state of each context, XOR all the states together, and output
that. Of course, remember that in this scenario, you will never have
more entropy than the output size of the hash function.

Now assume that the attacker cannot make a source fail; she can only take measure-
ments for guessing attacks. We will talk about estimating the amount of entropy in a
piece of data, assuming two different threat models: with the first, the attacker has
local but nonprivileged access to the machine,* and in the second, the attacker has
access to the local network segment.

In the second threat model, assume this attacker can see everything external that
goes on with the application by somehow snooping network traffic. In addition,
assume that the attacker knows all about the operational environment of the
machine on which the application runs. For example, assume that she knows the
operating system, the applications running on the system, approximately when the
machine rebooted, and so on. These assumptions mean that a savvy attacker can
actually figure out a fair amount about the machine’s state from observing network
traffic.

Unfortunately, the first problem we encounter when trying to estimate entropy is
that, while there is an information-theoretic approach to doing so, it is actually ridic-
ulously difficult to do in practice. Basically, we can model how much entropy is in
data only once we have a complete understanding of that data, as well as a complete
understanding of all possible channels available to an attacker for measuring the
parts of that data that the attacker would not otherwise be able to figure out from
patterns in the data.

* If an attacker already has privileged access to a machine, you probably have more important issues than her
guessing random numbers.
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Particularly when an attacker may have local access to a machine, it can be a hope-
less task to figure out what all the possible channels are. Making things difficult is
the fact that machines behave very deterministically. This behavior means that the
only points where there is the possibility for any entropy at all is when outside inputs
are added to the system.

The next problem is that, while a trusted entropy accumulator might be able to
take some measurements of the outside data, there may be nothing stopping an
attacker from taking measurements of the exact same data. For example, suppose
that an operating system uses keyboard strokes as an entropy source. The kernel
measures the keystroke and the timestamp associated with the key press. An
attacker may not be able to measure keystrokes generated by other users, but he
should be able to add his own keystrokes, which the operating system will assume
is entropy. The attacker can also take his own timestamps, and they will be highly
correlated to the timestamps the operating system takes.

If we need to use our own entropy-gathering on a system that does its own, we trust
the operating system’s infrastructure, and we use a different infrastructure (particu-
larly in terms of the cryptographic design), measuring entropy that the system also
measures will generally not be a problem.

For example, suppose that you have a user interactively type data on startup so that
you can be sure there is sufficient entropy for a seed. If an attacker is a local nonprivi-
leged user, you can hope that the exact timings and values of key-press information
will contain some data the attacker cannot know and will need to guess. If the sys-
tem’s entropy collection system does its job properly, cryptographically postprocess-
ing entropy and processing it only in large chunks, there should be no practical way
to use system infrastructure as a channel of information on the internal state of your
own infrastructure. This falls apart only when the cryptography in use is broken, or
when entropy estimates are too low.

The worst-case scenario for collecting entropy is generally a headless server. On such
a machine, there is often very little trustworthy entropy coming from the environ-
ment, because all input comes from the network, which should generally be largely
untrusted. Such systems are more likely to request entropy frequently for things like
key generation. Because there is generally little entropy available on such machines,
resource starvation attacks can be a major problem when there are frequent entropy
requests.

There are two solutions to this problem. The first is operational: get a good hard-
ware random number generator and use it. The second is to make sure that you do
not frequently require entropy. Instead, be willing to fall back on cryptographic
pseudo-randomness, as discussed in Recipe 11.5.

If you take the second approach, you will only need to worry about collecting
entropy at startup time, which may be feasible to do interactively. Alternatively, if
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you use a seed file, you can just collect entropy at install time, at which point inter-
acting with the person performing the install is not a problem.

Entropy in timestamps

For every piece of data that you think has entropy, you can try to get additional
entropy by mixing a timestamp into your entropy state, where the timestamp corre-
sponds to the time at which the data was processed.

One good thing here is that modern processors can generate very high-resolution
timestamps. For example, the x86 RDTSC instruction has granularity related to the
clock speed of the processor. The problem is that the end user often does not see
anywhere near the maximum resolution from a timing source. In particular, proces-
sor clocks are usually running in lockstep with much slower bus clocks, which in
turn are running in lockstep with peripheral clocks. Expert real-world analysis of
event timings modulo these clock multiples suggests that much of this resolution is
not random.

Therefore, you should always assume that your clock samples are no more accurate
than the sampling speed of the input source, not the processor. For example, key-
boards and mice generally use a clock that runs around 1 Khz, a far cry from the
speed of the RDTSC clock.

Another issue with the clock is something known as a back-to-back attack, in which
depending on the details of entropy events, an attacker may be able to force entropy
events to happen at particular moments. For example, back-to-back short network
packets can keep a machine from processing keyboard or mouse interrupts until the
precise time it is done servicing a packet, which a remote attacker can measure by
observing the change in response in the packets he sends.

To solve this problem, assume that you get no entropy when the delta between two
events is close to the interrupt latency time. That works because both network pack-
ets and keystrokes will cause an interrupt.*

Timing data is generally analyzed by examining the difference between two samples.
Generally, the difference between two samples will not be uniformly distributed. For
example, when looking at multiple such deltas, the high-order bits will usually be the
same. The floor of the base 2 logarithm of the delta would be the theoretical maxi-
mum entropy you could get from a single timestamp, measured in bits. For example,
if your delta between two timestamps were, in hex, 0x9B (decimal 155), the maxi-
mum number of bits of entropy you could possibly have is 7, because the log of 155
is about 7.28.

* Some operating systems can mitigate this problem, if supported by the NIC.
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However, in practice, even that number is too high by a bit, because we always know
that the most significant bit we count is a 1. Only the rest of the data is really likely
to store entropy.

In practice, to calculate the maximum amount of entropy we believe we may have in
the delta, we find the most significant 1 bit in the value and count the number of bits
from that point forward. For example, there are five bits following the most signifi-
cant 1 bit in 0x9B, so we would count six. This is the same as taking the floor of the
log, then subtracting one.

Because of the nonuniform nature of the data, we are only going to get some portion
of the total possible entropy from that timestamp. Therefore, for a difference of 0x9B,
six bits is an overestimate. With some reasonable assumptions about the data, we
can be sure that there is at least one fewer bit of entropy.

In practice, the problem with this approximation is that an attacker may be able to
figure out the more significant bits by observation, particularly in a very liberal threat
model, where all threats come from the network.

For example, suppose you’re timing the entropy between keystrokes, but the key-
strokes come from a computer on the network. Even if those keystrokes are pro-
tected by encryption, an attacker on the network will know approximately when
each keystroke enters the system.

In practice, the latency of the network and the host operating system generally pro-
vides a tiny bit of entropy. On a Pentium 4 using RDTSC, we would never estimate this
amount at above 2.5 bits for any application. However, if you can afford not to do
so, we recommend you do not count it.

The time where you may want to count it is if you are gathering input from a source
where the source might actually come from a secure channel over the network (such
as a keyboard attacked to a remote terminal), and you are willing to be somewhat
liberal in your threat model with respect to the network. In such a case, we might
estimate a flat three bits of entropy per character,* which would include the actual
entropy in the value of that character.

In summary, our recommendations for timestamps are as follows:

• Keep deltas between timestamps. Do not count any entropy for the first time-
stamp, then estimate entropy as the number of bits to the right of the most sig-
nificant bit in the delta, minus one.

• Only count entropy when the attacker does not have a chance of observing the
timing information, whether directly or indirectly. For example, if you are tim-
ing entropy between keystrokes, be sure that the typing is done on the physical
console, instead of over a network.

* Assuming that successive characters are different; otherwise, we would estimate zero bits of entropy.
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• If you have to accept data from the network, make sure that it is likely to have
some other entropy beyond the timing, and never estimate more than 2.5 bits of
entropy per packet with a high-resolution clock (i.e., one running in the GHz
range). If your clock has better than millisecond resolution and the processor is
modern, it is probably reasonable to assume a half-bit of entropy on incoming
network packets.

Entropy in a key press

As with any entropy source, when you are trying to get entropy from a key press, you
should try to get entropy by taking a timestamp alongside the key press and estimate
entropy as discussed in the previous subsection.

How much entropy should you count for the actual value of the key itself, though?

Of course, in practice, the answer has to do with how likely an attacker is to guess
the key you are typing. If the attacker knows that the victim is typing War and Peace,
there would be very little entropy (the only entropy would be from mistakes in typ-
ing or time between timestrokes).

If you are not worried about attacks from local users, we believe that a good, conser-
vative approximation is one bit of entropy per character, if and only if the character
is not identical to the previous character (otherwise, estimate zero). This assumes
that the attacker has a pretty good but not exact idea of the content being typed.

If an attacker who is sending his own data into your entropy infrastructure is part of
your threat model, we think the above metric is too liberal. If your infrastructure is
multiuser, where the users are separated from each other, use a metric similar to the
ones we discussed earlier for dealing with a single tainted data source.

For example, suppose that you collect keystroke data from two users, Alice and Bob.
Keep track of the number of characters Alice types and the number Bob types. Your
estimate as to the number of bits of entropy you have collected should be the mini-
mum of those two values. That way, if Bob is an attacker, Alice will still have a rea-
sonable amount of entropy, and vice versa.

If you are worried that an attacker may be feeding you all your input keystrokes, you
should count no entropy, but mix in the key value to your entropy state anyway. In
such a case, it might be reasonable to count a tiny bit of entropy from an associated
timestamp if and only if the keystroke comes from the network. If the attacker may
be local, do not assume there is any entropy.

Entropy in mouse movements

On most operating systems, moving the mouse produces events that give positional
information about the mouse. In some cases, any user on the operating system can
see those events. Therefore, if attacks from local users are in your threat model, you
should not assume any entropy.
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However, if you have a more liberal threat model, there may be some entropy in the
position of the mouse. Unfortunately, most mouse movements follow simple trajec-
tories with very little entropy. The most entropy occurs when the pointer reaches the
general vicinity of its destination, and starts to slow down to lock in on a target.
There is also often a fair bit of entropy on startup. The in-between motion is usually
fairly predictable. Nonetheless, if local attacks are not in your threat model, and the
attacker can only guess approximately what parts of your screen the mouse went to
in a particular time frame based on observing program behavior, there is potentially a
fair bit of entropy in each mouse event, because the attacker will not be able to guess
to the pixel where the cursor is at any given moment.

For mouse movements, beyond the entropy you count for timestamping any mouse
events, we recommend the following:

• If the mouse event is generated from the local console, not from a remotely con-
trolled mouse, and if local attacks are not in your threat model, add the entire
mouse event to your entropy state and estimate no more than three bits of
entropy per sample (1.5 would be a good, highly conservative estimate).

• If the local user may be a threat and can see mouse events, estimate zero bits.

• If the local user may be a threat but should not be able to see the actual mouse
events, estimate no more than one bit of entropy per sample.

Entropy in disk access

Many people believe that measuring how long it takes to access a disk is a good way
to get some entropy. The idea is that there is entropy arising from turbulence
between the disk head and the platter.

We recommend against using this method altogether.

There are several reasons that we make this recommendation. First, if that entropy is
present at all, caching tends to make it inaccessible to the programmer. Second, in
1994, experts estimated that such a source was perhaps capable of producing about
100 bits of entropy per minute, if you can circumvent the caching problem. How-
ever, that value has almost certainly gone down with every generation of drives since
then.

Entropy in data from the network

As we have mentioned previously in this recipe, while it may be tempting to try to
gather entropy from network data, it is very risky to do so, because in any reason-
able threat model, an attacker can measure and potentially inject data while on the
network.

If there is any entropy to be had at all, it will largely come from the entropy on the
recipient’s machine, more than the network. If you absolutely have to measure
entropy from such a source, never estimate more than 2.5 bits of entropy per packet
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with a high-resolution clock (i.e., one running in the GHz range). If your clock has
better than millisecond resolution and the processor is modern, it is probably reason-
able to assume a half-bit of entropy on incoming network packets, even if the pack-
ets are generated by an attacker.

Entropy in the sound device

There is generally some entropy to be had by reading a sound card just from random
thermal noise. However, the amount varies depending on the hardware. Sound cards
are usually also subject to RF interference. Although that is generally not random, it
does tend to amplify thermal noise.

Conservatively, if a machine has a sound card, and its outputs do not fail FIPS-140
tests, we believe it is reasonable to estimate 0.25 bits per sample, as long as an
attacker cannot measure the same samples. Otherwise, do not estimate any.

Entropy from thread timing and other system state

Systems effectively gain entropy based on inputs from the environment. So far, we
have discussed how to estimate entropy by directly sampling the input sources. If
you wish to measure entropy that you are not specifically sampling, it is generally
feasible to query system state that is sensitive to external inputs.

In practice, if you are worried about local attacks, you should not try to measure sys-
tem state indirectly, particularly as an unprivileged user. For anything you can do to
measure system state, an attacker can probably get correlated data and use it to
attack your results.

Otherwise, the amount of entropy you get definitely depends on the amount of infor-
mation an attacker can guess about your source. It is popular to use the output of
commands such as ps, but such sources are actually a lot more predictable than most
people think.

Instead, we recommend trying to perform actions that are likely to be indirectly
affected by everything going on in the system. For example, you might measure how
many times it takes to yield the scheduler a fixed number of times. More portably,
you can do the same thing by timing how long it takes to start and stop a significant
number of threads.

Again, this works only if local users are not in your threat model. If they are not, you
can estimate entropy by looking at the difference between timestamps, as discussed
earlier in this recipe. If you want to be conservative in your estimates, which is a
good idea, particularly if you might be gathering the same entropy from different
sources, you may want to divide the basic estimate by two or more.

See Also
Recipes 11.5, 11.18
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11.20 Gathering Entropy from the Keyboard

Problem
You need entropy in a low-entropy environment and can prompt the user to type in
order to collect it.

Solution
On Unix, read directly from the controlling terminal (/dev/tty). On Windows, pro-
cess all keyboard events. Mix into an entropy pool the key pressed, along with the
timestamp at which each one was processed. Estimate entropy based upon your
operating environment; see the considerations in Recipe 11.19.

Discussion
There can be a reasonable amount of entropy in key presses. The entropy comes not
simply from which key is pressed, but from when each key is pressed. In fact, mea-
suring which key is pressed can have very little entropy in it, particularly in an
embedded environment where there are only a few keys. Most of the entropy will
come from the exact timing of the key press.

The basic methodology is to mix the character pressed, along with a timestamp, into
the entropy pool. We will provide an example implementation in this section, where
that operation is merely hashing the data into a running SHA1 context. If you can
easily get information on both key presses and key releases (as in an event-driven sys-
tem like Windows), we strongly recommend that you mix such information in as
well.

The big issue is in estimating the amount of entropy in each key press. The first
worry is what happens if the user holds down a key. The keyboard repeat may be so
predictable that all entropy is lost. That is easy to thwart, though. You simply do not
measure any entropy at all, unless the user pressed a different key from the previous
time.

Ultimately, the amount of entropy you estimate getting from each key press should
be related to the resolution of the clock you use to measure key presses. In addition,
you must consider whether other processes on the system may be recording similar
information (such as on a system that has a /dev/random infrastructure already). See
Recipe 11.19 for a detailed discussion of entropy estimation.

The next two subsections contain code that reads data from the keyboard, hashes it
into a SHA1 context, and repeats until it is believed that the requested number of
bits of entropy has been collected. A progress bar is also displayed that shows how
much more entropy needs to be collected.
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Collecting entropy from the keyboard on Unix

First, you need to get a file descriptor for the controlling terminal, which can always
be done by opening /dev/tty. Note that it is a bad idea to read from standard input,
because it could be redirected from an input source other than /dev/tty. For example,
you might end up reading data from a static file with no entropy. You really do need
to make sure you are reading data interactively from a keyboard.

Another issue is that there must be a secure path from the keyboard to the program
that is measuring entropy. If, for example, the user is connected through an insecure
telnet session, there is essentially no entropy in the data. However, it is generally
okay to read data coming in over a secure ssh connection. Unfortunately, from an
application, it is difficult to tell whether an interactive terminal is properly secured,
so it’s much better to issue a warning about it, pushing the burden off to the user.

You will want to put the terminal into a mode where character echo is off and as
many keystrokes as possible can be read. The easiest way to do that is to put the ter-
minal to which a user is attached in “raw” mode. In the following code, we imple-
ment a function that, given the file descriptor for the tty, sets the terminal mode to
raw mode and also saves the old options so that they can be restored after entropy
has been gathered. We do all the necessary flag-setting manually, but many environ-
ments can do it all with a single call to cfmakeraw( ), which is part of the POSIX stan-
dard.

In this code, timestamps are collected using the current_stamp( ) macro from Rec-
ipe 4.14. Remember that this macro interfaces specifically to the x86 RDTSC instruc-
tion. For a more portable solution, you can use gettimeofday( ). (Refer back to
Recipe 4.14 for timestamping solutions.)

One other thing that needs to be done to use this code is to define the macro
ENTROPY_PER_SAMPLE, which indicates the amount of entropy that should be esti-
mated for each key press, between the timing information and the actual value of the
key.

We recommend that you be highly conservative, following the guidelines from Rec-
ipe 11.19. We strongly recommend a value no greater than 2.5 bits per key press on a
Pentium 4, which takes into account that key presses might come over an ssh con-
nection (although it is reasonable to keep an unencrypted channel out of the threat
model). This helps ensure quality entropy and still takes up only a few seconds of the
user’s time (people will bang on their keyboards as quickly as they can to finish).

For a universally applicable estimate, 0.5 bits per character is nice and conservative
and not too onerous for the user.

Note that we also assume a standard SHA1 API, as discussed in Recipe 6.5. This
code will work as is with OpenSSL if you include openssl/sha.h and link in libcrypto.

#include <termios.h>

#include <unistd.h>
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#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#ifndef TIOCGWINSZ

#include <sys/ioctl.h>

#endif

#include <openssl/sha.h>

#define HASH_OUT_SZ     20

#define OVERHEAD_CHARS  7

#define DEFAULT_BARSIZE (78 - OVERHEAD_CHARS)

#define MAX_BARSIZE     200

void spc_raw(int fd, struct termios *saved_opts) {

  struct termios new_opts;

  if (tcgetattr(fd, saved_opts) < 0) abort( );

  /* Make a copy of saved_opts, not an alias. */

  new_opts = *saved_opts;

  new_opts.c_lflag    &= ~(ECHO | ICANON | IEXTEN | ISIG);

  new_opts.c_iflag    &= ~(BRKINT | ICRNL | INPCK | ISTRIP | IXON);

  new_opts.c_cflag    &= ~(CSIZE | PARENB);

  new_opts.c_cflag    |= CS8;

  new_opts.c_oflag    &= ~OPOST;

  new_opts.c_cc[VMIN]  = 1;

  new_opts.c_cc[VTIME] = 0;

  if (tcsetattr(fd, TCSAFLUSH, &new_opts) < 0) abort( );

}

/* Query the terminal file descriptor with the TIOCGWINSZ ioctl in order to find

 * out the width of the terminal.  If we get an error, go ahead and assume a 78

 * character display.  The worst that may happen is bad wrapping.

 */

static int spc_get_barsize(int ttyfd) {

  struct winsize sz;

  if (ioctl(ttyfd, TIOCGWINSZ, (char *)&sz) < 0) return DEFAULT_BARSIZE;

  if (sz.ws_col < OVERHEAD_CHARS) return 0;

  if (sz.ws_col - OVERHEAD_CHARS > MAX_BARSIZE) return MAX_BARSIZE;

  return sz.ws_col - OVERHEAD_CHARS;

}

static void spc_show_progress_bar(double entropy, int target, int ttyfd) {

  int  bsz, c;

  char bf[MAX_BARSIZE + OVERHEAD_CHARS];

  bsz = spc_get_barsize(ttyfd);

  c   = (int)((entropy * bsz) / target);

  bf[sizeof(bf) - 1] = 0;

  if (bsz) {

    snprintf(bf, sizeof(bf), "\r[%-*s] %d%%", bsz, "",

             (int)(entropy * 100.0 / target));

    memset(bf + 2, '=', c);
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    bf[c + 2] = '>';

  } else

    snprintf(bf, sizeof(bf), "\r%d%%", (int)(entropy * 100.0 / target));

  while (write(ttyfd, bf, strlen(bf)) = = -1)

    if (errno != EAGAIN) abort( );

}

static void spc_end_progress_bar(int target, int ttyfd) {

  int bsz, i;

  if (!(bsz = spc_get_barsize(ttyfd))) {

    printf("100%%\r\n");

    return;

  }

  printf("\r[");

  for (i = 0;  i < bsz;  i++) putchar('=');

  printf("] 100%%\r\n");

}

void spc_gather_keyboard_entropy(int l, char *output) {

  int            fd, n;

  char           lastc = 0;

  double         entropy = 0.0;

  SHA_CTX        pool;

  volatile char  dgst[HASH_OUT_SZ];

  struct termios opts;

  struct {

    char         c;

    long long    timestamp;

  }              data;

  if (l > HASH_OUT_SZ) abort( );

  if ((fd = open("/dev/tty", O_RDWR)) = = -1) abort( );

  spc_raw(fd, &opts);

  SHA1_Init(&pool);

  do {

    spc_show_progress_bar(entropy, l * 8, fd);

    if ((n = read(fd, &(data.c), 1)) < 1) {

      if (errno = = EAGAIN) continue;

      abort( );

    }

    current_stamp(&(data.timestamp));

    SHA1_Update(&pool, &data, sizeof(data));

    if (lastc != data.c) entropy += ENTROPY_PER_SAMPLE;

    lastc = data.c;

  } while (entropy < (l * 8));

  spc_end_progress_bar(l * 8, fd);

  /* Try to reset the terminal. */

  tcsetattr(fd, TCSAFLUSH, &opts);

  close(fd);

  SHA1_Final((unsigned char *)dgst, &pool);

  spc_memcpy(output, (char *)dgst, l);

  spc_memset(dgst, 0, sizeof(dgst));

}
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Collecting entropy from the keyboard on Windows

To collect entropy from the keyboard on Windows, we will start by building a dia-
log that displays a brief message advising the user to type random characters on the
keyboard until enough entropy has been collected. The dialog will also contain a
progress bar and an OK button that is initially disabled. As entropy is collected, the
progress bar will be updated to report the progress of the collection. When enough
entropy has been collected, the OK button will be enabled. Clicking the OK button
will dismiss the dialog.

Here is the resource definition for the dialog:

#include <windows.h>

#define SPC_KEYBOARD_DLGID      101

#define SPC_PROGRESS_BARID      1000

#define SPC_KEYBOARD_STATIC     1001

SPC_KEYBOARD_DLGID DIALOG DISCARDABLE  0, 0, 186, 95

STYLE DS_MODALFRAME | DS_NOIDLEMSG | DS_CENTER | WS_POPUP | WS_VISIBLE |

    WS_CAPTION

FONT 8, "MS Sans Serif"

BEGIN

    CONTROL         "Progress1",SPC_PROGRESS_BARID,"msctls_progress32",

                    PBS_SMOOTH | WS_BORDER,5,40,175,14

    LTEXT           "Please type random characters on your keyboard until the \

                    progress bar reports 100% and the OK button becomes active.",

                    SPC_KEYBOARD_STATIC,5,5,175,25

    PUSHBUTTON      "OK",IDOK,130,70,50,14,WS_DISABLED

END

Call the function SpcGatherKeyboardEntropy( ) to begin the process of collecting
entropy. It requires two additional arguments to its Unix counterpart, spc_gather_

keyboard_entropy( ):

hInstance

Application instance handle normally obtained from the first argument to
WinMain( ), the program’s entry point.

hWndParent

Handle to the dialog’s parent window. It may be specified as NULL, in which case
the dialog will have no parent.

pbOutput

Buffer into which the collected entropy will be placed.

cbOutput

Number of bytes of entropy to place into the output buffer. The output buffer
must be sufficiently large to hold the requested amount of entropy. The number
of bytes of entropy requested should not exceed the size of the hash function
used, which is SHA1 in the code provided. SHA1 produces a 160-bit or 20-byte
hash. If the requested entropy is smaller than the hash function’s output, the
hash function’s output will be truncated.
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SpcGatherKeyboardEntropy( ) uses the CryptoAPI to hash the data collected from the
keyboard. It first acquires a context object, then creates a hash object. After the argu-
ments are validated, the dialog resource is loaded by calling CreateDialog( ), which
creates a modeless dialog. The dialog is created modeless so that keyboard messages
can be captured. If a modal dialog is created using DialogBox( ) or one of its siblings,
message handling for the dialog prevents us from capturing the keyboard messages.

Once the dialog is successfully created, the message-handling loop performs normal
message dispatching, calling IsDialogMessage( ) to do dialog message processing.
Keyboard messages are captured in the loop prior to calling IsDialogMessage( ), how-
ever. That’s because IsDialogMessage( ) causes the messages to be translated and dis-
patched, so handling them in the dialog’s message procedure isn’t possible.

When a key is pressed, a WM_KEYDOWN message will be received, which contains infor-
mation about which key was pressed. When a key is released, a WM_KEYUP message
will be received, which contains the same information about which key was released
as WM_KEYDOWN contains about a key press. The keyboard scan code is extracted from
the message, combined with a timestamp, and fed into the hash object. If the cur-
rent scan code is the same as the previous scan code, it is not counted as entropy but
is added into the hash anyway. As other keystrokes are collected, the progress bar is
updated, and when the requested amount of entropy has been obtained, the OK but-
ton is enabled.

When the OK button is clicked, the dialog is destroyed, terminating the message
loop. The output from the hash function is copied into the output buffer from the
caller, and internal data is cleaned up before returning to the caller.

#include <windows.h>

#include <wincrypt.h>

#include <commctrl.h>

#define SPC_ENTROPY_PER_SAMPLE  0.5

#define SPC_KEYBOARD_DLGID      101

#define SPC_PROGRESS_BARID      1000

#define SPC_KEYBOARD_STATIC     -1

typedef struct {

  BYTE  bScanCode;

  DWORD dwTickCount;

} SPC_KEYPRESS;

static BOOL CALLBACK KeyboardEntropyProc(HWND hwndDlg, UINT uMsg, WPARAM wParam,

                                         LPARAM lParam) {

  HWND *pHwnd;

  if (uMsg != WM_COMMAND || LOWORD(wParam) != IDOK ||

      HIWORD(wParam) != BN_CLICKED) return FALSE;

  pHwnd = (HWND *)GetWindowLong(hwndDlg, DWL_USER);

  DestroyWindow(hwndDlg);
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  *pHwnd = 0;

  return TRUE;

}

BOOL SpcGatherKeyboardEntropy(HINSTANCE hInstance, HWND hWndParent,

                              BYTE *pbOutput, DWORD cbOutput) {

  MSG            msg;

  BOOL           bResult = FALSE;

  BYTE           bLastScanCode = 0, *pbHashData = 0;

  HWND           hwndDlg;

  DWORD          cbHashData, dwByteCount = sizeof(DWORD), dwLastTime = 0;

  double         dEntropy = 0.0;

  HCRYPTHASH     hHash = 0;

  HCRYPTPROV     hProvider = 0;

  SPC_KEYPRESS   KeyPress;

  if (!CryptAcquireContext(&hProvider, 0, MS_DEF_PROV, PROV_RSA_FULL,

                          CRYPT_VERIFYCONTEXT)) goto done;

  if (!CryptCreateHash(hProvider, CALG_SHA1, 0, 0, &hHash)) goto done;

  if (!CryptGetHashParam(hHash, HP_HASHSIZE, (BYTE *)&cbHashData, &dwByteCount,

                         0)) goto done;

  if (cbOutput > cbHashData) goto done;

  if (!(pbHashData = (BYTE *)LocalAlloc(LMEM_FIXED, cbHashData))) goto done;

  hwndDlg = CreateDialog(hInstance, MAKEINTRESOURCE(SPC_KEYBOARD_DLGID),

                         hWndParent, KeyboardEntropyProc);

  if (hwndDlg) {

    if (hWndParent) EnableWindow(hWndParent, FALSE);

    SetWindowLong(hwndDlg, DWL_USER, (LONG)&hwndDlg);

    SendDlgItemMessage(hwndDlg, SPC_PROGRESS_BARID, PBM_SETRANGE32, 0,

                       cbOutput * 8);

    while (hwndDlg && GetMessage(&msg, 0, 0, 0) > 0) {

      if ((msg.message = = WM_KEYDOWN || msg.message = = WM_KEYUP) &&

          dEntropy < cbOutput * 8) {

        KeyPress.bScanCode   = ((msg.lParam >> 16) & 0x0000000F);

        KeyPress.dwTickCount = GetTickCount( );

        CryptHashData(hHash, (BYTE *)&KeyPress, sizeof(KeyPress), 0);

        if (msg.message = = WM_KEYUP || (bLastScanCode != KeyPress.bScanCode &&

            KeyPress.dwTickCount - dwLastTime > 100)) {

          bLastScanCode = KeyPress.bScanCode;

          dwLastTime = KeyPress.dwTickCount;

          dEntropy += SPC_ENTROPY_PER_SAMPLE;

          SendDlgItemMessage(hwndDlg, SPC_PROGRESS_BARID, PBM_SETPOS,

                             (WPARAM)dEntropy, 0);

          if (dEntropy >= cbOutput * 8) {

            EnableWindow(GetDlgItem(hwndDlg, IDOK), TRUE);

            SetFocus(GetDlgItem(hwndDlg, IDOK));

            MessageBeep(0xFFFFFFFF);

          }

        }

        continue;

      }

      if (!IsDialogMessage(hwndDlg, &msg)) {

        TranslateMessage(&msg);

        DispatchMessage(&msg);
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      }

    }

    if (hWndParent) EnableWindow(hWndParent, TRUE);

  }

  if (dEntropy >= cbOutput * 8) {

    if (CryptGetHashParam(hHash, HP_HASHVAL, pbHashData, &cbHashData, 0)) {

      bResult = TRUE;

      CopyMemory(pbOutput, pbHashData, cbOutput);

    }

  }

done:

  if (pbHashData) LocalFree(pbHashData);

  if (hHash) CryptDestroyHash(hHash);

  if (hProvider) CryptReleaseContext(hProvider, 0);

  return bResult;

}

There are other ways to achieve the same result on Windows. For example, you
could install a temporary hook to intercept all messages and use the modal dialog
functions instead of the modeless ones that we have used here. Another possibility is
to be collecting entropy throughout your entire program by installing a more perma-
nent hook or by moving the entropy collection code out of
SpcGatherKeyboardEntropy( ) and placing it into your program’s main message-pro-
cessing loop. SpcGatherKeyboardEntropy( ) could then be modified to operate in glo-
bal state, presenting a dialog only if there is not a sufficient amount of entropy
collected already.

Note that the dialog uses a progress bar control. While this control is a standard con-
trol on Windows, it is part of the common controls, so you must initialize common
controls before instantiating the dialog; otherwise, CreateDialog( ) will fail inexplica-
bly (GetLastError( ) will return 0, which obviously is not very informative). The fol-
lowing code demonstrates initializing common controls and calling
SpcGatherKeyboardEntropy( ):

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine,

                   int nShowCmd) {

  BYTE                 pbEntropy[20];

  INITCOMMONCONTROLSEX CommonControls;

  CommonControls.dwSize = sizeof(CommonControls);

  CommonControls.dwICC  = ICC_PROGRESS_CLASS;

  InitCommonControlsEx(&CommonControls);

  SpcGatherKeyboardEntropy(hInstance, 0, pbEntropy, sizeof(pbEntropy));

  return 0;

}

See Also
Recipes 4.14, 6.5, 11.19
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11.21 Gathering Entropy from Mouse Events on
Windows

Problem
You need entropy in a low-entropy environment and can prompt the user to move
the mouse to collect it.

Solution
On Windows, process all mouse events. Mix into an entropy pool the current posi-
tion of the mouse pointer on the screen, along with the timestamp at which each
event was processed. Estimate entropy based upon your operating environment; see
the considerations in Recipe 11.19.

Discussion
There can be a reasonable amount of entropy in mouse movement. The entropy
comes not just from where the mouse pointer is on the screen, but from when each
movement was made. In fact, the mouse pointer’s position on the screen can have
very little entropy in it, particularly in an environment where there may be very little
interaction from a local user. Most of the entropy will come from the exact timing of
the mouse movements.

The basic methodology is to mix the on-screen position of the mouse pointer, along
with a timestamp, into the entropy pool. We will provide an example implementa-
tion in this section, where that operation is merely hashing the data into a running
SHA1 context.

The big issue is in estimating the amount of entropy in each mouse movement. The
first worry is that it is common for Windows to send multiple mouse event messages
with the same mouse pointer position. That is easy to thwart, though. You simply do
not measure any entropy at all, unless the mouse pointer has actually changed posi-
tion.

Ultimately, the amount of entropy you estimate getting from each mouse movement
should be related to the resolution of the clock you use to measure mouse move-
ments. In addition, you must consider whether other processes on the system may be
recording similar information. (See Recipe 11.19 for a detailed discussion of entropy
estimation.)

The following code captures mouse events, hashes mouse pointer positions and
timestamps into a SHA1 context, and repeats until it is believed that the requested
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number of bits of entropy has been collected. A progress bar is also displayed that
shows how much more entropy needs to be collected.

Here is the resource definition for the progress dialog:

#include <windows.h>

#define SPC_MOUSE_DLGID     102

#define SPC_PROGRESS_BARID  1000

#define SPC_MOUSE_COLLECTID 1002

#define SPC_MOUSE_STATIC    1003

SPC_MOUSE_DLGID DIALOG DISCARDABLE  0, 0, 287, 166

STYLE DS_MODALFRAME | DS_NOIDLEMSG | DS_CENTER | WS_POPUP | WS_VISIBLE |

    WS_CAPTION

FONT 8, "MS Sans Serif"

BEGIN

    CONTROL         "Progress1",SPC_PROGRESS_BARID,"msctls_progress32",

                    PBS_SMOOTH | WS_BORDER,5,125,275,14

    LTEXT           "Please move your mouse over this dialog until the progress \

                    bar reports 100% and the OK button becomes active.",

                    SPC_MOUSE_STATIC,5,5,275,20

    PUSHBUTTON      "OK",IDOK,230,145,50,14,WS_DISABLED

    CONTROL         "",SPC_MOUSE_COLLECTID,"Static",SS_LEFTNOWORDWRAP |

                    SS_SUNKEN | WS_BORDER | WS_GROUP,5,35,275,80

END

Call the function SpcGatherMouseEntropy( )to begin the process of collecting entropy.
It has the same signature as SpcGatherKeyboardEntropy( ) from Recipe 11.20. This
function has the following arguments:

hInstance

Application instance handle normally obtained from the first argument to
WinMain( ), the program’s entry point.

hWndParent

Handle to the dialog’s parent window. It may be specified as NULL, in which case
the dialog will have no parent.

pbOutput

Buffer into which the collected entropy will be placed.

cbOutput

Number of bytes of entropy to place into the output buffer. The output buffer
must be sufficiently large to hold the requested amount of entropy. The number
of bytes of entropy requested should not exceed the size of the hash function
used, which is SHA1 in the code provided. SHA1 produces a 160-bit or 20-byte
hash. If the requested entropy is smaller than the hash function’s output, the
hash function’s output will be truncated.

SpcGatherMouseEntropy( ) uses the CryptoAPI to hash the data collected from the
mouse. It first acquires a context object, then creates a hash object. After the argu-
ments are validated, the dialog resource is loaded by calling DialogBoxParam( ), which
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creates a modal dialog. A modal dialog can be used for capturing mouse messages
instead of the modeless dialog that was required for gathering keyboard entropy in
Recipe 11.20, because normal dialog processing doesn’t eat mouse messages the way
it eats keyboard messages.

Once the dialog is successfully created, the message handling procedure handles WM_

MOUSEMOVE messages, which will be received whenever the mouse pointer moves over
the dialog or its controls. The position of the mouse pointer is extracted from the
message, converted to screen coordinates, combined with a timestamp, and fed into
the hash object. If the current pointer position is the same as the previous pointer
position, it is not counted as entropy but is added into the hash anyway. As mouse
movements are collected, the progress bar is updated, and when the requested
amount of entropy has been obtained, the OK button is enabled.

When the OK button is clicked, the dialog is destroyed, terminating the message
loop. The output from the hash function is copied into the output buffer from the
caller, and internal data is cleaned up before returning to the caller.

#include <windows.h>

#include <wincrypt.h>

#include <commctrl.h>

#define SPC_ENTROPY_PER_SAMPLE  0.5

#define SPC_MOUSE_DLGID         102

#define SPC_PROGRESS_BARID      1000

#define SPC_MOUSE_COLLECTID     1003

#define SPC_MOUSE_STATIC        1002

typedef struct {

  double     dEntropy;

  DWORD      cbRequested;

  POINT      ptLastPos;

  DWORD      dwLastTime;

  HCRYPTHASH hHash;

} SPC_DIALOGDATA;

typedef struct {

  POINT ptMousePos;

  DWORD dwTickCount;

} SPC_MOUSEPOS;

static BOOL CALLBACK MouseEntropyProc(HWND hwndDlg, UINT uMsg, WPARAM wParam,

                                      LPARAM lParam) {

  SPC_MOUSEPOS    MousePos;

  SPC_DIALOGDATA  *pDlgData;

  switch (uMsg) {

    case WM_INITDIALOG:

      pDlgData = (SPC_DIALOGDATA *)lParam;

      SetWindowLong(hwndDlg, DWL_USER, lParam);

      SendDlgItemMessage(hwndDlg, SPC_PROGRESS_BARID, PBM_SETRANGE32, 0,
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                         pDlgData->cbRequested);

      return TRUE;

    case WM_COMMAND:

      if (LOWORD(wParam) = = IDOK && HIWORD(wParam) = = BN_CLICKED) {

        EndDialog(hwndDlg, TRUE);

        return TRUE;

      }

      break;

    case WM_MOUSEMOVE:

      pDlgData = (SPC_DIALOGDATA *)GetWindowLong(hwndDlg, DWL_USER);

      if (pDlgData->dEntropy < pDlgData->cbRequested) {

        MousePos.ptMousePos.x = LOWORD(lParam);

        MousePos.ptMousePos.y = HIWORD(lParam);

        MousePos.dwTickCount  = GetTickCount( );

        ClientToScreen(hwndDlg, &(MousePos.ptMousePos));

        CryptHashData(pDlgData->hHash, (BYTE *)&MousePos, sizeof(MousePos), 0);

        if ((MousePos.ptMousePos.x != pDlgData->ptLastPos.x ||

             MousePos.ptMousePos.y != pDlgData->ptLastPos.y)  &&

            MousePos.dwTickCount - pDlgData->dwLastTime > 100) {

          pDlgData->ptLastPos = MousePos.ptMousePos;

          pDlgData->dwLastTime = MousePos.dwTickCount;

          pDlgData->dEntropy += SPC_ENTROPY_PER_SAMPLE;

          SendDlgItemMessage(hwndDlg, SPC_PROGRESS_BARID, PBM_SETPOS,

                             (WPARAM)pDlgData->dEntropy, 0);

          if (pDlgData->dEntropy >= pDlgData->cbRequested) {

            EnableWindow(GetDlgItem(hwndDlg, IDOK), TRUE);

            SetFocus(GetDlgItem(hwndDlg, IDOK));

            MessageBeep(0xFFFFFFFF);

          }

        }

      }

      return TRUE;

  }

  return FALSE;

}

BOOL SpcGatherMouseEntropy(HINSTANCE hInstance, HWND hWndParent,

                              BYTE *pbOutput, DWORD cbOutput) {

  BOOL           bResult = FALSE;

  BYTE           *pbHashData = 0;

  DWORD          cbHashData, dwByteCount = sizeof(DWORD);

  HCRYPTHASH     hHash = 0;

  HCRYPTPROV     hProvider = 0;

  SPC_DIALOGDATA DialogData;

  if (!CryptAcquireContext(&hProvider, 0, MS_DEF_PROV, PROV_RSA_FULL,

                          CRYPT_VERIFYCONTEXT)) goto done;

  if (!CryptCreateHash(hProvider, CALG_SHA1, 0, 0, &hHash)) goto done;

  if (!CryptGetHashParam(hHash, HP_HASHSIZE, (BYTE *)&cbHashData, &dwByteCount,

                         0)) goto done;
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  if (cbOutput > cbHashData) goto done;

  if (!(pbHashData = (BYTE *)LocalAlloc(LMEM_FIXED, cbHashData))) goto done;

  DialogData.dEntropy     = 0.0;

  DialogData.cbRequested = cbOutput * 8;

  DialogData.hHash        = hHash;

  DialogData.dwLastTime   = 0;

  GetCursorPos(&(DialogData.ptLastPos));

  bResult = DialogBoxParam(hInstance, MAKEINTRESOURCE(SPC_MOUSE_DLGID),

                           hWndParent, MouseEntropyProc, (LPARAM)&DialogData);

  if (bResult) {

    if (!CryptGetHashParam(hHash, HP_HASHVAL, pbHashData, &cbHashData, 0))

      bResult = FALSE;

    else

      CopyMemory(pbOutput, pbHashData, cbOutput);

  }

done:

  if (pbHashData) LocalFree(pbHashData);

  if (hHash) CryptDestroyHash(hHash);

  if (hProvider) CryptReleaseContext(hProvider, 0);

  return bResult;

}

There are other ways to achieve the same result on Windows. For example, entropy
could be collected throughout your entire program by installing a message hook or
by moving the entropy collection code out of MouseEntropyProc( ) and placing it into
your program’s main message processing loop. SpcGatherMouseEntropy( ) could then
be modified to operate in global state, presenting a dialog only if there is not a suffi-
cient amount of entropy collected already.

Note that the dialog uses a progress bar control. While this control is a standard con-
trol on Windows, it is part of the common controls, so you must initialize common
controls before instantiating the dialog; otherwise, DialogBoxParam( ) will fail inexpli-
cably (GetLastError( ) will return 0, which obviously is not very informative). The
following code demonstrates initializing common controls and calling
SpcGatherMouseEntropy( ):

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPSTR lpCmdLine,

                   int nShowCmd) {

  BYTE                 pbEntropy[20];

  INITCOMMONCONTROLSEX CommonControls;

  CommonControls.dwSize = sizeof(CommonControls);

  CommonControls.dwICC  = ICC_PROGRESS_CLASS;

  InitCommonControlsEx(&CommonControls);

  SpcGatherMouseEntropy(hInstance, 0, pbEntropy, sizeof(pbEntropy));

  return 0;

}
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See Also
Recipes 11.19, 11.20

11.22 Gathering Entropy from Thread Timings

Problem
You want to collect some entropy without user intervention, hoping that there is
some inherent, measurable entropy in the environment.

Solution
In practice, timing how long it takes to start up and stop a particular number of
threads can provide a bit of entropy. For example, many Java virtual machines exclu-
sively use such a technique to gather entropy.

Because the thread timing data is only indirectly related to actual user input, it is
good to be extremely conservative about the quality of this entropy source. We rec-
ommend the following methodology:

1. Launch and join on some fixed number of threads (at least 100).

2. Mix in a timestamp when all threads have returned successfully.

3. Estimate entropy based on the considerations discussed in Recipe 11.19.

4. Wait at least a second before trying again, in hopes that there is additional
entropy affecting the system later.

The following code spawns a particular number of threads that you can time, in the
hope of getting some entropy. This code works on Unix implementations that have
the pthreads library (the POSIX standard for threads). Linking is different depending
on platform; check your local pthreads documentation.

#include <pthread.h>

static void *thread_stub(void *arg) {

  return 0;

}

void spc_time_threads(unsigned int numiters) {

  pthread_t tid;

  while (numiters--)

    if (!pthread_create(&tid, 0, thread_stub, 0))

      pthread_join(tid, 0);

}
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On Windows, the idea is the same, and the structure of the code is similar. Here is
the same code as presented above, but implemented using the Win32 API:

#include <windows.h>

static DWORD WINAPI ThreadStub(LPVOID lpData) {

  return 0;

}

void SpcTimeThreads(DWORD dwIterCount) {

  DWORD  dwThreadId;

  HANDLE hThread;

  while (dwIterCount--) {

    if ((hThread = CreateThread(0, 0, ThreadStub, 0, 0, &dwThreadId)) != 0) {

      WaitForSingleObject(hThread, INFINITE);

      CloseHandle(hThread);

    }

  }

}

See Recipe 4.14 for several different ways to get a timestamp. We strongly recom-
mend that you use the most accurate method available on your platform.

See Also
Recipes 4.14, 11.19

11.23 Gathering Entropy from System State

Problem
You want to get some information that might actually change rapidly about the state
of the kernel, in the hope that you might be able to get a bit of entropy from it.

Solution
The solution is highly operating system–specific. On systems with a /proc filesystem,
you can read the contents of all the files in /proc. Otherwise, you can securely invoke
commands that have some chance of providing entropy (especially if called infre-
quently). On Windows, the Performance Data Helper (PDH) API can be used to
query much of the same type of information available on Unix systems with a /proc
filesystem.

Mix any data you collect, as well as a timestamp taken after the operation com-
pletes, into an entropy pool (see Recipe 11.19).
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Discussion

We strongly recommend that you do not increase your entropy esti-
mates based on any kernel state collected, particularly on a system that
is mostly idle. Much of the time, kernel state changes more slowly
than people think. In addition, attackers may be able to query the
same data and get very similar results.

The internal state of an operating system can change quickly, but that does not mean
there is necessarily any entropy there to collect. See Recipe 11.19 for a discussion
about estimating how much entropy you are getting.

Definitely do not query sources like these very often, because you are unlikely to get
additional entropy running in a tight loop, and the overhead involved is extremely
high.

On systems with a /proc filesystem, pretty much all of the interesting operating sys-
tem–specific information you might want to query is available by reading the files in
the /proc directory. The contents of the files in that directory are updated as the user
reads from those files. Open the files anew every time you want to poll for possible
entropy.

On systems without /proc, you can try to get information by running commands
that might change frequently and capturing all the data in the command. Be sure to
call out to any commands you run in a secure manner, as discussed in Recipes 1.7
and 1.8.

When calling commands, state does not actually change very quickly at all, particu-
larly on systems with few users. It is popular to query the ps and df commands (using
the flags that give the most entropy, of course), but there is often almost no entropy
in the output they produce.

Other commands that some operating systems may have, where there might be some
frequent change (though we would not count on it) include the following:

• sysctl: Use the -A flag.

• iostat

• lsof

• netstat: Use the -s flag if you want to see highly detailed information that may
change frequently on machines that see a lot of network traffic.

• pstat

• tcpdump: Ask it to capture a small number of packets.

• vmstat
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Often, these commands will need to run with superuser privileges (for example,
tcpdump). Depending on your threat model, such commands can possibly be more
useful because they’re less subject to attacks from local users.

This approach can be a reasonable way of collecting data from the network. How-
ever, note that attackers could possibly feed you packets in a predictable manner,
designed to reduce the amount of entropy available from this source.

See Also
Recipes 1.7, 1.8, 11.19


