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In today’s world of the Internet, the World-Wide Web, and Google, informa-
tion is more accessible than ever before. An unfortunate corollary is that it is
harder than ever to protect the privacy of sensitive information. In this paper,
we explore a technique called secure information flow analysis.

Suppose that some sensitive information is stored on a computer system.
How can we prevent it from being leaked improperly? Probably the first ap-
proach that comes to mind is to limit access to the information, either by
using some access control mechanism, or else by using encryption. These are
important and useful approaches, of course, but they have a fundamental
limitation—they can prevent information from being released, but they can-
not prevent it from being propagated. If a program legitimately needs access
to a piece of information, how can we be sure that it will not somehow leak
the information improperly? Simply trusting the program is dangerous. We
might try to monitor its output, but the program could easily disguise the
information. Furthermore, after-the-fact detection is often too late.

Consider for example a scenario involving e-filing of taxes. I might down-
load a tax preparation program from some vendor to my home computer. I
could use the program to prepare my tax return, entering my private financial
information. The program might then send my tax return to the IRS electron-
ically, encrypting it first to protect its confidentiality. But the program might
also send billing information back to the vendor so that I could be charged
for the use of the program. How can I be sure that this billing information
does not covertly include my private financial information?

The approach of secure information flow analysis involves performing a
static analysis of the program with the goal of proving that it will not leak
sensitive information. If the program passes the analysis, then it can be exe-
cuted safely.

This idea has a long history, going back to the pioneering work of the
Dennings in the 1970s [9]. It has since been heavily studied, as can be seen
from the survey by Sabelfeld and Myers [22], which cites about 150 papers.
Our goal here is not to duplicate that survey, but instead to explain the
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principles underlying secure information flow analysis and to discuss some
challenges that have so far prevented secure information flow analysis from
being employed much in practice.

1 Basic Principles

The starting point in secure information flow analysis is the classification of
program variables into different security levels. The most basic distinction is
to classify some variables as L, meaning low security, public information; and
other variables as H , meaning high security, private information. The security
goal is to prevent information in H variables from being leaked improperly.
Such leaks could take a variety of forms, of course, but certainly we need to
prevent information in H variables from flowing to L variables.

More generally, we might want a lattice of security levels, and we would
wish to ensure that information flows only upwards in the lattice [8]. For
example, if L ≤ H , then we would allow flows from L to L, from H to H , and
from L to H , but we would disallow flows from H to L.

Another interesting case involves integrity rather than confidentiality. If we
view some variables as containing possibly tainted information, then we may
wish to prevent information from such variables from flowing into untainted
variables, as in Orbæk [19]. We can model this using a lattice with Untainted
≤ Tainted. This idea is also the basis of recent work by Newsome and Song
[18] that attempts to detect worms via a dynamic taint analysis.

Let us consider some examples from Denning [9], assuming that secret :
H and leak : L. Clearly illegal is an explicit flow :

leak = secret;

On the other hand, the following should be legal:

secret = leak;

as should

leak = 76318;

Also dangerous is an implicit flow :

if ((secret % 2)==0)

leak = 0;

else

leak = 1;

This copies the last bit of secret to leak.
Arrays can lead to subtle information leaks. If array a is initially all 0,

then the program
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a[secret] = 1;

for (int i = 0; i < a.length; i++) {

if (a[i] == 1)

leak = i;

}

leaks secret.
How can we formalize the idea that program c does not leak information

from H variables to L variables? In Volpano, Smith, and Irvine [32], the
desired security property is formulated as follows:

Definition 1 (Noninterference). Program c satisfies noninterference if, for
any memories µ and ν that agree on L variables, the memories produced by
running c on µ and on ν also agree on L variables (provided that both runs
terminate successfully).

The name “noninterference” was chosen because of its similarity to a property
proposed earlier by Goguen and Meseguer [10]. The idea behind noninterfer-
ence is that someone observing the final values of L variables cannot conclude
anything about the initial values of H variables.

Notice that the noninterference property defined above is applicable only
to deterministic programs. In later sections, we will consider noninterference
properties that are appropriate for nondeterministic programs.

Of course, leaking H information into L variables is not the only way that
H information might be leaked. Consider

while (secret != 0)

;

This program loops iff secret is nonzero. So an attacker who can observe ter-
mination/nontermination can deduce some information about secret. Sim-
ilarly, the running time of a program may depend on H information. Such
timing leaks are very hard to prevent, because they can exploit low-level im-
plementation details. Consider the following example, adapted from Agat [1].

int i, count, xs[4096], ys[4096];

for (count = 0; count < 100000; count++) {

if (secret != 0)

for (i = 0; i < 4096; i += 2)

xs[i]++;

else

for (i = 0; i < 4096; i += 2)

ys[i]++;

for (i = 0; i < 4096; i += 2)

xs[i]++;

}
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At an abstract level, the amount of work done by this program does not seem
to depend on the value of secret. But, when run on a local Sparc server with
a 16K data cache, it takes twice as long when secret is 0 as it takes when
secret is nonzero. (When secret is nonzero, the array xs can remain in the
data cache throughout the program’s execution; when secret is 0, the data
cache holds xs and ys alternately.)

Because outside observations of the running program make it so hard to
prevent information leaks, most work on secure information flow addresses
only leaks of information from H variables to L variables, as captured by the
noninterference property. Focusing on noninterference can also be justified
by noting that when we run a program on our own computer (as in the e-
tax example above) we may be able to prevent outside observations of its
execution.

2 Typing Principles

In this section, we describe how type systems can be used to ensure noninter-
ference properties. For simplicity, we assume that the only security levels are
H and L. We begin by considering a very simple imperative language with
the following syntax:

(phrases) p ::= e | c

(expressions) e ::= x | n | e1 + e2 | . . .

(commands) c ::= x := e |
skip |
if e then c1 else c2 |
while e do c |
c1; c2

Here metavariable x ranges over identifiers and n over integer literals. Integers
are the only values; we use 0 for false and nonzero for true.

A program c is executed under a memory µ, which maps identifiers to val-
ues. We assume that expressions are total and evaluated atomically, with µ(e)
denoting the value of expression e in memory µ. Execution of commands is
given by a standard structural operational semantics as in Gunter [11], shown
in Figure 1. These rules define a transition relation −→ on configurations. A
configuration is either a pair (c, µ) or simply a memory µ. In the first case, c

is the command yet to be executed; in the second case, the command has ter-
minated, yielding final memory µ. We write −→∗ for the reflexive, transitive
closure of −→.

Going back to Denning’s original work [9], we can identify the following
principles:

• First, we classify expressions by saying that an expression is H if it con-
tains any H variables; otherwise it is L.
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(update) x ∈ dom(µ)

(x := e, µ)−→µ[x := µ(e)]

(no-op) (skip, µ)−→µ

(branch) µ(e) 6= 0

(if e then c1 else c2, µ)−→(c1, µ)

µ(e) = 0

(if e then c1 else c2, µ)−→(c2, µ)

(loop) µ(e) = 0

(while e do c, µ)−→µ

µ(e) 6= 0

(while e do c, µ)−→(c;while e do c, µ)

(sequence) (c1, µ)−→µ′

(c1; c2, µ)−→(c2, µ
′)

(c1, µ)−→(c′1, µ
′)

(c1; c2, µ)−→(c′1; c2, µ
′)

Fig. 1. Structural Operational Semantics

• Next we prevent explicit flows by forbidding a H expression from being
assigned to a L variable.

• Finally, we prevent implicit flows by forbidding a guarded command with
a H guard from assigning to L variables.

We can express these classifications and restrictions using a type system.
The security types that we need are as follows:

(data types) τ ::= L | H

(phrase types) ρ ::= τ | τ var | τ cmd

The intuition is that an expression e of type τ contains only variables of level
τ or lower, and a command c of type τ cmd assigns only to variables of level
τ or higher.

Next, we need an identifier typing Γ that maps each variable to a type
of the form τ var , giving its security level. A typing judgment has the form
Γ ⊢ p : ρ, which can be read as “from identifier typing Γ , it follows that phrase
p has type ρ”. In addition, it is convenient to have subtyping judgments of the
form ρ1 ⊆ ρ2. For instance, we would want H cmd ⊆ L cmd , because if a
command assigns only to variables of level H or higher then, a fortiori, it
assigns only to variables of level L or higher. The typing rules are shown in
Figures 2 and 3; they first appeared in Volpano, Smith, and Irvine [32].

Programs that are well typed under this type system are guaranteed to
satisfy noninterference. First, the following two lemmas show that the type
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(r-val) Γ (x) = τ var

Γ ⊢ x : τ

(int) Γ ⊢ n : L

(plus) Γ ⊢ e1 : τ, Γ ⊢ e2 : τ

Γ ⊢ e1 + e2 : τ

(assign) Γ (x) = τ var , Γ ⊢ e : τ

Γ ⊢ x := e : τ cmd

(skip) Γ ⊢ skip : H cmd

(if) Γ ⊢ e : τ

Γ ⊢ c1 : τ cmd
Γ ⊢ c2 : τ cmd

Γ ⊢ if e then c1 else c2 : τ cmd

(while) Γ ⊢ e : τ

Γ ⊢ c : τ cmd

Γ ⊢ while e do c : τ cmd

(compose) Γ ⊢ c1 : τ cmd
Γ ⊢ c2 : τ cmd

Γ ⊢ c1; c2 : τ cmd

Fig. 2. Typing rules

(base) L ⊆ H

(cmd
−) τ ′ ⊆ τ

τ cmd ⊆ τ ′ cmd

(reflex) ρ ⊆ ρ

(trans) ρ1 ⊆ ρ2, ρ2 ⊆ ρ3

ρ1 ⊆ ρ3

(subsump) Γ ⊢ p : ρ1, ρ1 ⊆ ρ2

Γ ⊢ p : ρ2

Fig. 3. Subtyping rules

system enforces the intended meanings of expression types and command
types:

Lemma 1 (Simple Security). If Γ ⊢ e : τ , then e contains only variables
of level τ or lower.

Lemma 2 (Confinement). If Γ ⊢ c : τ cmd, then c assigns only to variables
of level τ or higher.
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Next, we say that memories µ and ν are L-equivalent, written µ ∼L ν, if
µ and ν agree on the values of L variables. Now we can show noninterference:

Theorem 1 (Noninterference). If c is well typed and µ ∼L ν and c runs
successfully under both µ and ν, producing final memories µ′ and ν′, respec-
tively, then µ′ ∼L ν′.

Proof. The proof is by induction on the length of the execution (c, µ)−→µ′.
We describe two interesting cases:

• Suppose c is an assignment x := e. If x is H , then µ′ ∼L ν′ trivially. And
if x is L, then the type system requires that e : L, which means that by
Simple Security, e contains only L variables. Hence µ(e) = ν(e), which
means that µ′ ∼L ν′.

• Suppose c is while e do c′. If e is L, then by Simple Security µ(e) =
ν(e), which means that the executions from (while e do c′, µ) and from
(while e do c′, ν) begin in the same way; they go either to µ and to ν (if
µ(e) = ν(e) = 0) or to (c′;while e do c′, µ) and to (c′;while e do c′, ν)
(otherwise). In the former case we are done immediately, and in the latter
case the result follows by induction.
If, instead, e is H , then the type system requires that c′ has type H cmd .
So, by Confinement, c′ assigns only to H variables. It follows that µ ∼L µ′

and ν ∼L ν′, which implies that µ′ ∼L ν′.

The remaining cases are similar. ⊓⊔

Of course the language that we have considered so far is very small. In the
next subsections, we consider a number of extensions to it.

2.1 Concurrency

Suppose that we extend our language with multiple threads, under a shared
memory. This introduces nondeterminism, which makes the noninterference
property in Definition 1 inappropriate—now running a program twice under
the same memory can produce two memories that disagree on the values of
L variables.

As a starting point, we might generalize to a possibilistic noninterference
property that says that changing the initial values of H variables cannot
change the set of possible final values of L variables:

Definition 2 (Possibilistic Noninterference). Program c satisfies possi-
bilistic noninterference if, for any memories µ and ν that agree on L variables,
if running c on µ can produce final memory µ′, then running c on ν can pro-
duce a final memory ν′ such that µ′ and ν′ agree on L variables.

Do the typing rules in Figures 2 and 3 suffice to ensure possibilistic non-
interference? They do not, as is shown by the example in Figure 4, which is
from Smith and Volpano [28]. The initial values of all variables are 0, except



8 Geoffrey Smith

Thread α:

while (mask != 0) {

while (trigger0 == 0)

;

leak = leak | mask; // bitwise ’or’

trigger0 = 0;

maintrigger = maintrigger+1;

if (maintrigger == 1)

trigger1 = 1;

}

Thread β:

while (mask != 0) {

while (trigger1 == 0)

;

leak = leak & ~mask; // bitwise ’and’ with complement of mask

trigger1 = 0;

maintrigger = maintrigger+1;

if (maintrigger == 1)

trigger0 = 1;

}

Thread γ:

while (mask != 0) {

maintrigger = 0;

if (secret & mask == 0)

trigger0 = 1;

else

trigger1 = 1;

while (maintrigger != 2)

;

mask = mask/2;

}

trigger0 = 1;

trigger1 = 1;

Fig. 4. A multi-threaded program that leaks secret

mask, whose value is a power of 2, and secret, whose value is arbitrary. It can
be seen that, under any fair scheduler, this program always copies secret to
leak. Yet all three threads are well typed provided that secret, trigger0,
and trigger1 are H , and leak, maintrigger, and mask are L.

So we need to impose additional restrictions on multi-threaded programs.
Before considering such restrictions, however, we must first address the spec-
ification of the thread scheduler more carefully. Possibilistic noninterference
is sufficient only if we assume a purely nondeterministic scheduler, which at
each step can choose any thread to run for the next step. Under this model,
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there is no likelihood associated with the memories that can result from run-
ning a program—each final memory is simply possible or impossible. But a
real scheduler would inevitably be more predictable. For example, a sched-
uler might flip coins at each step to choose which thread to run next. Under
such a probabilistic scheduler, possibilistic noninterference is insufficient. Con-
sider the following example from McLean [14]. Let the program consist of two
threads:

leak = secret;

and

leak = random(100);

Assume that random(100) returns a random number between 1 and 100 and
that the value of secret is between 1 and 100. This program satisfies pos-
sibilistic noninterference, because the final value of leak can be any number
between 1 and 100, regardless of the value of secret. But, under a prob-
abilistic scheduler that flips a coin to decide which thread to execute first,
the value of leak will be the value of secret with probability 101/200, and
each other number between 1 and 100 with probability 1/200. This example
motivates a stronger security property, probabilistic noninterference, which
says that changing the initial values of H variables cannot affect the joint
probability distribution on the final values of L variables. Further discussion
of possibilistic and probabilistic security properties can be found in McLean
[15].

We now describe a type system for ensuring probabilistic noninterference in
multi-threaded programs. The first such systems (Smith and Volpano [28, 31]
and Sabelfeld and Sands [23]) adopted the severe restriction that guards of
while-loops must be L. This rules out the program in Figure 4 (trigger0 and
trigger1 are H), but it also makes it hard to write useful programs.

Later, inspired by Honda, Vasconcelos, and Yoshida [12], a better type
system was presented by Smith [26, 27]. (Remarkably, almost the same system
was developed independently by Boudol and Castellani [5].) This type system
allows while-loop guards to contain H variables, but to prevent timing flows it
demands that a command whose running time depends on H variables cannot
be followed sequentially by an assignment to a L variable. The intuition is that
such an assignment to a L variable is dangerous in a multi-threaded setting,
because if another thread assigns to the same variable, then the likely order
in which the assignments occur (and hence the likely final value of the L

variable) depends on H information.
The type system uses the following set of types:

(data types) τ ::= L | H

(phrase types) ρ ::= τ | τ var | τ1 cmd τ2 | τ cmd n

The new command types have the following intuition:
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• A command c is classified as τ1 cmd τ2 if it assigns only to variables of
type τ1 (or higher) and its running time depends only on variables of type
τ2 (or lower).

• A command c is classified as τ cmd n if it assigns only to variables of type
τ (or higher) and it is guaranteed to terminate in exactly n steps.

The new typing and subtyping rules are presented in Figures 5 and 6.
These rules make use of the lattice join and meet operations, denoted ∨ and ∧,
respectively. Also, we extend the language with a new command, protect c,
which runs command c atomically. This is helpful in masking timing varia-
tions.

The key idea behind the soundness of this type system is that if a well-
typed thread c is run under two L-equivalent memories, then in both runs it
makes exactly the same assignments to L variables, at the same times. Given
this property, we are able to show that well-typed multi-threaded programs
satisfy probabilistic noninterference. The proof involves establishing a weak
probabilistic bisimulation; the details are in Smith [27].

2.2 Exceptions

Another language feature that can cause subtle information flows is excep-
tions. For example, here is a Java program that uses exceptions from out-of-
bounds array indices to leak a secret:

int secret;

int leak = 0;

int [] a = new int[1];

for (int bit = 0; bit < 30; bit++) {

try {

a[1 - (secret >> bit) % 2] = 0;

leak |= (1 << bit);

}

catch (ArrayIndexOutOfBoundsException e) { }

}

In this code, bit is L. Here the key is that array a has length 1, so the
assignment

a[1 - (secret >> bit) % 2] = 0;

raises an exception iff the current bit of secret is 0. As a result, the assignment

leak |= (1 << bit);

is executed iff the current bit of secret is 1.
How should leaks due to exceptions be prevented? One possibility is to use

an approach similar to what was used for concurrency: we can require that
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(r-val) Γ (x) = τ var

Γ ⊢ x : τ

(int) Γ ⊢ n : L

(plus) Γ ⊢ e1 : τ, Γ ⊢ e2 : τ

Γ ⊢ e1 + e2 : τ

(assign) Γ (x) = τ var , Γ ⊢ e : τ

Γ ⊢ x := e : τ cmd 1

(skip) Γ ⊢ skip : H cmd 1

(if) Γ ⊢ e : τ

Γ ⊢ c1 : τ cmd n

Γ ⊢ c2 : τ cmd n

Γ ⊢ if e then c1 else c2 : τ cmd n + 1

Γ ⊢ e : τ1

τ1 ⊆ τ2

Γ ⊢ c1 : τ2 cmd τ3

Γ ⊢ c2 : τ2 cmd τ3

Γ ⊢ if e then c1 else c2 : τ2 cmd τ1 ∨ τ3

(while) Γ ⊢ e : τ1

τ1 ⊆ τ2

τ3 ⊆ τ2

Γ ⊢ c : τ2 cmd τ3

Γ ⊢ while e do c : τ2 cmd τ1 ∨ τ3

(compose) Γ ⊢ c1 : τ cmd m

Γ ⊢ c2 : τ cmd n

Γ ⊢ c1; c2 : τ cmd m + n

Γ ⊢ c1 : τ1 cmd τ2

τ2 ⊆ τ3

Γ ⊢ c2 : τ3 cmd τ4

Γ ⊢ c1; c2 : τ1 ∧ τ3 cmd τ2 ∨ τ4

(protect) Γ ⊢ c : τ1 cmd τ2

c contains no while loops

Γ ⊢ protect c : τ1 cmd 1

Fig. 5. Typing rules for multi-threaded programs
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(base) L ⊆ H

(cmd
−) τ ′

1 ⊆ τ1, τ2 ⊆ τ ′

2

τ1 cmd τ2 ⊆ τ ′

1 cmd τ ′

2

τ ′ ⊆ τ

τ cmd n ⊆ τ ′ cmd n

τ cmd n ⊆ τ cmd L

(reflex) ρ ⊆ ρ

(trans) ρ1 ⊆ ρ2, ρ2 ⊆ ρ3

ρ1 ⊆ ρ3

(subsump) Γ ⊢ p : ρ1, ρ1 ⊆ ρ2

Γ ⊢ p : ρ2

Fig. 6. Subtyping rules for multi-threaded programs

a command that might raise exceptions based on the values of H variables
must not be followed sequentially by an assignment to L variables. This is the
approach taken by Jif [16].

Because this would seem to be quite restrictive in practice, Deng and Smith
[6] propose a different approach. If we change the language semantics so that
array operations never raise exceptions, then we can type them much more
permissively. The idea is to treat commands with out-of-bounds array indices
as no-ops that are simply skipped.

Under this approach, we give an array type τ1 arr τ2 to indicate that its
contents have level τ1 and its length has level τ2. Then, for example, we can use
the following straightforward and permissive typing rule for array assignment:

Γ (x) = τ1 arr τ2, Γ ⊢ e1 : τ1, Γ ⊢ e2 : τ1

Γ ⊢ x[e1] := e2 : τ1 cmd

The full type system is given in [6].
In contrast, but with the same intent, Flow Caml [25] specifies that an out-

of-bounds array index causes the program to abort. This also prevents out-of-
bounds exceptions from being observed internally, allowing more permissive
typing rules.

2.3 Other Language Features

Secure information flow analysis can treat larger languages than we have con-
sidered here. Notable is the work of Myers [16] and Banerjee and Naumann
[3], which treats object-oriented languages, and that of Pottier and Simonet
[20] which treats a functional language.

Another useful technology in this context is type inference, which frees the
programmer from having to specify the security levels of all the variables in the
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program. He or she can specify the levels of just the variables of interest, and
have appropriate security levels of all other variables be inferred automatically.

Interestingly, the desire to do type inference is one reason for assuming
that the set of security levels forms a lattice, because type inference is NP-
complete over an arbitrary partial order. This follows from a result of Pratt
and Tiuryn [21]. They show that over the “2-crown” given by

A B

C D

the problem of testing the satisfiability of a set of inequalities between vari-
ables (x, y, z, . . . ) and constants (A, B, C, D) is NP-complete. We can easily
reduce the satisfiability problem to the inference problem by mapping a set
of inequalities C to a program p such that C is satisfiable iff some choice of
security levels for the inferable variables of p makes p well typed. For example,
we map

{x ≤ A, B ≤ y, x ≤ y}

to the program
a := x; y := b; y := x

where a and b are variables of levels A and B, respectively, and x and y are
variables whose levels are to be inferred.

In contrast, type inference can be done efficiently over a lattice. Work on
type inference for secure information flow includes Volpano and Smith [30],
Pottier and Simonet [20], Sun, Banerjee, and Naumann [29], and Deng and
Smith [7].

3 Challenges

In spite of a great deal of research, secure information flow analysis has had
little practical impact so far. (See, for example, Zdancewic’s discussion [33].)
In this section we discuss some challenges that need to be overcome to make
secure information flow analysis more useful in practice.

One obvious concern is that much of the work in the research literature
has been theoretical, treating “toy” languages rather than full production lan-
guages. While this has surely hindered adoption of this technology somewhat,
in fact there are two mature implementations of rich languages with secure in-
formation flow analysis, namely Jif [17] and Flow Caml [25]. This fact suggests
that the problems largely lie elsewhere.
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In exploring this issue further, it seems helpful to distinguish between
two different application scenarios: developing secure software and stopping
malicious software. We consider these in turn.

3.1 Scenario 1: Developing Secure Software

In this scenario, the idea is to use secure information flow analysis to help in
the development of software that satisfies some security goals. Here the anal-
ysis serves as a program development tool. We could imagine such a tool being
used interactively to help the programmer to eliminate improper information
leaks. Here, the analysis could be carried out on source code.

The static analysis tool would alert the programmer to potential leaks.
The programmer could respond to such alerts by rewriting the code as nec-
essary. We also might allow the programmer to insert explicit declassification
statements (in effect, type casts) to deal with situations where the analysis
is overly restrictive. (Such declassification statements are allowed in Jif, for
example.) Allowing declassification statements is risky, of course, but it might
be reasonable in situations where we can trust that the programmer is not
malicious or incompetent.

An example of this scenario can be found in Askarov and Sablefeld [2]
which discusses the implementation of a “mental poker” protocol in Jif. The
program is about 4500 lines long, and it uses a number of declassification
statements, for example to model the intuition that encrypting H information
makes it L.

3.2 Scenario 2: Stopping Malicious Software

In this scenario, the idea is to use secure information flow analysis as a kind
of filter to stop malicious software (“malware”). We might imagine analyzing
a piece of untrusted downloaded code before executing it, with the goal of
guaranteeing its safety.

This scenario is clearly much more challenging than Scenario 1. First of
all, we probably would not have access to the source code, requiring us to
analyze binaries. Analyzing binaries is more difficult than analyzing source
code and has not received much attention in the literature, aside from some
recent work on analyzing Java bytecodes, such as Barthe and Rezk [4].

A further challenge here is that the analysis would need to be fully auto-
matic, without the possibility of interaction with the programmer. Moreover,
declassification statements certainly cannot be blindly accepted in this sce-
nario. If we do allow declassification statements, then it becomes unclear what
(if any) security properties are guaranteed.

3.3 Flow Policies

In both scenarios we have a key question: what information flow policies do
we want? As we have discussed above, secure information flow analysis has
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focused on enforcing noninterference. But noninterference requires absolutely
no flow of information. As it turns out, this does not seem to be quite what
we want in practice.

A first concern is that “small” information leaks are acceptable in prac-
tice. For instance, a password checker certainly must not leak the correct
password, but it must allow a user to enter a purported password, which it
will either accept or reject. And, of course, rejecting a password leaks some
information about the correct password, by eliminating one possibility. Simi-
larly, encrypting some H information would seem to make it L, but there is a
flow of information from the plaintext to the ciphertext, since the ciphertext
depends on the plaintext.

As another example, consider census data. Individual census data is ex-
pected to be private (H) but aggregate census data needs to be public (L),
since otherwise the census data is useless. But, of course, aggregate data de-
pends on individual data, contrary to what noninterference demands.

Flow policies sometimes involve a temporal aspect as well. For example,
we might want to release some secret information after receiving a payment
for it.

These examples suggest that, in many practical situations, enforcing non-
interference on a static lattice of security levels is too heavy-handed. At the
same time, it seems difficult to allow “small” information leaks without al-
lowing a malicious program to exploit such loopholes to leak too much.

A major challenge for secure information flow analysis, then, is to de-
velop a good formalism for specifying useful information flow policies that are
more flexible than noninterference. The formalism must be general enough
for a wide variety of applications, but not too complicated for users to under-
stand. In addition, we must find enforcement mechanisms that can provably
ensure that the flow policy is satisfied. Such richer information flow policies
and their enforcement are the subject of much current research. One inter-
esting approach is Li and Zdancewic [13], which uses downgrading policies
as security levels, so that the security level specifies what must be done to
“sanitize” a piece of information. More broadly, the survey by Sabelfeld and
Sands [24] gives a useful framework for thinking about recent approaches to
declassification.

4 Conclusion

Secure information flow analysis has the potential to guarantee strong security
properties in computer software. But if it is to become broadly useful, it must
better address the security properties that are important in practice.

This work was partially supported by the National Science Foundation
under grants CCR-9900951 and HRD-0317692.
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